中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1440-1449 DOI: 10.7536/PC200738 Previous Articles   Next Articles

• Review •

Solid-State Electroanalytical Chemistry and Its Application in Plant Analysis

Li Fu1(), Huaiwei Zhang1, Weiting Ye1, Chen Ye2, Cheng-Te Lin2()   

  1. 1 College of Materials and Environmental Engineering, Hangzhou Dianzi University,Hangzhou 310018, China
    2 CAS Key Laboratory of Marine New Materials and Related Technology, Zhejiang Key Laboratory of Marine Materials and Protection Technology, Division of Surface Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
  • Received: Revised: Online: Published:
  • Contact: Li Fu, Cheng-Te Lin
  • Supported by:
    National Natural Science Foundation of China(22004026); China Postdoctoral Science Foundation(2018M640523)
Richhtml ( 26 ) PDF ( 415 ) Cited
Export

EndNote

Ris

BibTeX

Solid-state electroanalytical chemistry(SSEAC) is a method to analyze the information of solid materials by electrochemical methods, especially for the analysis of element composition, phase composition and redox state of solid materials. The SSEAC technology has been successfully applied to obtain the electrochemical information of natural pigments, plants, minerals and cultural relics with qualitative and quantitative analysis. SSEAC-based plant analysis is a cross-analysis technique emerging between electroanalytical chemistry and phytochemistry in recent years. SSEAC can provide a new understanding of the interspecific relationship, variation, differentiation and adaptation of species, which has a very intuitive practical value in the identification of medicinal materials, food safety and crop quality control. This article reviews the work of SSEAC technology in plant identification, plant phylogeny and plant physiological monitoring in recent years. This review also summarizes the challenges of SSEAC technology in plant analysis as well as its prospects in future development.

Contents

1 Introduction

2 Background information of SSEAC

2.1 Definition and scope of SSEAC

2.2 Electrochemical method for solid particle analysis

2.3 Type of information obtained by SSEAC technology

3 SSEAC for plant analysis

3.1 Plant identification

3.2 Phylogenetic study

3.3 Plant physiological monitoring

4 Conclusion and outlook

Fig. 1 Scheme of possible relationships among topics typically involved in the transition from molecular electrochemistry to solid state electrochemistry[1]
Fig. 2 Three electrode preparation methods for SSEAC
Fig. 3 Scheme of analytical information provided using SSEAC[1].
Fig. 4 Three-dimensional diagram constructed from the peak ratio obtained from the three varieties of Caralluma adscendens[42]
Fig. 5 a) 3D patterns of L. chinensis, L. anhuiensis, L. aurea, L. straminea and L. longituba var. flava[46]. b) 2.5D patterns of L. chinensis, L. radiate, L. aurea, L. sprengeri and L. straminea[47], c) 2D density plot of Agapanthus africanus[48], d) RGB color tapes of 17 species of Lycoris
Fig. 6 a) Identification of 16 species of Rosales in 7 families using the difference in peak potential in the electrochemical fingerprint. b) Dendrogram deduced from electrochemical fingerprint[56]
Fig. 7 a) Schematic diagram of a typical cell and electrode surface for plant SSEAC collection. b) Schematic diagram of SSEAC recording method of plants covered with two-dimensional materials
Fig. 8 a) Dendrogram of Lycoris spp. deduced from SSEAC data. b) Dendrogram of Lycoris spp. deduced from palynologcal characterization[49]
Fig. 9 Scheme of possible electrochemical and chemical oxidation processes involved in δ-cadinene signaling[68]
[1]
DomÉnech-CarbÓ A, Labuda J, Scholz F. Pure Appl. Chem., 2012, 85(3): 609.

doi: 10.1351/PAC-REP-11-11-13
[2]
Scholz F, Nitschke L, Henrion G. Naturwissenschaften, 1989, 76(2): 71.

doi: 10.1007/BF00396709
[3]
Scholz F, Nitschke L, Henrion G, Damaschun F. Naturwissenschaften, 1989, 76(4): 167.

doi: 10.1007/BF00366398
[4]
Scholz F, Lange B. Trac Trends Anal. Chem., 1992, 11(10): 359.

doi: 10.1016/0165-9936(92)80025-2
[5]
Scholz F, Schröder U, Meyer S, Brainina K Z, Zakhachuk N F, Sobolev N V, Kozmenko O A. J. Electroanal. Chem., 1995, 385(1): 139.

doi: 10.1016/0022-0728(94)03840-Y
[6]
DomÉnech-CarbÓ A, Domínguez I, Hernández-Muñoz P Gavara, Food Chem., 2015, 172: 318.

doi: 10.1016/j.foodchem.2014.09.066
[7]
Scholz F. J. Solid State Electrochem., 1997, 1(2): 181.

doi: 10.1007/s100080050044
[8]
Bond A M, Scholz F. Z. Chem., 2010, 30(4): 117.

doi: 10.1002/zfch.v30:4
[9]
Fritz H. Z Anal Chem., 1929, 78: 418.

doi: 10.1007/BF01364637
[10]
Weisz H. Microanalysis by the Ring-Oven Technique: International Series of Monographs in Analytical Chemistry. Elsevier, 2013. 41.
[11]
Adams R N. Anal. Chem., 1958, 30(9): 1576.
[12]
Kuwana T, French W G. Anal. Chem., 1964, 36(1): 241.

doi: 10.1021/ac60207a006
[13]
Schultz F A, Kuwana T. J. Electroanal. Chem. 1959, 1965, 10(2): 95.
[14]
Scholz F, Meyer B. Chem. Soc. Rev., 1994, 23(5): 341.

doi: 10.1039/cs9942300341
[15]
Scholz F, Nitschke L, Henrion G. Fresenius' Zeitschrift Für Anal. Chemie, 1989, 334(1): 56.
[16]
Lehmann V, Rickert H. J. Appl. Electrochem., 1979, 9(2): 209.

doi: 10.1007/BF00616091
[17]
Rublinetskaya Y V, Il’inykh E O, Slepushkin V V. J. Anal. Chem., 2009, 64(5): 509.

doi: 10.1134/S106193480905013X
[18]
Rublinetskaya Y V, Il’inykh E O, Slepushkin V V. J. Anal. Chem., 2011, 66(1): 84.
[19]
Rolison D R, Bessel C A. Acc. Chem. Res., 2000, 33(11): 737.

doi: 10.1021/ar9701272
[20]
Kulesza P J, Jedral T, Galus Z. Electrochimica Acta, 1989, 34(6): 851.

doi: 10.1016/0013-4686(89)87118-X
[21]
Durst R A. Pure Appl. Chem., 1997, 69(6): 1317.

doi: 10.1351/pac199769061317
[22]
Grygar T, Marken F, Schröder U, Scholz F. Collect. Czech. Chem. Commun., 2002, 67(2): 163.

doi: 10.1135/cccc20020163
[23]
Scholz F, Lange B, Jaworski A, Pelzer J. Fresenius' J. Anal. Chem., 1991, 340(3): 140.

doi: 10.1007/BF00324469
[24]
Grygar T. J. Electroanal. Chem., 1996, 405(1/2): 117.

doi: 10.1016/0022-0728(95)04404-3
[25]
Komorsky-Lovrić Š, Scholz F. J. Electroanal. Chem., 1998, 445(1/2): 81.

doi: 10.1016/S0022-0728(97)00569-X
[26]
Kiwilszo M, Smulko J. J. Solid State Electrochem., 2009, 13(11): 1681.

doi: 10.1007/s10008-008-0643-y
[27]
Shaw S J, Marken F, Bond A M. J. Electroanal. Chem., 1996, 404(2): 227.

doi: 10.1016/0022-0728(95)04387-X
[28]
Shaw S J, Marken F, Bond A M. Electroanalysis, 1996, 8(8/9): 732.

doi: 10.1002/(ISSN)1521-4109
[29]
Inzelt G, Puskás Z. Electrochem. Commun., 2004, 6(8): 805.

doi: 10.1016/j.elecom.2004.05.019
[30]
Puskás Z, Inzelt G. J. Solid State Electrochem., 2004, 8(10): 828.
[31]
DomÉnech-CarbÓ A, Sánchez-Ramosa S, DomÉnech-CarbÓ M, Gimeno-Adelantado J, Bosch-Reig F, Yusá-Marco D, Saurí-Peris M. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal., 2002, 14: 685.
[32]
Meyer B, Zhang S, Scholz F,. Fresenius J. Anal. Chem., 1996, 356: 267.
[33]
DomÉnech A, DomÉnech-CarbÓ M. T, Edwards H. G. M. Anal. Chem., 2008, 80: 2704.

doi: 10.1021/ac7024333
[34]
Antonio D C. Electrochemistry of Porous Materials. CRC Press: Boca Raton., 2009. 1.
[35]
DomÉnech-CarbÓ A, Moya-Moreno M, DomÉnech-CarbÓ M T. Anal. Bioanal. Chem., 2004, 380(1): 146.
[36]
Scheurell S, Scholz F, Olesch T, Kemnitz E. Supercond. Sci. Technol., 1992, 5(5): 303.

doi: 10.1088/0953-2048/5/5/005
[37]
Sabater M J, Corma A, Domenech A, FornÉs V, García H. Chem. Commun., 1997(14): 1285.
[38]
DomÉnech-CarbÓ A, DomÉnech-CarbÓ M. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal., 2005, 17: 1959.
[39]
Komorsky-Lovrić Š, Bartoll J, Stoßer R, Scholz F. Croat. Chem. Acta., 1997, 70: 563.
[40]
Komorsky-Lovrić Š. Croat. Chem. Acta., 1998, 71: 263.
[41]
Domínguez I, DomÉnech-CarbÓ A. Sens. Actuators B Chem., 2015, 210: 491.

doi: 10.1016/j.snb.2015.01.009
[42]
Martini M, Machado de Carvalho L, Blasco-Blasco A, DomÉnech-CarbÓ A. Anal. Methods, 2015, 7(14): 5740.

doi: 10.1039/C5AY01145K
[43]
Scholz F, Schröder U, Gulaboski R, DomÉnech-CarbÓ A. Electrochemistry of Immobilized Particles and Droplets. Cham: Springer International Publishing, 2014:11/17.
[44]
Cebrián-TorrejÓn G, DomÉnech-CarbÓ A, Figadère B, Poupon E, Fournet A. Phytochem. Anal., 2017, 28(3): 171.

doi: 10.1002/pca.v28.3
[45]
DomÉnech-CarbÓ A, DomÉnech-CarbÓ M. T, Ferragud-Adam X, Ortiz-Miranda A. S, Montoya N, Pasíes-Oviedo T, PeirÓ-Ronda M. A, Vives-Ferrándiz J, CarriÓn Marco Y. Anal. Methods., 2017, 9: 2041.

doi: 10.1039/C7AY00323D
[46]
Fu L, Zheng Y H, Zhang P C, Zhu J W, Zhang H Y, Zhang L X, Su W T. Electrochem. Commun., 2018, 92: 39.

doi: 10.1016/j.elecom.2018.05.018
[47]
Fu L, Zheng Y H, Zhang P C, Zhang H Y, Zhuang W B, Zhang H W, Wang A W, Su W T, Yu J H, Lin C T. Biosens. Bioelectron., 2018, 120: 102.

doi: S0956-5663(18)30653-5 pmid: 30172233
[48]
Fu L, Zheng Y H, Zhang P C, Zhang H Y, Xu Y T, Zhou J T, Zhang H W, Karimi-Maleh H, Lai G S, Zhao S C, Su W T, Yu J H, Lin C T. Biosens. Bioelectron., 2020, 159: 112212.
[49]
Fu L, Wu M Y, Zheng Y H, Zhang P C, Ye C, Zhang H W, Wang K Q, Su W T, Chen F, Yu J H, Yu A M, Cai W, Lin C T. Sens. Actuat. B: Chem., 2019, 298: 126836.
[50]
Fu L, Wang Q, Zhang M, Zheng Y, Wu M, Lan Z, Pu J, Zhang H, Chen F, Su W. Front. Chem., 2020, 8: 92.

doi: 10.3389/fchem.2020.00092
[51]
Li Z, Zhang X, Zhou J, Zhang H, Zheng Y, Liu Q, Fu L. Int. J. Electrochem. Sci., 2019, 14: 10531.
[52]
Zhang X, Zhou J, Li Z, Qin Y, Yu R, Zhang H, Zheng Y, Zhu J, Zhang D, Fu L. Int. J. Electrochem. Sci., 2019, 14: 6283.
[53]
Fu L, Zhang H, Zheng Y, Zhang H, Liu Q,. Rev. Mex. Ing. Quím., 2020, 19: 803.
[54]
Zhou J, Wu M, Xu Y, Li Z, Yao Y, Fu L. Int. J. Electrochem. Sci., 2020, 15: 5793.
[55]
Tundis R, Peruzzi L, Menichini F. Phytochemistry, 2014, 102: 7.

doi: 10.1016/j.phytochem.2014.01.023 pmid: 24661611
[56]
DomÉnech-CarbÓ A, Ibars A M, Prieto-Mossi J, Estrelles E, Scholz F, Cebrián-TorrejÓn G, Martini M. New J. Chem., 2015, 39(9): 7421.

doi: 10.1039/C5NJ01233C
[57]
Ortiz-Miranda A. S, König P, Kahlert H, Scholz F, Osete-Cortina L, DomÉnech-CarbÓ M. T, DomÉnech-CarbÓ A. Anal. Bioanal. Chem. 2016, 408: 4943.

doi: 10.1007/s00216-016-9588-7 pmid: 27173392
[58]
Wang X R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt A E. Am. J. Bot., 1999, 86(12): 1742.

pmid: 10602767
[59]
DomÉnech-CarbÓ A, Ibars A M, Prieto-Mossi J, Estrelles E, DomÉnech-CarbÓ M T, Ortiz-Miranda A S, Martini M, Lee Y. Electroanalysis, 2017, 29(2): 313.

doi: 10.1002/elan.201780201
[60]
The Angiosperm Phylogeny Group. Bot. J. Linn. Soc., 2009, 161: 105.
[61]
Fu L, Zheng Y H, Zhang P C, Zhang H Y, Wu M Y, Zhang H W, Wang A W, Su W T, Chen F, Yu J H, Cai W, Lin C T. Bioelectrochemistry, 2019, 129: 199.

doi: S1567-5394(19)30206-3 pmid: 31200249
[62]
Xu Y T, Lu Y J, Zhang P C, Wang Y Y, Zheng Y H, Fu L, Zhang H W, Lin C T, Yu A M. Bioelectrochemistry, 2020, 133: 107455.
[63]
Lu Y, Xu Y, Shi H, Zhang P. Z. H, Fu L. Int. J. ElectroChem. Sci., 2020, 15: 758.
[64]
Zhang M J, Pan B, Wang Y Y, Du X P, Fu L, Zheng Y H, Chen F, Wu W H, Zhou Q W, Ding S, Zhao S C. ChemistrySelect, 2020, 5(17): 5035.

doi: 10.1002/slct.v5.17
[65]
Wu J Q, Baldwin I T. Plant Cell Environ., 2009, 32(9): 1161.

doi: 10.1111/pce.2009.32.issue-9
[66]
Pechan T, Ye L J, Chang Y M, Mitra A, Lin L, Davis F M, Williams W P, Luthe D S. Plant Cell, 2000, 12(7): 1031.

pmid: 10899972
[67]
Adler F R. Biol. Lett., 2011, 7(2): 161.

doi: 10.1098/rsbl.2010.0790
[68]
DomÉnech-CarbÓ A, Cebrián-TorrejÓn G, Lopes-Souto A, Martins-De-moraes M, Jorge-Kato M, Fechine-Tavares J, Barbosa-Filho J M. RSC Adv., 2015, 5(75): 61006.
[69]
DomÉnech-CarbÓ A, CervellÓ-Bulls P, González J M, Soriano P, Estrelles E, Montoya N. RSC Adv., 2019, 9(31): 17856.
No related articles found!