中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 895-906 DOI: 10.7536/PC200758   Next Articles

• Review •

Synthesis of Oxetanes

Zhicheng Fu, Jiaxi Xu*()   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: Jiaxi Xu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21572017); National Natural Science Foundation of China(21772010)
Richhtml ( 147 ) PDF ( 1464 ) Cited
Export

EndNote

Ris

BibTeX

Oxetanes are a class of saturated four-membered cyclic ether compounds. They are not only an important class of organic synthetic intermediates, but also crucial active structural units of natural and synthetic biological and medicinal active compounds possessing anti-cancer, inhibition of human immunodeficiency virus, as well as inhibiting glutamine synthetase in clinical practice. Thus, it is in high demand to develop efficient methods for constructing oxetane structural motifs. In this review, the intramolecular cyclization reaction via C—C bond formation, the intramolecular Williamson etherification by the formation of C—O bond, the [2+2] photocycloadditions of alkenes with aldehydes and ketones(named as Paternò-Büchi reaction), transition metal catalyzed formal [2+2] cycloadditions, sulfide ylide-mediated epoxide ring expansion, and the C—H bond oxidative cyclization are reviewed with a focus on new progress in the synthesis of oxetanes during the last five years. It is hoped that this review can provide some valuable information for the organic chemists who are interested in the construction of the oxetane skeleton and promote the development on the synthesis and application of oxetanes.

Contents

1 Introduction

2 Cyclization through the C—C bond formation

3 Cyclization through the C—O bond formation

4 Ring expansion reaction of epoxides

5 [2+2] Cycloadditions

5.1 Paternò-Büchi [2+2] photocycloadditions

5.2 Formal [2+2] cycloadditions

6 C—H bond oxidative cyclizations

7 Conclusion

Fig.1 Natural products and synthetic bioactive compounds containing the oxetane motif[23⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
Scheme 1 Synthesis of 2-sulfonyloxetanes via the C—C bond formation[51]
Scheme 2 Rhodium-catalyzed C—C cyclization access to multisubstituted oxetane derivatives[52]
Scheme 3 Synthesis of 3-spiro-oxetanes 15a~15g through the C—C bond formation by the C—H carbene insertion[53]
Scheme 4 Williamson etherification to oxetanes[54]
Scheme 5 Common methods of cyclization through the C—O bond formation[55⇓⇓⇓⇓~60]
Scheme 6 Selenone-mediated cyclizations to spirooxindolinone-oxetanes[61]
Scheme 7 Gold-catalyzed synthesis of oxetan-2-ones from readily available propargylic alcohols[62]
Scheme 8 Iridium-catalyzed enantioselective synthesis of oxetanes bearing an all-carbon substituted quaternary stereocenter[63]
Scheme 9 Synthesis of an oxetane-bearing analogue of the antipsychotic agent Haloperidol[63]
Scheme 10 Ring expansion of dimethyloxosulfonium methylide and epoxides[76]
Scheme 11 Synthesis of 2-trifluoromethyloxetanes via the Corey-Chaykovsky epoxidation and ring expansion[82].
Scheme 12 Synthesis of γ-secretase modulator analogue 45 containing 2-trifluorooxetane [82]
Scheme 13 The first Paternò-Büchi reaction[2⇓~4]
Scheme 14 Main mechanism of the Paternò-Büchi reaction[83]
Scheme 15 Light-promoted synthesis of 2-alkylideneoxetanes from allenoates and ketones[84]
Scheme 16 Cu(Ⅰ)-catalyzed intermolecular [2 + 2] photocycloadditions of carbonyl compounds and norbornene[85]
Fig.2 Photoactive species TpCu-(Norb) 54[85]
Scheme 17 Mechanism of intermolecular [2 + 2] photocycloadditions of carbonyl compounds and norbornene[85]
Scheme 18 Visible-light promoted [2 + 2] cycloaddition of alkenes and carbonyls[86]
Scheme 19 Transition metal-catalyzed formal [2+2] cycloadditions[87,88]
Scheme 20 DABCO-catalyzed formal [2+2] cycloaddition[89]
Scheme 21 Mechanism of DABCO-catalyzed formal [2+2] cycloaddition[89]
Scheme 22 β-ICD-catalyzed asymmetric formal [2+2] cycloaddition of allenoates with ketones[90]
Scheme 23 NHC-catalyzed formal [2+2] annulations of allenoates[93]
Scheme 24 Derivatization of oxetane products[93]
Scheme 25 Proposed catalytic cycle for NHC-catalyzed formal [2+2] annulation[93]
Fig.3 Structure of(-)-Mitrephorone A[94]
Scheme 26 Total synthesis of (-)-mitrephorone A via C—H oxidative cyclization[95]
Scheme 27 Synthesis of(-)-Mitrephorone A via a bio-inspired late stage C—H oxidative cyclization of(-)-Mitrephorone B[96]
[1]
Reboul M. Ann. Chim., 1878, 14:496.
[2]
Paternò E, Chieffii G. Gazz. Chim. Ital., 1909, 39:341.
[3]
Büchi G, Inman C G, Lipinsky E S. J. Am. Chem. Soc., 1954, 76:4327.

doi: 10.1021/ja01646a024
[4]
Yang N C, Nussim M, Jorgenson M J, Murov S. Tetrahedron Lett., 1964, 5:3657.

doi: 10.1016/S0040-4039(01)89388-6
[5]
D'Auria M, Racioppi R. Curr. Org. Chem., 2009, 13:939.

doi: 10.2174/138527209788452126
[6]
Bull J A, Croft R A, Davis O A, Doran R, Morgan K F. Chem. Rev., 2016, 116:12150.

doi: 10.1021/acs.chemrev.6b00274
[7]
Burkhard J A, Wuitschik G, Rogers-Evans M, Müller K, Carreira E M. Angewandte Chemie Int. Ed., 2010, 49:9052.

doi: 10.1002/anie.200907155
[8]
Nishikubo T, Kameyama A, Kudo H. J. Syn. Org. Chem., Jpn. , 2006, 64:934.

doi: 10.5059/yukigoseikyokaishi.64.934
[9]
Harrane A, Naar N, Belbachir M. Mater. Lett., 2007, 61:3555.

doi: 10.1016/j.matlet.2006.11.118
[10]
Smith D T, Njardarson J T. Top. Heterocycl. Chem., 2016, 41:281.
[11]
Wuitschik G, Rogers-Evans M, Müller K, Fischer H, Wagner B, Schuler F, Polonchuk L, Carreira E M. Angew. Chem. Int. Ed., 2006, 45:7736.

doi: 10.1002/(ISSN)1521-3773
[12]
Wuitschik G. Oxetanes in Drug Discovery, Ph.D. Thesis, ETH. Zurich, 2008.
[13]
Wuitschik G, Carreira E M, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Mu¨ller K. J. Med. Chem., 2010, 53:3227.

doi: 10.1021/jm9018788 pmid: 20349959
[14]
Wang Z B, Chen Z L, Sun J W. Org. Biomol. Chem., 2014, 12:6028.

doi: 10.1039/C4OB00920G
[15]
Li S Q, Xu J X. Prog. Chem., 2016, 28:1798.
(李思琦, 许家喜. 化学进展, 2016, 28:1798.).

doi: 10.7536/PC160815
[16]
Pritchard J G, Long F A. J. Am. Chem. Soc., 1958, 80:4162.

doi: 10.1021/ja01549a012
[17]
Hu X M, Kellogg R M. Tetrahedron: Asymmetry, 1995, 6:1399.

doi: 10.1016/0957-4166(95)00173-M
[18]
Fernández-PÉrez H, Etayo P, Núñez-Rico J L, Balakrishna B, Vidal-Ferran A. RSC Adv., 2014, 4:58440.

doi: 10.1039/C4RA10432C
[19]
Ng K, Tran V, Minehan T. Tetrahedron Lett., 2016, 57:415.

doi: 10.1016/j.tetlet.2015.12.041
[20]
Malapit C A, Howell A R. J. Org. Chem., 2015, 80:8489.

doi: 10.1021/acs.joc.5b01255
[21]
Wani M C, Taylor H L, Wall M E, Coggon P, McPhail A T. J. Am. Chem. Soc., 1971, 93:2325.

pmid: 5553076
[22]
Farina V. The Chemistry and Pharmacology of Taxol and its Derivatives, Pharmacochem. Libr., 1995,22.
[23]
Boge T C, Hepperle M, Vander Velde D G, Gunn C W, Grunewald G L, Georg G I. Bioorg. Med. Chem. Lett., 1999, 9:3041.

pmid: 10571172
[24]
Han Q B, Zhang J X, Lu Y, Wu Y S, Zheng Q T, Sun H D. Planta Med., 2004, 70:581.

doi: 10.1055/s-2004-827165
[25]
Hamberg M, Svensson J, Samuelsson B. PNAS, 1975, 72:2994.

pmid: 1059088
[26]
Wang M M, Cornett B, Nettles J, Liotta D C, Snyder J P. J. Org. Chem., 2000, 65:1059.

pmid: 10814054
[27]
Shimada N, Hasegawa S, Harada T, Tomisawa T, Fujii A, Takita T. J. Antibiot., 1986, 39:1623.

pmid: 3025147
[28]
Norbeck D W, Kramer J B. J. Am. Chem. Soc., 1988, 110:7217.

doi: 10.1021/ja00229a048
[29]
Huang J M, Yokoyama R, Yang C S, Fukuyama Y. Tetrahedron Lett., 2000, 41:6111.

doi: 10.1016/S0040-4039(00)01023-6
[30]
Mehta G, Singh S R. Angew. Chem., 2006, 118:967.

doi: 10.1002/(ISSN)1521-3757
[31]
Inoue M, Lee N, Kasuya S, Sato T, Hirama M, Moriyama M, Fukuyama Y. J. Org. Chem., 2007, 72:3065.

doi: 10.1021/jo0700474
[32]
Marshall K A, Mapp A K, Heathcock C H. J. Org. Chem., 1996, 61:9135.

doi: 10.1021/jo961680k
[33]
Fujishima T, Nozaki T, Suenaga T. Bioorg. Med. Chem., 2013, 21:5209.

doi: 10.1016/j.bmc.2013.06.032
[34]
Pullaiah K C, Surapaneni R K, Rao C B, Albizati K F, Sullivan B W, Faulkner D J, He C H, Clardy J. J. Org. Chem., 1985, 50:3665.

doi: 10.1021/jo00219a057
[35]
Ruider S A, Müller S, Carreira E M. Angew. Chem. Int. Ed., 2013, 52:11908.

doi: 10.1002/anie.v52.45
[36]
Gronnier C, Kramer S, Odabachian Y, Gagosz F. J. Am. Chem. Soc., 2012, 134:828.

doi: 10.1021/ja209866a pmid: 22242841
[37]
Wang Z B, Chen Z L, Sun J W. Angew. Chem. Int. Ed., 2013, 52:6685.

doi: 10.1002/anie.v52.26
[38]
Wang Z B, Chen Z L, Sun J W. Org. Biomol. Chem., 2014, 12:6028.

doi: 10.1039/C4OB00920G
[39]
Thakur A, Facer M E, Louie J. Angew. Chem. Int. Ed., 2013, 52:12161.

doi: 10.1002/anie.201306869
[40]
Holan G. Nature, 1971, 232:644.
[41]
Eigenmann H K, Golden D M, Benson S W. J. Phys. Chem., 1973, 77:1687.

doi: 10.1021/j100632a019
[42]
Luger P, Buschmann J. J. Am. Chem. Soc., 1984, 106:7118.

doi: 10.1021/ja00335a041
[43]
Stepan A F, Karki K, McDonald W S, Dorff P H, Dutra J K, DiRico K J, Won A, Subramanyam C, Efremov I V, O’Donnell C J, Nolan C E, Becker S L, Pustilnik L R, Sneed B, Sun H, Lu Y S, Robshaw A E, Riddell D, O'Sullivan T J, Sibley E, Capetta S, Atchison K, Hallgren A J, Miller E, Wood A, Obach R S. J. Med. Chem., 2011, 54:7772.

doi: 10.1021/jm200893p
[44]
Stepan A F, Kauffman G W, Keefer C E, Verhoest P R, Edwards M. J. Med. Chem., 2013, 56:6985.

doi: 10.1021/jm4008642
[45]
Wuitschik G, Rogers-Evans M, Buckl A, Bernasconi M, Märki M, Godel T, Fischer H, Wagner B, Parrilla I, Schuler F, Schneider J, Alker A, Schweizer W, Müller K, Carreira E. Angew. Chem. Int. Ed., 2008, 47:4512.

doi: 10.1002/(ISSN)1521-3773
[46]
Burkhard J A, Wuitschik G, Plancher J M, Rogers-Evans M, Carreira E M. Org. Lett., 2013, 15:4312.

doi: 10.1021/ol401705a
[47]
Li D B, Rogers-Evans M, Carreira E M. Org. Lett., 2013, 15:4766.

doi: 10.1021/ol402127b
[48]
Morgan K F, Hollingsworth I A, Bull J A. Org. Biomol. Chem., 2015, 13:5265.

doi: 10.1039/c5ob00549c pmid: 25857425
[49]
St Jean D J, Fotsch C. J. Med. Chem., 2012, 55:6002.

doi: 10.1021/jm300343m
[50]
Lovering F, Bikker J, Humblet C. J. Med. Chem., 2009, 52:6752.

doi: 10.1021/jm901241e pmid: 19827778
[51]
Morgan K F, Hollingsworth I A, Bull J A. Chem. Commun., 2014, 50:5203.

doi: 10.1039/C3CC46450D
[52]
Davis O A, Croft R A, Bull J A. Chem. Commun., 2015, 51:15446.

doi: 10.1039/C5CC05740J
[53]
Nicolle S M, Nortcliffe A, Bartrum H E, Lewis W, Hayes C J, Moody C J. Chem. Eur. J., 2017, 23:13623.

doi: 10.1002/chem.201703746
[54]
Williamson A W. Q. J. Chem. Soc., 1852, 4:229.

doi: 10.1039/QJ8520400229
[55]
Roy B G, Roy A, Achari B, Mandal S B. Tetrahedron Lett., 2006, 47:7783.
[56]
Aftab T, Carter C, Christlieb M, Hart J, Nelson A. J. Chem. Soc., Perkin Trans. 1, 2000: 711.
[57]
Soai K, Niwa S, Yamanoi T, Hikima H, Ishizaki M. J. Chem. Soc., Chem. Commun. , 1986: 1018.
[58]
Dussault P H, Trullinger T K, Noor-E-ain F. Org. Lett., 2002, 4:4591.

pmid: 12489937
[59]
Hirai S, Utsugi M, Iwamoto M, Nakada M. Chem. Eur. J., 2015, 21:355.

doi: 10.1002/chem.201404295
[60]
Miao C B, Zhang M, Tian Z Y, Xi H T, Sun X Q, Yang H T. J. Org. Chem., 2011, 76:9809.

doi: 10.1021/jo201879t
[61]
Palomba M, Scarcella E, Sancineto L, Bagnoli L, Santi C, Marini F. Eur. J. Org. Chem., 2019,2019: 5396.
[62]
Ye L W, He W M, Zhang L M. J. Am. Chem. Soc., 2010, 132:8550.

doi: 10.1021/ja1033952
[63]
Guo Y A, Lee W, Krische M J. Chem. Eur. J., 2017, 23:2557.

doi: 10.1002/chem.201606046
[64]
Szabo M, Klein Herenbrink C, Christopoulos A, Lane J R, Capuano B. J. Med. Chem., 2014, 57:4924.

doi: 10.1021/jm500457x
[65]
Ma L G, Xu J X. Prog. Chem., 2004, 16:220.
(马琳鸽, 许家喜. 化学进展, 2004, 16:220.).
[66]
Zhou C, Xu J X. Prog. Chem., 2011, 23:174.
(周婵, 许家喜. 化学进展, 2011, 23:174.).
[67]
Zhou C, Xu J X. Prog. Chem., 2012, 24:238.
(周婵, 许家喜. 化学进展, 2012, 24:238.).
[68]
Xu J X. Top. Heterocycl. Chem., 2016, 41:311.
[69]
Chen X P, Xu J X. Prog. Chem., 2017, 29:181.
(陈兴鹏, 许家喜. 化学进展, 2017, 29:181.).

doi: 10.7536/PC160917
[70]
Fu Z C, Xu J X. Prog. Chem., 2018, 30:1047.
(符志成, 许家喜. 化学进展, 2018, 30:1047.).

doi: 10.7536/PC180113
[71]
Xu J X. Beilstein J. Org. Chem., 2020, 16:1357.

doi: 10.3762/bjoc.16.116
[72]
Xu J X, Dong J. Synthesis, 2018, 50:2407.

doi: 10.1055/s-0036-1591559
[73]
Dong J, Du H G, Xu J X. J. Org. Chem., 2019, 84:10724.

doi: 10.1021/acs.joc.9b01152
[74]
Xu J X. Asian J. Org. Chem., 2020, 9:1008.

doi: 10.1002/ajoc.v9.7
[75]
Welch S C, Rao A S C P. J. Am. Chem. Soc., 1979, 101:6135.

doi: 10.1021/ja00514a053
[76]
Okuma K, Tanaka Y, Kaji S, Ohta H. J. Org. Chem., 1983, 48:5133.

doi: 10.1021/jo00173a072
[77]
Yu H, Deng X B, Cao S L, Xu J X. Lett. Org. Chem., 2011, 8:509.

doi: 10.2174/157017811796504954
[78]
Li S Q, L P F, Xu J X, Helv. Chim. Acta, 2019, 12:e1900164.
[79]
Sone T, Lu G, Matsunaga S, Shibasaki M. Angew. Chem., 2009, 121:1705.

doi: 10.1002/ange.v121:9
[80]
Butova E D, Barabash A V, Petrova A A, Kleiner C M, Schreiner P R, Fokin A A. J. Org. Chem., 2010, 75:6229.

doi: 10.1021/jo101330p
[81]
Campbell M G, Ritter T. Chem. Rev., 2015, 115:612.

doi: 10.1021/cr500366b pmid: 25474722
[82]
Mukherjee P, Pettersson M, Dutra J K, Xie L F, am Ende C W. ChemMedChem, 2017, 12:1574.

doi: 10.1002/cmdc.201700333 pmid: 28815966
[83]
Shetlar M D, Basus V J. Photochem. Photobiol. Sci., 2011, 10:76.

doi: 10.1039/C0PP00242A
[84]
Arnold D R, Hinman R L, Glick A H. Tetrahedron Lett., 1964, 5:1425.

doi: 10.1016/S0040-4039(00)90493-3
[85]
Flores D M, Schmidt V A. J. Am. Chem. Soc., 2019, 141:8741.

doi: 10.1021/jacs.9b03775
[86]
Li H F, Cao W B, Ma X X, Xie X B, Xia Y, Ouyang Z. J. Am. Chem. Soc., 2020, 142:3499.

doi: 10.1021/jacs.9b12120
[87]
Mikami K, Aikawa K, Aida J P. Synlett, 2011,2011: 2719.
[88]
Aikawa K, Hioki Y, Shimizu N, Mikami K. J. Am. Chem. Soc., 2011, 133:20092.

doi: 10.1021/ja2085299
[89]
Wang T, Chen X Y, Ye S. Tetrahedron Lett., 2011, 52:5488.

doi: 10.1016/j.tetlet.2011.08.057
[90]
Zhao Q Y, Huang L, Wei Y, Shi M. Adv. Synth. Catal., 2012, 354:1926.

doi: 10.1002/adsc.v354.10
[91]
Mo J M, Yang R J, Chen X K, Tiwari B, Chi Y R. Org. Lett., 2013, 15:50.

doi: 10.1021/ol303035r
[92]
Davies A T, Slawin A M Z, Smith A D. Chem. Eur. J., 2015, 21:18944.

doi: 10.1002/chem.v21.52
[93]
Lopez S S, Jaworski A A, Scheidt K A. J. Org. Chem., 2018, 83:14637.

doi: 10.1021/acs.joc.8b02464
[94]
Li C, Lee D, Graf T N, Phifer S S, Nakanishi Y, Burgess J P, Riswan S, Setyowati F M, Saribi A M, Soejarto D D, Farnsworth N R, Falkinham J O, Kroll D J, Kinghorn A D, Wani M C, Oberlies N H. Org. Lett., 2005, 7:5709.

doi: 10.1021/ol052498l
[95]
Richter M J R, Schneider M, Brandstätter M, Krautwald S, Carreira E M. J. Am. Chem. Soc., 2018, 140:16704.

doi: 10.1021/jacs.8b09685
[96]
Wein L A, Wurst K, Angyal P, Weisheit L, Magauer T. J. Am. Chem. Soc., 2019, 141:19589.

doi: 10.1021/jacs.9b11646
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] He Huang, Chuanjun Song, Junbiao Chang. Acylation Using Carboxylic Acids as Acylating Agents: Applications in Organic Synthesis [J]. Progress in Chemistry, 2019, 31(1): 1-9.
[3] Zhicheng Fu, Jiaxi Xu*. Synthesis of Azetidines [J]. Progress in Chemistry, 2018, 30(8): 1047-1066.
[4] Li Siqi, Xu Jiaxi*. Selective Ring-Opening reactions of Unsymmetric Oxetanes [J]. Progress in Chemistry, 2016, 28(12): 1798-1810.
[5] Zheng Yongpeng, Xu Jiaxi. Thorpe-Ingold Effect and Its Application in Cyclizations in Organic Chemistry [J]. Progress in Chemistry, 2014, 26(09): 1471-1491.
[6] Zhang Wensheng, Li Wei, Kuang Chunxiang. Application of 1,1-Dibromo-2-Arylalkene in Cyclization Reaction [J]. Progress in Chemistry, 2013, 25(07): 1149-1157.
[7] Wang Qifang Song Xiaokai Yan Chaoguo. Application of Malononitrile in Multicomponent Reactions [J]. Progress in Chemistry, 2009, 21(05): 997-1007.
[8] Wang Guixia1 Wang Naixing1** Tang Shi1 Yu Jinlan2 Tang Xinliang2. Asymmetric Synthesis of Chroman Derivatives with Bioactivity [J]. Progress in Chemistry, 2008, 20(04): 518-525.
[9] Shen Yumei,He Ren. Research on Olefin Oligomerization and Cyclization Catalyzed by Metallocene Catalyst [J]. Progress in Chemistry, 2000, 12(03): 325-.
[10] Feng Zengguo. Renewed Interests in Difluoramino and Its Compounds [J]. Progress in Chemistry, 2000, 12(02): 171-.
Viewed
Full text


Abstract

Synthesis of Oxetanes