中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1221-1237 DOI: 10.7536/PC200726 Previous Articles   Next Articles

• Review •

Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors

Yang Wang, Po Hu(), Shuai Zhou(), Jiajun Fu   

  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Contact: Shuai Zhou, Jiajun Fu
  • Supported by:
    National Science Foundation of China(52072177); Fundamental Research Funds for the Central Universities(30918012201); Fundamental Research Funds for the Central Universities(30919011405)
Richhtml ( 57 ) PDF ( 1325 ) Cited
Export

EndNote

Ris

BibTeX

Compared with the traditional luminescent materials such as organic dyes and quantum dots, rare-earth upconversion nanophosphors (UCNPs) have the unique advantages of large anti-Stokes shift, shaper and multicolor emission bands, long fluorescence life, high photostability and chemical stability, no photoblinking and photobleaching. The combination of UCNPs, graphical coding and anticounterfeiting printing technologies enables the formulation of invisible fluorescent patterns that are difficult to counterfeit. This has become a research hotspot in the field of anticounterfeiting and security. In this paper, the upconversion mechanism and synthetic methods of UCNPs are first introduced. Afterwards, the research status of UCNPs in the field of anticounterfeiting and security is elaborated, and four forms of upconversion anticounterfeiting and security patterns are summarized (i.e. NIR single-wavelength excitation, NIR dual-wavelength excitation, NIR/UV dual-wavelength excitation and three-wavelength excitation). Finally, the problems and challenges that UCNPs are facing in the field of anticounterfeiting and security, and future development directions are also proposed.

Contents

1 Introduction

2 Overview of upconversion luminescence mechanism of UCNPs

3 Synthetic methods of UCNPs

3.1 Co-precipitation method

3.2 Hydrothermal/solvothermal method

3.3 Thermal decomposition method

3.4 Other synthetic methods

4 Application of UCNPs in the field of anticounterfeiting security

4.1 NIR single wavelength excited upconversion anticounterfeiting security pattern

4.2 NIR dual wavelength excited upconversion anticounterfeiting security pattern

4.3 NIR/UV dual wavelength excited upconversion anticounterfeiting security pattern

4.4 Three wavelength excited upconversion anticounterfeiting security pattern

5 Conclusion and outlook

Fig. 1 Simplified schematic illustrations of upconversion processes of Ⅰ. ESA, Ⅱ. SET, Ⅲ. CU, Ⅳ. EMU, and Ⅴ. PA. The brown full lines, green full lines, maroon dotted lines, and red gradient full lines represent photon absorption, excitation, transition, and radiation processes, respectively; Ⅵ. The energy level transition spectrum of E r 3 +、T m 3 + and H o 3 +
Table 1 Synthetic methods of UCNPs and their characteristics
Fig. 2 The device diagram and synthesis flow chart of Co-precipitation method, hydrothermal/solvothermal method and thermal decomposition method
Fig. 3 (a)QR (Quick Response) code with embedded message “SDSM&T” [75];(b)Schematics of the AFM nanoxerography process、anticounterfeiting QR code and relationship between thickness and photoluminescence intensity[76];(c)The QR code in daylight and excited by 980 nm excitation laser beam respectively;(d)Screen printing patterns are applied for RMB anticounterfeiting application[78];(e)Stamper with the Chinese words “Northwest University” under 1550 nm excitation [79];(f)Pattern of Au-Ag composite film with fingerprint under sunlight, excitation under 980 nm and magnification[80]
Fig. 4 (a) Upconverting image of QR code which has the literal text “USD”, “U”,”S”,”D” and “SD” [81];(b) Upconversion image of the multi-colored QR code printed using RGB-UCNP inks[82];(c) The principle of the combination of the developed smartphone application and the upconversion anticounterfeiting QR code[20];(d) The fabricated anticounterfeiting labels via low-cost strategies (spin-coating, stamping and screen printing for die-cutting of package security application[1];(e) Versatile optical micrographs of the inkjet printing patterns based on RGB-UCHMs inks on an A4 paper substrate under 980 nm laser excitation[83]
Fig. 5 (a) The images of transparent ?uorescent label of “IMT” institute logo (13 mm×6 mm) under weak ?uorescent light environment [84];(b) Concept for flat-panel display by the fast scanning of a laser with modulated power and ?uorescent anticounterfeiting patterns by inkjet printing[85];(c) Corresponding digital micrographs of patterns drawn on paper with UCNPs ink excited with 980 nm at room temperature and 413 K, respectively[87];(d) A pattern printed with temperature responsive anticounterfeiting ink[88];(e) Curving mosaic pattern on the PMIU/PET film and clothes icon anticounterfeiting under the daylight[89];(f) Angle-dependent infrared anti-counterfeit imaging[90]
Fig. 6 (a)Upconversion luminescence images of the UCNP-embedded PDMS upconverting films recorded with and without the microbead coverage upon 980 nm laser excitation at different intensities[91];(b)The photograph of tunable emission color of NaYF4∶Er/Tm@NaYF4 nanocrystals under pulsed laser excitation for anti-counterfeiting[92];(c)Anticounterfeiting luminescence images of the orthogonal excitations-emissions NaGdF4∶Yb/Er@NaYF4∶Yb@NaGdF4∶Yb/Nd@NaYF4@NaGdF4∶Yb/Tm@NaYF4[93];(d)Demonstration of full-colour volumetric three-dimensional display in nanocrystal/PDMS composite materials[94];(e)Images of the encrypted information “8888” and “UCNPs-INK” under 808 nm excitation and 980 nm excitation [95];(f)Pseudocolored upconversion luminescence images of Er and Tm@Tb@Y@Er@Nd@Y nanoparticles under steady-state and time-gated state of 980 and 808 nm excitation, respectively[96];(g)The color change of the "100" UCL patterns in RMB under three conditions[97];(h)Physically mixed screen printing patterns of UCNPs and transparent PVC self-adhesive label for wine anticounterfeiting applications[98]
Fig. 7 (a)Bright field, UC and DC fluorescence images of fingerprints impressed on the transparent film[99];(b)Dual-mode anticounterfeiting: two-dimensional code printed using upconversion fluorescent ink and “BEBC” mark printed using downconversion fluorescent ink [100];(c)Photographs of dual-modal luminescent labeling using the investigated Yb/Ho/Mn (top: HDU) and Yb/Er/Mn (bottom: FJNU) tri-doped phosphor[101];(d)Schematic illustration of the dual-mode anticounterfeiting strategy based on the UCNPs/IPQDs compositions. Different images were obtained under NIR and UV excitations[102];(e)Photograph of "100" in RMB under the excitation of low and high power of 980 nm laser and 365 nm UV light[103];(f)Schematic illustration of photolithography procedures, optical micrographs and corresponding emission spectra of four-leaf clover-shaped anticounterfeiting patterns under the excitation of 980 nm, 808 nm and 254 nm[104];(g)Different numbers and colors observed under 980 nm, 800 nm and 1530 nm excitation[105]
[1]
Yao W J, Tian Q Y, Liu J, Xue Q W, Li M X, Liu L, Lu Q, Wu W. Nanoscale, 2017, 9(41):15982.

doi: 10.1039/C7NR05744J
[2]
Li R M, Zhang Y T, Tan J, Wan J X, Guo J, Wang C C. ACS Appl Mater Inter., 2016, 8:9384.

doi: 10.1021/acsami.6b02359
[3]
Park K, Jung K, Kwon S J, Jang H S, Byun D, Han I K, Ko H. Adv. Funct. Mater., 2016, 26(43):7836.

doi: 10.1002/adfm.v26.43
[4]
Ren W, Lin G G, Clarke C, Zhou J J, Jin D Y. Adv. Mater., 2020, 32(18):1901430.

doi: 10.1002/adma.v32.18
[5]
Tan H H, Gong G, Xie S W, Song Y, Zhang C F, Li N, Zhang D, Xu L J, Xu J X, Zheng J. Langmuir, 2019, 35:11503.

doi: 10.1021/acs.langmuir.9b01919
[6]
Oh S W, Kim C W, Cha H J, Pal U, Kang Y S. Adv. Mater., 2009, 21(48):4987.

doi: 10.1002/adma.200901595
[7]
Takazawa K, Kitahama Y, Kimura Y, Kido G. Nano Lett., 2005, 5(7):1293.

pmid: 16178226
[8]
Li F, Wang X D, Xia Z G, Pan C F, Liu Q L. Adv. Funct. Mater., 2017, 27(17):1700051.

doi: 10.1002/adfm.v27.17
[9]
Bai L Q, Xue N, Zhao Y F, Wang X R, Lu C, Shi W Y. Nano Res., 2018, 11(4):2034.

doi: 10.1007/s12274-017-1820-z
[10]
Jiang K, Zhang L, Lu J F, Xu C X, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2016, 55(25):7231.

doi: 10.1002/anie.201602445
[11]
Tian Z, Li D, Ushakova E V, Maslov V G, Zhou D, Jing P T, Shen D Z, Qu S N, Rogach A L. Adv. Sci., 2018, 5(9):1800795.

doi: 10.1002/advs.201800795
[12]
Dong H, Sun L D, Yan C H. Chem. Soc. Rev., 2015, 44(6):1608.

doi: 10.1039/c4cs00188e pmid: 25242465
[13]
Shikha S, Salafi T, Cheng J T, Zhang Y. Chem. Soc. Rev., 2017, 46(22):7054.

doi: 10.1039/c7cs00271h pmid: 29022018
[14]
Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G. Nat. Mater., 2011, 10(12):968.

doi: 10.1038/nmat3149
[15]
Wang F, Liu X G. J. Am. Chem. Soc., 2008, 130(17):5642.

doi: 10.1021/ja800868a
[16]
Zhang Y H, Zhang L X, Deng R R, Tian J, Zong Y, Jin D Y, Liu X G. J. Am. Chem. Soc., 2014, 136(13):4893.

doi: 10.1021/ja5013646
[17]
Chen G Y, Damasco J, Qiu H L, Shao W, Ohulchanskyy T Y, Valiev R R, Wu X, Han G, Wang Y, Yang C H, Ågren H, Prasad P N. Nano Lett., 2015, 15(11):7400.

doi: 10.1021/acs.nanolett.5b02830
[18]
Liu H L, Xu J H, Wang H, Liu Y J, Ruan Q F, Wu Y M, Liu X G, Yang J K W. Adv. Mater., 2019, 31(15):1807900.

doi: 10.1002/adma.v31.15
[19]
Kumar P, Dwivedi J, Gupta B K. J. Mater. Chem. C, 2014, 2(48):10468.

doi: 10.1039/C4TC02065K
[20]
You M L, Lin M, Wang S R, Wang X M, Zhang G, Hong Y, Dong Y Q, Jin G R, Xu F. Nanoscale, 2016, 8(19):10096.

doi: 10.1039/C6NR01353H
[21]
Chen B. Doctoral Dissertation of Zhejiang University, 2017.
( 陈冰. 浙江大学博士论文, 2017.)
[22]
Tu L P, Liu X M, Wu F, Zhang H. Chem. Soc. Rev., 2015, 44(6):1331.

doi: 10.1039/C4CS00168K
[23]
Liu Q, Yang T S, Feng W, Li F Y. J. Am. Chem. Soc., 2012, 134(11):5390.

doi: 10.1021/ja3003638
[24]
Auzel F. Chem. Rev., 2004, 104(1):139.

doi: 10.1021/cr020357g
[25]
Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V. Small, 2018, 14(37):1801304.

doi: 10.1002/smll.201801304 pmid: 30066489
[26]
Yao W J, Tian Q Y, Wu W. Adv. Opt. Mater., 2019, 7(6):1801171.

doi: 10.1002/adom.v7.6
[27]
Chen J, Zhao J X. Sensors, 2012, 12(3):2414.

doi: 10.3390/s120302414
[28]
Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G, Zhao J W, Zhang H. Nanotechnology, 2007, 18(27):275609.

doi: 10.1088/0957-4484/18/27/275609
[29]
Chen G Y, Ohulchanskyy T Y, Kumar R, Ågren H, Prasad P N. ACS Nano, 2010, 4(6):3163.

doi: 10.1021/nn100457j
[30]
Chen G Y, Ohulchanskyy T Y, Kachynski A, Ågren H, Prasad P N. ACS Nano, 2011, 5(6):4981.

doi: 10.1021/nn201083j
[31]
Auzel F. J. Lumin., 1990, 45(1/6):341.

doi: 10.1016/0022-2313(90)90189-I
[32]
Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G. J. Am. Chem. Soc., 2012, 134(51):20849.

doi: 10.1021/ja3111048
[33]
Chivian J S, Case W E, Eden D D. Appl. Phys. Lett., 1979, 35(2):124.

doi: 10.1063/1.91044
[34]
Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A. Adv. Funct. Mater., 2009, 19(18):2924.

doi: 10.1002/adfm.v19:18
[35]
Zhou B, Tao L L, Tsang Y H, Jin W. J. Mater. Chem. C, 2013, 1(28):4313.

doi: 10.1039/c3tc30654b
[36]
Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G. J. Mater. Chem. C, 2015, 3(21):5372.

doi: 10.1039/C5TC00881F
[37]
Liu S, Chen G Y, Ohulchanskyy T Y, Swihart M T, Prasad P N. Theranostics, 2013, 3(4):275.

doi: 10.7150/thno.4983
[38]
Lezhnina M M, Jüstel T, Kätker H, Wiechert D U, Kynast U H. Adv. Funct. Mater., 2006, 16(7):935.

doi: 10.1002/(ISSN)1616-3028
[39]
Wu M, Yan L, Wang T, Zhou B, Zhang Q Y. Adv. Funct. Mater., 2019, 29(25):1804160.

doi: 10.1002/adfm.v29.25
[40]
Zhou B, Yang W F, Han S Y, Sun Q, Liu X G. Adv. Mater., 2015, 27(40):6208.

doi: 10.1002/adma.201503482
[41]
Cheng X W, Pan Y, Yuan Z, Wang X W, Su W H, Yin L S, Xie X J, Huang L. Adv. Funct. Mater., 2018, 28(22):1800208.

doi: 10.1002/adfm.v28.22
[42]
Wang G F, Qin W P, Zhang J S, Zhang J S, Wang yan, Cao C Y, Wang L L, Wei G D, Zhu P F, Kim R. J. Phys. Chem. C, 2008, 112(32):12161.

doi: 10.1021/jp8004713
[43]
Boyer J C, Vetrone F, Cuccia L A, Capobianco J A. J. Am. Chem. Soc., 2006, 128(23):7444.

doi: 10.1021/ja061848b
[44]
Patra A, Friend C S, Kapoor R, Prasad P N. Chem. Mater., 2003, 15(19):3650.
[45]
Xiong L Q, Chen Z G, Yu M X, Li F Y, Liu C, Huang C H. Biomaterials, 2009, 30(29):5592.

doi: 10.1016/j.biomaterials.2009.06.015 pmid: 19564039
[46]
Xu L L, Yu Y N, Li X G, Somesfalean G, Zhang Y G, Gao H, Zhang Z G. Opt. Mater., 2008, 30(8):1284.

doi: 10.1016/j.optmat.2007.06.007
[47]
Han S Y, Qin X, An Z F, Zhu Y H, Liang L L, Han Y, Huang W, Liu X G. Nat. Commun., 2016, 7(1):1.
[48]
Wang M, Abbineni G, Clevenger A, Mao C B, Xu S K. Nanomed.: Nanotechnol. Biol. Med., 2011, 7(6):710.

doi: 10.1016/j.nano.2011.02.013
[49]
Yan C L, Zhao H G, Perepichka D F, Rosei F. Small, 2016, 12(29):3888.

doi: 10.1002/smll.v12.29
[50]
Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H. Nano Lett., 2004, 4(11):2191.

doi: 10.1021/nl048680h
[51]
Luwang M N, Ningthoujam R S, Srivastava S K, Vatsa R K. J. Am. Chem. Soc., 2011, 133(9):2998.

doi: 10.1021/ja1092437 pmid: 21309554
[52]
Parchur A K, Ningthoujam R S. Dalton Trans., 2011, 40(29):7590.

doi: 10.1039/c1dt10327j pmid: 21695334
[53]
Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437(7055):121.

doi: 10.1038/nature03968
[54]
Wang L Y, Li Y D. Chem. Mater., 2007, 19(4):727.

doi: 10.1021/cm061887m
[55]
Wang L Y, Li Y D. Nano Lett., 2006, 6(8):1645.

doi: 10.1021/nl060684u
[56]
Li C X, Quan Z W, Yang J, Yang P P, Lin J. Inorg. Chem., 2007, 46(16):6329.

doi: 10.1021/ic070335i
[57]
Li C X, Quan Z W, Yang P P, Yang J, Lian H Z, Lin J. J. Mater. Chem., 2008, 18(12):1353.

doi: 10.1039/b717363f
[58]
Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463(7284):1061.

doi: 10.1038/nature08777
[59]
Zhang Y W, Sun X, Si R, You L P, Yan C H. J. Am. Chem. Soc., 2005, 127(10):3260.

pmid: 15755126
[60]
Yi G S, Chow G M. Adv. Funct. Mater., 2006, 16(18):2324.

doi: 10.1002/(ISSN)1616-3028
[61]
Ye X, Collins J E, Kang Y, Chen J, Chen D T N, Yodh A G, Murray C B. PNAS, 2010, 107(52):22430.

doi: 10.1073/pnas.1008958107
[62]
Liu D M, Xu X X, Du Y, Qin X, Zhang Y H, Ma C S, Wen S H, Ren W, Goldys E M, Piper J A, Dou S X, Liu X G, Jin D Y. Nat. Commun., 2016, 7(1):1.
[63]
Chen G J, Jaskula-Sztul R, Esquibel C R, Lou I, Zheng Q F, Dammalapati A, Harrison A, Eliceiri K W, Tang W P, Chen H, Gong S Q. Adv. Funct. Mater., 2017, 27(8):1604671.

doi: 10.1002/adfm.v27.8
[64]
Zhu X H, Zhang J, Liu J L, Zhang Y. Adv. Sci., 2019, 6(22):1901358.

doi: 10.1002/advs.v6.22
[65]
Zhou B, Shi B Y, Jin D Y, Liu X G. Nat. Nanotechnol., 2015, 10(11):924.

doi: 10.1038/nnano.2015.251 pmid: 26530022
[66]
Li X, Cheng Y, Xu J, Lin H, Wang Y S. J. Mater. Sci., 2020, 55(16):6891.

doi: 10.1007/s10853-020-04512-x
[67]
Wu Y M, Xu J H, Liu X G. J. Rare Earths, 2020, 38(5):546.

doi: 10.1016/j.jre.2020.01.015
[68]
Yuan Z, Zhang L, Li S Z, Zhang W N, Lu M, Pan Y, Xie X J, Huang L, Huang W. J. Am. Chem. Soc., 2018, 140(45):15507.

doi: 10.1021/jacs.8b10122 pmid: 30350963
[69]
Zuo J, Sun D P, Tu L P, Wu Y N, Cao Y H, Xue B, Zhang Y L, Chang Y L, Liu X M, Kong X G, Buma W J, Meijer E J, Zhang H. Angew. Chem. Int. Ed., 2018, 57(12):2979.

doi: 10.1002/anie.201801883
[70]
Liu J, Rijckaert H, Zeng M, Haustraete K, Laforce B, Vincze L, van Driessche I, Kaczmarek A M, van Deun R. Adv. Funct. Mater., 2018, 28(17):1707365.

doi: 10.1002/adfm.v28.17
[71]
Ren Y T, Yang Z W, Li M J, Ruan J F, Zhao J Y, Qiu J B, Song Z G, Zhou D C. Adv. Optical Mater., 2019, 7(15):1900213.

doi: 10.1002/adom.v7.15
[72]
Lee J, Yoo B, Lee H, Cha G D, Lee H S, Cho Y, Kim S Y, Seo H, Lee W, Son D, Kang M, Kim H M, Park Y I, Hyeon T, Kim D H. Adv. Mater., 2017, 29(1):1603169.

doi: 10.1002/adma.201603169
[73]
Ni R P, Qian B, Liu C, Liu X F, Qiu J R. Opt. Express, 2018, 26(19):25481.

doi: 10.1364/OE.26.025481
[74]
Liu X W, Wang Y, Li X Y, Yi Z G, Deng R R, Liang L L, Xie X J, Loong D T B, Song S Y, Fan D Y, All A H, Zhang H J, Huang L, Liu X G. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6
[75]
Blumenthal T, Meruga J, Stanley May P, Kellar J, Cross W, Ankireddy K, Vunnam S, Luu Q N. Nanotechnology, 2012, 23(18):185305.

doi: 10.1088/0957-4484/23/18/185305 pmid: 22498888
[76]
Sangeetha N M, Moutet P, Lagarde D, Sallen G, Urbaszek B, Marie X, Viau G, Ressier L. Nanoscale, 2013, 5(20):9587.

doi: 10.1039/c3nr02734a
[77]
Kaboli F, Ghazyani N, Riahi M, Zare-Behtash H, Majles Ara M H, Heydari E. ACS Appl. Nano Mater., 2019, 2(6):3590.

doi: 10.1021/acsanm.9b00549
[78]
Yao W J, Tian Q Y, Liu J, Wu Z H, Cui S Y, Ding J, Dai Z G, Wu W. J. Mater. Chem. C, 2016, 4(26):6327.

doi: 10.1039/C6TC01513A
[79]
Hu W T, Li T, Liu X, Dastan D, Ji K W, Zhao P J. J. Alloys Compd., 2020, 818:152933.

doi: 10.1016/j.jallcom.2019.152933
[80]
Chen X, Xu W, Zhang L H, Bai X, Cui S B, Zhou D L, Yin Z, Song H W, Kim D H. Adv. Funct. Mater., 2015, 25(34):5462.

doi: 10.1002/adfm.201502419
[81]
Meruga J M, Cross W M, Stanley May P, Luu Q, Crawford G A, Kellar J J. Nanotechnology, 2012, 23(39):395201.

doi: 10.1088/0957-4484/23/39/395201
[82]
Meruga J M, Baride A, Cross W, Kellar J J, May P S. J. Mater. Chem. C, 2014, 2(12):2221.

doi: 10.1039/c3tc32233e
[83]
Xie S W, Tong C, Tan H H, Li N, Gong L, Xu J X, Xu L J, Zhang C F. Mater. Chem. Front., 2018, 2(11):1997.

doi: 10.1039/C8QM00278A
[84]
Gao G J, Busko D, Joseph R, Turshatov A, Howard I A, Richards B S. Part. Part. Syst. Charact., 2019, 36(3):1800462.

doi: 10.1002/ppsc.v36.3
[85]
Zhang C, Yang L, Zhao J, Liu B H, Han M Y, Zhang Z P. Angew. Chem. Int. Ed., 2015, 54(39):11531.

doi: 10.1002/anie.201504518
[86]
Han X X, Song E H, Zhou B, Zhang Q Y. J. Mater. Chem. C, 2019, 7(27):8226.

doi: 10.1039/C9TC02171J
[87]
Lei L, Chen D Q, Li C, Huang F, Zhang J J, Xu S Q. J. Mater. Chem. C, 2018, 6(20):5427.

doi: 10.1039/C8TC01433G
[88]
Zhou J J, Wen S H, Liao J Y, Clarke C, Tawfik S A, Ren W, Mi C, Wang F, Jin D Y. Nat. Photonics, 2018, 12(3):154.

doi: 10.1038/s41566-018-0108-5
[89]
Wang H, Li M C, Yin Z, Zhang T X, Chen X, Zhou D L, Zhu J Y, Xu W, Cui H N, Song H W. ACS Appl. Mater. Interfaces, 2017, 9(42):37128.

doi: 10.1021/acsami.7b10015
[90]
Zhou D L, Liu D L, Xu W, Chen X, Yin Z, Bai X, Dong B, Xu L, Song H W. Chem. Mater., 2017, 29(16):6799.

doi: 10.1021/acs.chemmater.7b01783
[91]
Liang L L, Teh D B L, Dinh N D, Chen W Q, Chen Q S, Wu Y M, Chowdhury S, Yamanaka A, Sum T C, Chen C H, Thakor N V, All A H, Liu X G. Nat. Commun., 2019, 10(1):1.

doi: 10.1038/s41467-018-07882-8
[92]
Han Y D, Li H Y, Wang Y B, Pan Y, Huang L, Song F, Huang W. Sci. Rep., 2017, 7(1):1.

doi: 10.1038/s41598-016-0028-x
[93]
Li X M, Guo Z Z, Zhao T C, Lu Y, Zhou L, Zhao D Y, Zhang F. Angew. Chem. Int. Ed., 2016, 55(7):2464.

doi: 10.1002/anie.201510609
[94]
Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G. Nat. Nanotechnol., 2015, 10(3):237.

doi: 10.1038/nnano.2014.317
[95]
Ma Q Q, Wang J, Li Z H, Wang D, Hu X X, Xu Y S, Yuan Q. Inorg. Chem. Front., 2017, 4(7):1166.

doi: 10.1039/C7QI00194K
[96]
Dong H, Sun L D, Feng W, Gu Y Y, Li F Y, Yan C H. ACS Nano, 2017, 11(3):3289.

doi: 10.1021/acsnano.7b00559 pmid: 28238259
[97]
Xue B, Wang D, Zhang Y L, Zuo J, Chang Y L, Tu L P, Liu X M, Yuan Z, Zhao H Y, Song J, Qu J L, Kong X G. J. Mater. Chem. C, 2019, 7(28):8607.

doi: 10.1039/C9TC02293G
[98]
Yao W J, Tian Q Y, Tian B, Li M X, Wang H J, Zeng P, Liu L, Zheng H, Wu W. Sci. China Mater., 2019, 62(3):368.

doi: 10.1007/s40843-018-9341-8
[99]
Liu Y L, Ai K L, Lu L H. Nanoscale, 2011, 3(11):4804.

doi: 10.1039/c1nr10752f
[100]
You M L, Zhong J J, Hong Y, Duan Z F, Lin M, Xu F. Nanoscale, 2015, 7(10):4423.

doi: 10.1039/C4NR06944G
[101]
Chen D Q, Liu Y, Chen J K, Huang H, Zhong J S, Zhu Y W. J. Mater. Chem. C, 2019, 7(5):1321.

doi: 10.1039/C8TC05921G
[102]
Rao M N, Fu J, Wen X, Sun B, Wu J, Liu X H, Dong X L. New J. Chem., 2018, 42(15):12353.

doi: 10.1039/C8NJ02315H
[103]
Lei L, Dai X R, Cheng Y, Wang Y S, Xiao Z, Xu S Q. J. Mater. Chem. C, 2019, 7(11):3342.

doi: 10.1039/c8tc05467c
[104]
Sun T Y, Xu B Z, Chen B, Chen X, Li M Y, Shi P, Wang F. Nanoscale, 2017, 9(8):2701.

doi: 10.1039/C6NR09083D
[105]
Zuo J, Li Q Q, Xue B, Li C X, Chang Y L, Zhang Y L, Liu X M, Tu L P, Zhang H, Kong X G. Nanoscale, 2017, 9(23):7941.

doi: 10.1039/C7NR01403A
[106]
Liu J N, Bu W B, Pan L M, Shi J L. Angew. Chem. Int. Ed., 2013, 52(16):4375.

doi: 10.1002/anie.201300183
[107]
Ni D L, Bu W B, Zhang S J, Zheng X P, Li M, Xing H Y, Xiao Q F, Liu Y Y, Hua Y Q, Zhou L P, Peng W J, Zhao K L, Shi J L. Adv. Funct. Mater., 2014, 24(42):6613.

doi: 10.1002/adfm.v24.42
[108]
Zhou S, Ding C D, Wang Y, Jiang W, Fu J J. ACS Biomater. Sci. Eng., 2019, 5(11):6022.

doi: 10.1021/acsbiomaterials.9b01227
[109]
Huang P, Zheng W, Zhou S Y, Tu D T, Chen Z, Zhu H M, Li R F, Ma E, Huang M D, Chen X Y. Angew. Chem. Int. Ed., 2014, 53(5):1252.

doi: 10.1002/anie.v53.5
No related articles found!