中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1138-1151 DOI: 10.7536/PC200717 Previous Articles   Next Articles

• Review •

Concentration-Gradient Microfluidic Chips for Drug Screening

Fangjuan Zhang, Haibing Liu, Mengqi Gao, Defu Wang, Yanbing Niu, Shaofei Shen*()   

  1. College of Life Sciences,Shanxi Agricultural University, Jinzhong 030801, China
  • Received: Revised: Online: Published:
  • Contact: Shaofei Shen
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(31700749); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0362); Science and Technology Innovation Funds of Shanxi Agricultural University(2016YJ02)
Richhtml ( 63 ) PDF ( 1139 ) Cited
Export

EndNote

Ris

BibTeX

Microfluidic chip is one of the most representative technologies of micro-analysis platform in this century. It has many advantages such as low reagent consumption, analytical miniaturization, easy control and integration, high automation and good biological compatibility. It has outstanding performances in many fields such as biology, medicine, food and environment, especially in the field of drug screening which has achieved a series of achievements with its own advantages. This article summarizes the research progress of concentration gradient microfluidic chips for drug screening in recent years, including paper chip, hydrogel chip, droplet chip and polydimethylsiloxane (PDMS) chip. Furthermore, the advantages and disadvantages of concentration gradient microfluidic chip in single cell analysis, combination drug screening, three-dimensional (3D) cell culture, cell microenvironment simulation are described. Finally, we provide a perspective for its application prospects.

Contents

1 Introduction

2 Characteristics of concentration-gradient microfluidic chip

3 Type of concentration-gradient microfluidic chip

3.1 Paper chip

3.2 Hydrogel chip

3.3 Droplet chip

3.4 PDMS chip

4 Application of concentration-gradient microfluidic chip

4.1 Single cell analysis

4.2 Combination drug screening

4.3 3D cell cultures

4.4 Simulated cell microenvironment

5 Conclusion and outlook

Fig. 1 Microfluidic paper chip. (A) The hybrid 3D-printed and paper-based microfluidic platform[25]; (B) A paper-based multichannel microfluidic chip for drug screening[26]
Fig. 2 Hydrogel microfluidic chip: (a) Schematic diagram of 2D and 3D surface gradients of hydrogel[34]; (b) Convection-diffusion based gradient drug fluid generating microfluidic system[37]; (c) Multi-concentration gradient hydrogel device[38]; (d) Microfluidic platform with multi-gradient biochemical concentration and hydrogel barrier[39]
Fig. 3 Droplet microfluidic chip. (a) Droplets microreactor formed by microfluidic channels[42]; (b) Schematic diagram of a microfluidic device for generating an array of moving droplets[44]; (c) Schematic diagram of droplet array chip with concentration gradient[45]
Fig. 4 PPDMS microfluidic chip. (a) Schematic diagram of PDMS chip of double concentration gradient construction[16]; (b) PDMS chip platform of automated cell culture[51]; (c) A PDMS chip platform for the study of bronchial epithelial injury caused by environmental pollutants[52]
Fig. 5 Microfluidic platform for single cell analysis. (a) Microfluidic array platform for single cell tracking and cloning[58]; (b) Multi-concentration gradient microfluidic device for single cell research[59]; (c) Microfluidic platform for real-time monitoring and analysis of single cell reaction[60]; (d) Microfluidic gradient device containing single cell capture array[61]; (e) Schematics showing the workflow for phenotype-related drug sensitivity analysis of single CTCs using the DS-Chip[62]
Fig. 6 Combination drug Screening. (a) Comparison between monotherapy and combination therapy[70]; (b) Schematic diagram of a microfluidic array for generating different drug combinations[71]; (c) Microfluidic platform of combined antibiotic testing[72]; (d) Schematic diagram of microfluidic device for generating triple concentration gradient[15]
Fig. 7 3D cell culture. (a) Graphical representation of a growing cell on a 2D and 3D substrate[74]; (b) The 3D chip is used for simultaneous delivery of multiple drug concentrations[75]; (c) Droplet-microfluidic platform for the culture of spheroids[76]
Fig. 8 Simulated cell microenvironment. (a) The microfluidic chip simulates the tumor microenvironment[81]; (b) Microfluidic model of bionic tumor micro-tissue in vitro for drug screening research[83]; (c) Microtumor model for cell capture and sphere formation[84]
[1]
Liu X Y, Zheng W F, Jiang X Y. ACS Sens., 2019, 4(6):1465.

doi: 10.1021/acssensors.9b00479
[2]
Begley C G, Ellis L M. Nature, 2012, 483(7391):531.

doi: 10.1038/483531a
[3]
Wiles C, Watts P. Org. Proc. Res. Dev., 2011, 15:947.
[4]
Wang J Y, Sui G D, Mocharla V P, Lin R J, Phelps M E, Kolb H C, Tseng H R. Angew. Chem., 2006, 118(32):5402.

doi: 10.1002/(ISSN)1521-3757
[5]
Velve-Casquillas G, Le Berre M, Piel M, Tran P T. Nano Today, 2010, 5(1):28.

pmid: 21152269
[6]
Ghaemmaghami A M, Hancock M J, Harrington H, Kaji H, Khademhosseini A. Drug Discov. Today, 2012, 17(3/4):173.

doi: 10.1016/j.drudis.2011.10.029
[7]
Wang X, Liu Z M, Pang Y. RSC Adv., 2017, 7(48):29966.

doi: 10.1039/C7RA04494A
[8]
Ma C, Zhao L, Zhou E M, Xu J, Shen S F, Wang J Y. Anal. Chem., 2016, 88(3):1719.

doi: 10.1021/acs.analchem.5b03869
[9]
Zhao L, Ma C, Shen S F, Tian C, Xu J, Tu Q, Li T B, Wang Y L, Wang J Y. Biosens. Bioelectron., 2016, 78:423.

doi: S0956-5663(15)30451-6 pmid: 26655183
[10]
Liu W M, Xu J, Li T B, Zhao L, Ma C, Shen S F, Wang J Y. Anal. Chem., 2015, 87(19):9752.

doi: 10.1021/acs.analchem.5b01915
[11]
Shen S F, Ma C, Zhao L, Wang Y L, Wang J C, Xu J, Li T B, Pang L, Wang J Y. Lab Chip, 2014, 14(14):2525.

doi: 10.1039/C3LC51384J
[12]
Shen S F, Tian C, Li T B, Xu J, Chen S W, Tu Q, Yuan M S, Liu W M, Wang J Y. Lab Chip, 2017, 17(21):3578.

doi: 10.1039/C7LC00691H
[13]
Shen S F, Kou L S, Zhang X, Wang D F, Niu Y B, Wang J Y. Adv. Theory Simul., 2018, 1(4):1700034.

doi: 10.1002/adts.v1.4
[14]
Shen S F, Zhang F J, Wang S T, Wang J R, Long D D, Wang D F, Niu Y B. Sens. Actuat. B: Chem., 2019, 287:320.

doi: 10.1016/j.snb.2019.02.066
[15]
Shen S F, Zhang X, Zhang F J, Wang D F, Long D D, Niu Y B. Talanta, 2020, 208:120477.

doi: 10.1016/j.talanta.2019.120477
[16]
Shen S F, Zhang F J, Gao M Q, Niu Y B. Micromachines, 2020, 11(5):493.

doi: 10.3390/mi11050493
[17]
Cui X, Guo W J, Sun Y B, Sun B C, Hu S H, Sun D, Lam R H W. Biomicrofluidics, 2017, 11(1):014105.

doi: 10.1063/1.4974012
[18]
Liu X, Jia Y, Han Z, Hou Q, Zhang W, Zheng W, Jiang X. Angew. Chem. Int. Edit, 2021, 60(22):12319.

doi: 10.1002/anie.v60.22
[19]
Gao D, Li H F, Wang N J, Lin J M. Anal. Chem., 2012, 84(21):9230.

doi: 10.1021/ac301966c
[20]
Wang X, Liu Z M, Pang Y. RSC Adv., 2017, 7(48):29966.

doi: 10.1039/C7RA04494A
[21]
Chen X J, Chen H, Wu D Z, Chen Q N, Zhou Z, Zhang R R, Peng X Y, Su Y C, Sun D H. Sens. Actuat. B: Chem., 2018, 276:507.

doi: 10.1016/j.snb.2018.08.121
[22]
Xu B Y, Hu S W, Qian G S, Xu J J, Chen H Y. Lab on a Chip, 2013, 13(18):3714.

doi: 10.1039/c3lc50676b
[23]
Ko H, Lee J, Kim Y, Lee B, Jung C H, Choi J H, Kwon O S, Shin K. Adv. Mater., 2014, 26(15):2335.

doi: 10.1002/adma.v26.15
[24]
Martinez A W, Phillips S T, Whitesides G M, Carrilho E. Anal. Chem., 2010, 82(1):3.

doi: 10.1021/ac9013989 pmid: 20000334
[25]
Liu P, Li B W, Fu L W, Huang Y, Man M S, Qi J, Sun X Y, Kang Q, Shen D Z, Chen L X. ACS Sens., 2020, 5(2):464.

doi: 10.1021/acssensors.9b02205
[26]
Wu Y, Gao Q, Nie J, Fu J Z, He Y. ACS Biomater. Sci. Eng., 2017, 3(4):601.

doi: 10.1021/acsbiomaterials.7b00084
[27]
Hong B, Xue P, Wu Y F, Bao J N, Chuah Y J, Kang Y J. Biomed. Microdevices, 2016, 18(1):1.

doi: 10.1007/s10544-015-0028-9
[28]
Chen Q S, He Z Y, Liu W, Lin X X, Wu J, Li H F, Lin J M. Adv. Healthcare Mater., 2015, 4(15):2291.

doi: 10.1002/adhm.201500383
[29]
Su M, Ge L, Ge S G, Li N Q, Yu J H, Yan M, Huang J D. Anal. Chimica Acta, 2014, 847:1.

doi: 10.1016/j.aca.2014.08.013
[30]
Schönherr E, Hausser H J. Dev. Immunol., 2000, 7(2/4):89.

doi: 10.1155/2000/31748
[31]
Uebersax L, Merkle H P, Meinel L. Tissue Eng. B: Rev., 2009, 15(3):263.

doi: 10.1089/ten.teb.2008.0668
[32]
Keenan T M, Folch A. Lab Chip, 2008, 8(1):34.

doi: 10.1039/B711887B
[33]
Drury J L, Mooney D J. Biomaterials, 2003, 24(24):4337.

doi: 10.1016/S0142-9612(03)00340-5
[34]
Lühmann T, Hall H. Materials, 2009, 2(3):1058.

doi: 10.3390/ma2031058
[35]
Ladet S, David L, Domard A. Nature, 2008, 452(7183):76.

doi: 10.1038/nature06619
[36]
He J K, Du Y N, Villa-Uribe J L, Hwang C, Li D C, Khademhosseini A. Adv. Funct. Mater., 2010, 20(1):131.

doi: 10.1002/adfm.v20:1
[37]
Hu X J, Zhao S K, Luo Z Y, Zuo Y F, Wang F, Zhu J M, Chen L F, Yang D Y, Zheng Y J, Zheng Y J, Cheng Y X, Zhou F L, Yang Y. Lab on a Chip, 2020, 20(12):2228.

doi: 10.1039/D0LC00255K
[38]
Mahadik B P, Wheeler T D, Skertich L J, Kenis P J A, Harley B A C. Adv. Healthcare Mater., 2014, 3(3):449.

doi: 10.1002/adhm.v3.3
[39]
Liu W M, Han K, Sun M L, Huang Z C, Wang J Y. Adv. Mater. Technol., 2019, 4(2):1800434.

doi: 10.1002/admt.v4.2
[40]
Song H, Chen D L, Ismagilov R F. Angew. Chem. Int. Ed., 2006, 45(44):7336.

doi: 10.1002/(ISSN)1521-3773
[41]
Wang Y T, Chen Z Y, Bian F K, Shang L R, Zhu K X, Zhao Y J. Expert. Opin. Drug Discov., 2020, 15(8):969.

doi: 10.1080/17460441.2020.1758663
[42]
Song H, Tice J D, Ismagilov R F. Angew. Chem., 2003, 115(7):792.

doi: 10.1002/ange.200390172
[43]
Rotman B. Proc. Natl. Acad. Sci. U.S.A., 1961, 47(12):1981.

doi: 10.1073/pnas.47.12.1981
[44]
Sun M, Vanapalli S A. Anal. Chem., 2013, 85(4):2044.

doi: 10.1021/ac303526y
[45]
Cai L F, Zhu Y, Du G S, Fang Q. Anal. Chem., 2012, 84(1):446.

doi: 10.1021/ac2029198
[46]
Sollier E, Murray C, Maoddi P, di Carlo D. Lab on a Chip, 2011, 11(22):3752.

doi: 10.1039/c1lc20514e pmid: 21979377
[47]
Berthier E, Young E W K, Beebe D. Lab on a Chip, 2012, 12(7):1224.

doi: 10.1039/c2lc20982a pmid: 22318426
[48]
McDonald J C, Whitesides G M. Acc. Chem. Res., 2002, 35(7):491.

doi: 10.1021/ar010110q
[49]
McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H K, Schueller O J A, Whitesides G M. Electrophoresis, 2000, 21(1):27.

pmid: 10634468
[50]
Ng J M K, Gitlin I, Stroock A D, Whitesides G M. Electrophoresis, 2002, 23(20):3461.

doi: 10.1002/1522-2683(200210)23:20【-逻*辑*与-】#x00026;lt;3461::AID-ELPS3461【-逻*辑*与-】#x00026;gt;3.0.CO;2-8
[51]
Gómez-Sjöberg R, Leyrat A A, Pirone D M, Chen C S, Quake S R. Anal. Chem., 2007, 79(22):8557.

pmid: 17953452
[52]
Zhang F, Tian C, Liu W M, Wang K, Wei Y Q, Wang H S, Wang J Y, Liu S Q. ACS Sens., 2018, 3(12):2716.

doi: 10.1021/acssensors.8b01370
[53]
Zhang X, Wei X, Wei Y J, Chen M L, Wang J H. Talanta, 2020, 218:121147.

doi: S0039-9140(20)30438-0 pmid: 32797903
[54]
Yin H B, Marshall D. Curr. Opin. Biotechnol., 2012, 23(1):110.

doi: 10.1016/j.copbio.2011.11.002
[55]
Reece A, Xia B Z, Jiang Z L, Noren B, McBride R, Oakey J. Curr. Opin. Biotechnol., 2016, 40:90.

doi: 10.1016/j.copbio.2016.02.015
[56]
Pang L, Ding J, Liu X X, Yuan H Y, Ge Y X, Fan J L, Fan S K. Trac Trends Anal. Chem., 2020, 129:115940.

doi: 10.1016/j.trac.2020.115940
[57]
Liu R M, Sun M, Zhang G W, Lan Y P, Yang Z B. Anal. Chimica Acta, 2019, 1092: 42.

doi: 10.1016/j.aca.2019.09.065
[58]
Chung J, Ingram P N, Bersano-Begey T, Yoon E. Biomicrofluidics, 2014, 8(6):064103.

doi: 10.1063/1.4900823
[59]
Liang L, Jin Y X, Zhu X Q, Zhou F L, Yang Y. Lab on a Chip, 2018, 18(10):1422.

doi: 10.1039/c8lc00088c pmid: 29713720
[60]
Song J, Ryu H, Chung M, Kim Y, Blum Y, Lee S S, Pertz O, Jeon N L. Biosens. Bioelectron., 2018, 104:58.

doi: 10.1016/j.bios.2017.12.038
[61]
Fernandes J T S, Tenreiro S, Gameiro A, Chu V, Outeiro T F, Conde J P. Lab Chip, 2014, 14(20):3949.

doi: 10.1039/c4lc00756e pmid: 25167219
[62]
Pei H M, Yu M, Dong D F, Wang Y G, Li Q L, Li L, Tang B. Chem. Sci., 2020, 11(33):8895.

doi: 10.1039/C9SC05566E
[63]
Levy S B, Marshall B. Nat. Med., 2004, 10(12):S122.

doi: 10.1038/nm1145
[64]
Ventola C L. J. Clin. Pharm. Ther., 2015, 40(4):277.
[65]
Fischbach M A, Walsh C T. Science, 2009, 325(5944):1089.

doi: 10.1126/science.1176667 pmid: 19713519
[66]
Blair J M A, Webber M A, Baylay A J, Ogbolu D O, Piddock L J V. Nat. Rev. Microbiol., 2015, 13(1):42.

doi: 10.1038/nrmicro3380
[67]
Verbrugge F H, Grieten L, Mullens W. Curr. Heart Fail. Rep., 2014, 11(1):1.

doi: 10.1007/s11897-013-0174-4 pmid: 24218088
[68]
Song S W, Kim S D, Oh D Y, Lee Y, Lee A C, Jeong Y, Bae H J, Lee D, Lee S, Kim J, Kwon S. Adv. Sci., 2019, 6(3):1801380.

doi: 10.1002/advs.v6.3
[69]
Zhou H, Zhao L, Zhang X J. Anal. Chem., 2015, 87(4):2048.

doi: 10.1021/ac504823s pmid: 25630902
[70]
Parhi P, Mohanty C, Sahoo S K. Drug Discov. Today, 2012, 17(17/18):1044.

doi: 10.1016/j.drudis.2012.05.010
[71]
Kim J, Taylor D, Agrawal N, Wang H, Kim H, Han A, Rege K, Jayaraman A. Lab on a Chip, 2012, 12(10):1813.

doi: 10.1039/c2lc21202a
[72]
Kim S, Masum F, Kim J K, Chung H J, Jeon J S. Lab on a Chip, 2019, 19(6):959.

doi: 10.1039/C8LC01406J
[73]
Christoffersson J, Mandenius C F. Methods in Molecular Biology. New York: Springer, 2019.
[74]
Castiaux A D, Spence D M, Martin R S. Anal. Methods, 2019, 11(33):4220.

doi: 10.1039/C9AY01328H
[75]
Toh Y C, Lim T C, Tai D A, Xiao G F, van Noort D, Yu H. Lab on a Chip, 2009, 9(14):2026.

doi: 10.1039/b900912d
[76]
Sart S, Tomasi R F X, Amselem G, Baroud C N. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6
[77]
Chen P, Li S J, Guo Y R, Zeng X M, Liu B F. Anal. Chimica Acta, 2020, 1125: 94.

doi: 10.1016/j.aca.2020.05.065
[78]
Wightman R M. Science, 2006, 311(5767):1570.

pmid: 16543451
[79]
Xu T, Yue W Q, Li C W, Yao X S, Yang M S. Lab on a Chip, 2013, 13(6):1060.

doi: 10.1039/c3lc40880a
[80]
Lin N, Zhou X B, Geng X C, Drewell C, Hübner J, Li Z G, Zhang Y L, Xue M, Marx U, Li B. Sci. Rep., 2020, 10(1):1.

doi: 10.1038/s41598-019-56847-4
[81]
Shang M L, Soon R H, Lim C T, Khoo B L, Han J. Lab on a Chip, 2019, 19(3):369.

doi: 10.1039/C8LC00970H
[82]
Huang Y L, Segall J E, Wu M M. Lab on a Chip, 2017, 17(19):3221.

doi: 10.1039/c7lc00623c pmid: 28805874
[83]
Chen Y L, Gao D, Liu H X, Lin S, Jiang Y Y. Anal. Chimica Acta, 2015, 898:85.

doi: 10.1016/j.aca.2015.10.006
[84]
Zhang Z X, Chen Y C, Urs S, Chen L L, Simeone D M, Yoon E. Small, 2018, 14(42):1703617.

doi: 10.1002/smll.v14.42
[85]
Azizi F, Lu H, Chiel H J, Mastrangelo C H. J. Neurosci. Methods, 2010, 192(2):193.

doi: 10.1016/j.jneumeth.2010.07.011
[86]
Zhang X Y, Roper M G. Anal. Chem., 2009, 81(3):1162.

doi: 10.1021/ac802579z
[87]
Zhang T, Meng J Y, Li S S, Yu C Z, Li J W, Wei C Y, Dai S J. Micromachines, 2020, 11(3):284.

doi: 10.3390/mi11030284
[88]
Dhumpa R, Roper M G. Anal. Chimica Acta, 2012, 743:9.

doi: 10.1016/j.aca.2012.07.006
[1] Jiang Yan, Xu Yi, Wang Renjie, Su Xi, Dong Chunyan. Application of Novel Nano Fluorescent Probes for Bacteria Detection on the Microchip [J]. Progress in Chemistry, 2015, 27(9): 1240-1250.
[2] Lei Xiangyang, Qiu Xianbo, Ge Shengxiang, Xia Ningshao, Chen Xing, Cui Dafu. CD4 +T Lymphocyte Counting Technologies Based on Microfluidic Chip [J]. Progress in Chemistry, 2015, 27(7): 870-881.
[3] Wang Xiaoping, Hong Xiayun, Zhan Shuyue, Huang Zihao, Pang Kai. Surface Plasmon Resonance Sensing Technology and Bioanalytical Instrument [J]. Progress in Chemistry, 2014, 26(07): 1143-1159.
[4] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[5] Lin Caiqin, Yao Bo* . Recent Advance in Digital PCR [J]. Progress in Chemistry, 2012, 24(12): 2415-2423.
[6] Hao Li, Xu Chunxiu, Cheng Heyong, Liu Jinhua, Yin Xuefeng. Recent Advances in the Determination of Intracellular Contents in Individual Cells Using Microfluidic Devices [J]. Progress in Chemistry, 2012, 24(08): 1544-1553.
[7] Xiang Nan, Zhu Xiaolu, Ni Zhonghua. Application of Inertial Effect in Microfluidic Chips [J]. Progress in Chemistry, 2011, 23(9): 1945-1958.
[8] Qu Xiangmeng, Lin Rongsheng, Chen Hong. Microfluidic Chip Based Microarray Analysis [J]. Progress in Chemistry, 2011, 23(01): 221-230.
[9] Shen Yuqin Yao Bo Fang Qun. Application of Magnetic Control Technique in Microfluidic Chips [J]. Progress in Chemistry, 2010, 22(01): 133-139.
[10] Lu Shiyong Wu Zhanggui Ye Weidong Wu Guofeng Pan Yibin Qian Junqing. Application of Frontal Affinity Chromatography to Studies on Interactions of Molecules [J]. Progress in Chemistry, 2010, 22(01): 148-152.
[11] Jiang Ping Qu Feng Tan Xin Li Qin Geng Lina Deng Yulin. The Application of Microfluidic Chip Electrophoresis in Biomolecular Interaction Research [J]. Progress in Chemistry, 2009, 21(09): 1895-1904.
[12] Geng Lina Jiang Ping Xu Jiandong Che Baoquan Qu Feng Deng Yulin. Applications of Nanotechnology in Capillary Electrophoresis and Microfluidic Chip Electrophoresis Biomolecular Separations [J]. Progress in Chemistry, 2009, 21(09): 1905-1921.
[13] Li Junjun Chen Qiang Li Gang Zhao Jianlong Zhu Ziqiang. Research and Application of Microfluidics in Protein Crystallization [J]. Progress in Chemistry, 2009, 21(05): 1034-1039.
[14] Wang Yurong|Chen Hengwu**. Microchip Capillary Electrophoresis with Amperometric Detection [J]. Progress in Chemistry, 2009, 21(01): 200-209.
[15]

Xu Yi1,2,3** Shen Jiwei1,2 Lu Jiali1,2 Wen Zhiyu1,3

. Protein/peptides Separation by Two-dimensional Microfluidic chip Electrophoresis [J]. Progress in Chemistry, 2008, 20(05): 754-761.