中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 678-688 DOI: 10.7536/PC200695 Previous Articles   Next Articles

• Review •

Functional Protein Based Nanomaterials for Environmental Protection Application

Ximeng Cheng1, Qingrui Zhang1,2()   

  1. 1 Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, Yanshan University,Qinhuangdao 066004, China
    2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,Qinhuangdao 066004, China
  • Received: Revised: Online: Published:
  • Contact: Qingrui Zhang
  • Supported by:
    the National Natural Science Foundation of China(21876145)
Richhtml ( 33 ) PDF ( 552 ) Cited
Export

EndNote

Ris

BibTeX

Protein is a kind of biological macromolecule with stable structure and abundant functional groups. Recently, the development of protein based nanomaterials has raised wide-spread research enthusiasm, especially in environmental remediation. Dopamine, amyloid-fibrils and protein-inorganic hybrid nanoflower are the three most representative ones. Inspired by mussels, the strong adhesive polydopamine coating forms in alkaline condition through self-polymerization, which is widely used in surface modification. Amyloid-fibrils, obtained by the heat treatment or chemical denaturation of functional protein, possess the large aspect ratio and more active sites for enhancing the decontamination. Besides, the three-dimensional structure of protein makes it easy to form hybrid nanoflower with metallic phosphate. The protein nanoflower provides high surface area for wastewater purification with the assistance of the metallic phosphate. Based on the structural properties of protein, this review summarizes the fabrication, formation mechanism and applications of above three nanomaterials in water pollution control, providing reference to the subsequent scientific study.

Contents

1 Introduction

2 Mussel-inspired dopamine coating and its application

2.1 Preparation and polymerization mechanism of dopamine

2.2 Modification and application of dopamine in environmental protection

3 The structure and environmental application of amyloid-fibrils

3.1 Physicochemical properties and fabrication of amyloid-fibrils

3.2 The environmental applications of amyloid-fibrils

4 Preparation and application of protein induced nanoflower

4.1 Formation and characterization of protein-nanoflower

4.2 Application of protein nanoflower in the field of environment protection

5 Conclusion and outlook

Fig.1 Polydopamine,inspired from invertebrate mussels[13]. Copyright 2014, ACS.
Fig.2 “Eumelanin” model of the molecular mechanism for the formation of polydopamine[23]. Copyright 2000, ACS.
Fig.3 Mechanistic scheme for the formation of PDA by non-covalent polymerization[18].Copyright 2012, ACS.
Fig.4 (a~c)The removal of Pb(Ⅱ) by polydopamine microspheres in the existence of Ca(Ⅱ)/Mg(Ⅱ)/Na(Ⅰ),(d)The seiective coefficient value onto PDA-Ms[30].Copyright 2017, ACS.
Fig.5 (a) Photodegradation of tetracycline under visible-light irradiation and(b)the corresponding kinetic linear simulation curves[36]. Copyright 2013, ACS.
Fig.6 Two theoretical pathways of protein fibril assembling from: globular protein:(1) partial denaturation and β-sheet alignment,(2)denaturation, hydrolysis, and β-sheet alignment from oligopeptides [60]. Copyright 2012, RSC.
Fig.7 (a)Schematic diagram of the synthesis of the AβL nanofibrils;(b)Morphology of AβL nanofibrils with different heat treatment time[70]. Copyright 2020, Elsevier.
Fig.8 Concentrations of heavy metal pollutants before and after filtration through the amyloid fibril-activated carbon hybrid membrane.(a)Potassium dicyanoaurate(I);(b) Mercury chloride;(c)Lead acetate;(d)Disodiumtetrachloropalladate[73]. Copyright 2016, Nature.
Fig.9 Schematic illustration of the construction of the Cu-Ag-Au@β-LGF catalytic membrane reator[77].Copyright 2016, ACS.
Fig.10 Effect of different trypsin concentrations on the morphologies of nanoflowers[92]. Copyright 2014, RSC.
Fig.11 Cu3(PO4)2-hybrid nanoflowers prepared by(a) papain;(b) laccase and (c)HRP[95]. Copyright 2016, ACS
Fig.12 (a) Adsorption rate curve for Pb(Ⅱ) by different types of hybrid flowers and SEM images before and after Pb(Ⅱ) adsorption;(b)Comparative study of adsorption rate(%) of different heavy metals by SP-hybrid flowers[97].Copyright 2016,ACS.
Fig.13 Effect of pH(A) and reaction temperature(B) on enzyme activity of free lipase and lipase/Zn3(PO4)2 hybrid nanoflowers[105]. Copyright 2016, Elsevier
[1]
Abe S, Maity B, Ueno T. Chem. Commun., 2016, 52(39): 6496.
[2]
Maity B, Fujita K, Ueno T. Curr. Opin. Chem. Biol., 2015, 25: 88.

pmid: 25579455
[3]
Balbirnie M, Grothe R, Eisenberg D S. PNAS, 2001, 98(5): 2375.

pmid: 11226247
[4]
Pelegri-O’day E M, Lin E W, Maynard H D. J. Am. Chem. Soc., 2014, 136(41): 14323.

doi: 10.1021/ja504390x pmid: 25216406
[5]
Lee H, Rho J, Messersmith P B. Adv. Mater., 2009, 21(4): 431.

pmid: 19802352
[6]
Lee B P, Messersmith P B, Israelachvili J N, Waite J H. Annu. Rev. Mater. Res., 2011, 41(1): 99.
[7]
Maier G P, Rapp M V, Waite J H, Israelachvili J N, Butler A. Science, 2015, 349(6248): 628.

doi: 10.1126/science.aab0556 pmid: 26250681
[8]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426.

pmid: 17947576
[9]
Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40(7): 4244.

pmid: 21603689
[10]
El Yakhlifi S, Ball V. Colloids Surf. B: Biointerfaces, 2020, 186: 110719.

pmid: 31846893
[11]
Zhang Q R, Li Y X, Chen H, Zhang S Q, Qiao L L. Journal of Yanshan University, 2018, 42(1): 1.
张庆瑞, 李奕璇, 陈贺, 张帅其, 乔丽丽. 燕山大学学报, 2018, 42(1): 1.
[12]
Chen H, Zhang S Q, Zhao Z X, Liu M, Zhang Q R. Progress in Chemistry, 2019, 31(4): 89.
陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 化学进展, 2019, 31(4): 89.
[13]
Liu Y L, Ai K L, Lu L H. Chem. Rev., 2014, 114(9): 5057.

pmid: 24517847
[14]
He W, Shuai T, Gao M Y, Ou J F. Jiangxi Chemical Industry, 2017,(4): 4.
贺武, 帅韬, 高明阳, 欧军飞. 江西化工, 2017, (4): 4.
[15]
Ball V, Frari D D, Toniazzo V, Ruch D. J. Colloid Interface Sci., 2012, 386(1): 366.

doi: 10.1016/j.jcis.2012.07.030 pmid: 22874639
[16]
Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, de Almeida Gracio J J, Toniazzo V, Ruch D. Langmuir, 2011, 27(6): 2819.

pmid: 21332218
[17]
Ding Y H, Weng L T, Yang M, Yang Z L, Lu X, Huang N, Leng Y. Langmuir, 2014, 30(41): 12258.

pmid: 25262750
[18]
Dreyer D R, Miller D J, Freeman B D, Paul D R, Bielawski C W. Langmuir, 2012, 28(15): 6428.

pmid: 22475082
[19]
Hedlund J, Andersson M, Fant C, Bitton R, Bianco-Peled H, Elwing H, Berglin M. Biomacromolecules, 2009, 10(4): 845.

doi: 10.1021/bm801325j pmid: 19209903
[20]
Cho J H, Shanmuganathan K, Ellison C J. ACS Appl. Mater. Interfaces, 2013, 5(9): 3794.

pmid: 23544666
[21]
Zhang C, Lv Y, Qiu W Z, He A, Xu Z K. ACS Appl. Mater. Interfaces, 2017, 9(16): 14437.

doi: 10.1021/acsami.7b03115 pmid: 28367626
[22]
Tan Y M, Deng W F, Li Y Y, Huang Z, Meng Y, Xie Q J, Ma M, Yao S Z. J. Phys. Chem. B, 2010, 114(15): 5016.

pmid: 20337455
[23]
Clancy C M R, Nofsinger J B, Hanks R K, Simon J D. J. Phys. Chem. B, 2000, 104(33): 7871.
[24]
Chen H F, Zhou Y, Wang J Y, Lu J, Zhou Y B. J. Hazard. Mater., 2020, 389: 121897.

doi: 10.1016/j.jhazmat.2019.121897 pmid: 31874753
[25]
Gholami Derami H, Gupta P, Gupta R, Rathi P, Morrissey J J, Singamaneni S. ACS Appl. Nano Mater., 2020, 3(6): 5437.

doi: 10.1021/acsanm.0c00787
[26]
Cheng W, Zeng X W, Chen H Z, Li Z M, Zeng W F, Mei L, Zhao Y L. ACS Nano, 2019, 13(8): 8537.

doi: 10.1021/acsnano.9b04436 pmid: 31369230
[27]
Li W, Zhou S P, Zou J H, Fang R Y, Jiang T, Bao Y, Shi H X. Journal of Zhejiang University(Science Edition), 2018, 45(5): 569.
李威, 周尚平, 邹骏华, 方荣业, 蒋婷, 鲍玥, 史惠祥. 浙江大学学报(理学版), 2018, 45(5): 569.
[28]
Shao D D, Chen C L, Wang X K. Chem. Eng. J., 2012, 185/186: 144.
[29]
Farnad N, Farhadi K, Voelcker N H. Water Air Soil Pollut., 2012, 223(6): 3535.
[30]
Zhang Q R, Yang Q G, Phanlavong P, Li Y X, Wang Z K, Jiao T F, Peng Q M. ACS Sustainable Chem. Eng., 2017, 5(5): 4161.
[31]
Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q. Chem. Eng. J., 2015, 259: 53.
[32]
Wan Q, Liu M Y, Tian J W, Deng F J, Dai Y F, Wang K, Li Z, Zhang Q S, Zhang X Y, Wei Y. RSC Adv., 2015, 5(48): 38316.
[33]
Vaiano V, Sacco O, Sannino D, Ciambelli P, Longo S, Venditto V, Guerra G. J. Chem. Technol. Biotechnol., 2014, 89(8): 1175.
[34]
Lima C S, Batista K A, García Rodríguez A, Souza J R, Fernandes K F. Sol. Energy, 2015, 114: 105.
[35]
Qin L, Huang D L, Xu P, Zeng G M, Lai C, Fu Y K, Yi H, Li B S, Zhang C, Cheng M, Zhou C Y, Wen X F. J. Colloid Interface Sci., 2019, 534: 357.

pmid: 30243177
[36]
Wang C, Wu Y L, Lu J, Zhao J, Cui J Y, Wu X L, Yan Y S, Huo P W. ACS Appl. Mater. Interfaces, 2017, 9(28): 23687.

pmid: 28656749
[37]
Tang J, Zhang C Y, Chen K Z, Wan J Q. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2016, 37(1): 47.
唐婧, 张冲宇, 陈克正, 万家齐. 青岛科技大学学报(自然科学版), 2016, 37(1): 47.
[38]
Wetzel R, Shivaprasad S, Williams A D. Biochemistry, 2007, 46(1): 1.

doi: 10.1021/bi0620959 pmid: 17198370
[39]
Harrison R S, Sharpe P C, Singh Y, Fairlie D P. Rev. Physio., Biochem. Pharmacol., 2007, 159: 1.
[40]
Chiti F, Dobson C M. Annu. Rev. Biochem., 2006, 75(1): 333.
[41]
Sreenivasan S, Narayan M. ACS Chem. Neurosci., 2019, 10(9): 3911.

doi: 10.1021/acschemneuro.9b00445 pmid: 31456389
[42]
Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y. PNAS, 2006, 103(48): 18119.

doi: 10.1073/pnas.0607180103 pmid: 17108084
[43]
Bolisetty S, Vallooran J J, Adamcik J, Mezzenga R. ACS Nano, 2013, 7(7): 6146.

pmid: 23750744
[44]
van der Hilst J C H, Simon A, Drenth J P H. N. Engl. J. Med., 2003, 349: 1872.

doi: 10.1056/NEJM200311063491920 pmid: 14602890
[45]
Dobson C M. Nature, 2003, 426(6968): 884.

doi: 10.1038/nature02261 pmid: 14685248
[46]
Klunk W E, Debnath M L, Pettegrew J W. Neurobiol. Aging, 1994, 15(6): 691.

doi: 10.1016/0197-4580(94)90050-7 pmid: 7891823
[47]
Jung J M, Savin G, Pouzot M, Schmitt C, Mezzenga R. Biomacromolecules, 2008, 9(9): 2477.

doi: 10.1021/bm800502j pmid: 18698816
[48]
Wei G, Su Z Q, Reynolds N P, Arosio P, Hamley I W, Gazit E, Mezzenga R. Chem. Soc. Rev., 2017, 46(15): 4661.

doi: 10.1039/c6cs00542j pmid: 28530745
[49]
Kontopidis G, Holt C, Sawyer L. J. Dairy Sci., 2004, 87(4): 785.

doi: 10.3168/jds.S0022-0302(04)73222-1 pmid: 15259212
[50]
Bolisetty S, Harnau L, Jung J M, Mezzenga R. Biomacromolecules, 2012, 13(10): 3241.

doi: 10.1021/bm301005w pmid: 22924940
[51]
Papiz M Z, Sawyer L, Eliopoulos E E, North A C T, Findlay J B C, Sivaprasadarao R, Jones T A, Newcomer M E, Kraulis P J. Nature, 1986, 324(6095): 383.

doi: 10.1038/324383a0 pmid: 3785406
[52]
Sawyer L, Brownlow S, Polikarpov I, Wu S Y. Int. Dairy J., 1998, 8(2): 65.
[53]
Uversky V N, Li J, Fink A L. J. Biol. Chem., 2001, 276(14): 10737.

doi: 10.1074/jbc.M010907200 pmid: 11152691
[54]
Roberts C J. Biotechnol. Bioeng., 2007, 98(5): 927.

doi: 10.1002/bit.21627 pmid: 17705294
[55]
MacPhee C E, Dobson C M. J. Mol. Biol., 2000, 297(5): 1203.

doi: 10.1006/jmbi.2000.3600 pmid: 10764584
[56]
Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson C M. PNAS, 1999, 96(7): 3590.

doi: 10.1073/pnas.96.7.3590 pmid: 10097081
[57]
Jordens S, Adamcik J, Amar-Yuli I, Mezzenga R. Biomacromolecules, 2011, 12(1): 187.

doi: 10.1021/bm101119t pmid: 21142059
[58]
Lara C, Adamcik J, Jordens S, Mezzenga R. Biomacromolecules, 2011, 12(5): 1868.

doi: 10.1021/bm200216u pmid: 21466236
[59]
Akkermans C, Venema P, van der Goot A J, Gruppen H, Bakx E J, Boom R M, van der Linden E. Biomacromolecules, 2008, 9(5): 1474.

doi: 10.1021/bm7014224 pmid: 18416530
[60]
Jones O G, Mezzenga R. Soft Matter, 2012, 8(4): 876.
[61]
Hoffmann M A M, van Mil P J J M. J. Agric. Food Chem., 1997, 45(8): 2942.
[62]
Wang Y J, Shen Y T, Qi G Y, Li Y, Sun X S, Qiu D, Li Y H. Int. J. Biol. Macromol., 2020, 149: 609.

pmid: 32006578
[63]
Ye X C, Junel K, Gällstedt M, Langton M, Wei X F, Lendel C, Hedenqvist M S. ACS Sustainable Chem. Eng., 2018, 6(4): 5462.
[64]
Arnaudov L N, de Vries R, Ippel H, van Mierlo C P M. Biomacromolecules, 2003, 4(6): 1614.

pmid: 14606887
[65]
Schokker E P, Singh H, Pinder D N, Creamer L K. Int. Dairy J., 2000, 10(4): 233.
[66]
Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky V N, Fink A L. Biochemistry, 2001, 40(20): 6036.

pmid: 11352739
[67]
Ako K, Nicolai T, Durand D. Biomacromolecules, 2010, 11(4): 864.

doi: 10.1021/bm9011437 pmid: 20297835
[68]
Akkermans C, Venema P, Rogers S S, van der Goot A J, Boom R M, van der Linden E. Food Biophys., 2006, 1(3): 144.
[69]
Liu M, Jia L D, Zhao Z X, Han Y, Li Y X, Peng Q M, Zhang Q R. Chem. Eng. J., 2020, 390: 124667.
[70]
Zhang Q R, Zhang S Q, Zhao Z X, Liu M, Yin X F, Zhou Y P, Wu Y, Peng Q M. J. Clean. Prod., 2020, 255: 120297.
[71]
Nicomel N, Leus K, Folens K, van der Voort P, du Laing G. Int. J. Environ. Res. Public Heal., 2015, 13(1): 62.
[72]
Yang M, Wang J Q, Liu R P, Hu C Z, Liu H J, Qu J H. ACS Sustainable Chem. Eng., 2020, 8(21): 7795.
[73]
Bolisetty S, Mezzenga R. Nat. Nanotechnol., 2016, 11(4): 365.

pmid: 26809058
[74]
Zhang Q R, Bolisetty S, Cao Y P, Handschin S, Adamcik J, Peng Q M, Mezzenga R. Angew. Chem., 2019, 131(18): 6073.
[75]
Bolisetty S, Reinhold N, Zeder C, Orozco M N, Mezzenga R. Chem. Commun., 2017, 53(42): 5714.
[76]
Morshedi D, Mohammadi Z, Akbar Boojar M M, Aliakbari F. Colloids Surfaces B: Biointerfaces, 2013, 112: 245.

doi: 10.1016/j.colsurfb.2013.08.004 pmid: 23999142
[77]
Huang R L, Zhu H X, Su R X, Qi W, He Z M. Environ. Sci. Technol., 2016, 50(20): 11263.

pmid: 27623375
[78]
Bolisetty S, Arcari M, Adamcik J, Mezzenga R. Langmuir, 2015, 31(51): 13867.

doi: 10.1021/acs.langmuir.5b03205 pmid: 26673736
[79]
Feng Y H, Wang H J, Zhang J, Song Y X, Meng M J, Mi J L, Yin H B, Liu L. Biomacromolecules, 2018, 19(7): 2432.

doi: 10.1021/acs.biomac.8b00045 pmid: 29698605
[80]
Ye M D, Liu H Y, Lin C J, Lin Z Q. Small, 2013, 9(2): 312.

pmid: 23047462
[81]
King’ondu C K, Iyer A, Njagi E C, Opembe N, Genuino H, Huang H, Ristau R A, Suib S L. J. Am. Chem. Soc., 2011, 133(12): 4186.

pmid: 21332136
[82]
Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odaba塂ı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, Bryszewska M. Colloids Surfaces B: Biointerfaces, 2019, 182: 110354.

doi: 10.1016/j.colsurfb.2019.110354 pmid: 31325775
[83]
Chen Y, Luo L H, Wu Y F, Cheng L, Shi J J, Shao Y J. China Ceramics, 2013, 49(5): 1.
陈昱, 罗凌虹, 吴也凡, 程亮, 石纪军, 邵由俊. 中国陶瓷, 2013, 49(5): 1.
[84]
Tao T, Glushenkov A M, Liu H W, Liu Z W, Dai X J, Chen H, Ringer S P, Chen Y. J. Phys. Chem. C, 2011, 115(35): 17297.
[85]
Zhang H, Cao G P, Wang Z Y, Yang Y S, Shi Z J, Gu Z N. Nano Lett., 2008, 8(9): 2664.

pmid: 18715042
[86]
Liu Y, Zhang Y M, Li X J, Yuan Q P, Liang H. Chem. Commun., 2017, 53(22): 3216.
[87]
Huang Y Y, Ran X, Lin Y H, Ren J S, Qu X G. Chem. Commun., 2015, 51(21): 4386.
[88]
Talens-Perales D, Fabra M J, Martínez-Argente L, Marín-Navarro J, Polaina J. Int. J. Biol. Macromol., 2020, 151: 602.

pmid: 32061698
[89]
Harford C, Sarkar B. Acc. Chem. Res., 1997, 30(3): 123.

doi: 10.1021/ar9501535
[90]
Querejeta-Fernández A, Hernández-Garrido J C, Yang H X, Zhou Y L, Varela A, Parras M, Calvino-Gámez J J, González-Calbet J M, Green P F, Kotov N A. ACS Nano, 2012, 6(5): 3800.

doi: 10.1021/nn300890s pmid: 22515512
[91]
Xu L G, Ma W, Wang L B, Xu C L, Kuang H, Kotov N A. Chem. Soc. Rev., 2013, 42(7): 3114.

pmid: 23455957
[92]
Lin Z A, Xiao Y, Wang L, Yin Y Q, Zheng J N, Yang H H, Chen G N. RSC Adv., 2014, 4(27): 13888.

doi: 10.1039/C4RA00268G
[93]
Zhang Z P, Shao X Q, Yu H D, Wang Y B, Han M Y. Chem. Mater., 2005, 17(2): 332.

doi: 10.1021/cm048436r
[94]
Ghosh K, Balog E R M, Sista P, Williams D J, Kelly D, Martinez J S, Rocha R C. APL Mater., 2014, 2(2): 021101.

doi: 10.1063/1.4863235
[95]
Li M F, Luo M Y, Li F, Wang W W, Liu K, Liu Q Z, Wang Y D, Lu Z T, Wang D. J. Phys. Chem. C, 2016, 120(31): 17348.

doi: 10.1021/acs.jpcc.6b03537
[96]
Zhang T, Zhou Y M, Wang Y J, Zhang L P, Wang H Y, Wu X. Mater. Lett., 2014, 128: 227.

doi: 10.1016/j.matlet.2014.04.166
[97]
Koley P, Sakurai M, Aono M. ACS Appl. Mater. Interfaces, 2016, 8(3): 2380.

pmid: 26736132
[98]
Zhang B L, Li P T, Zhang H P, Li X J, Tian L, Wang H, Chen X, Ali N, Ali Z, Zhang Q Y. Appl. Surf. Sci., 2016, 366: 328.

doi: 10.1016/j.apsusc.2016.01.074
[99]
Patel S K S, Choi H, Lee J K. ACS Sustainable Chem. Eng., 2019, 7(16): 13633.

doi: 10.1021/acssuschemeng.9b02583
[100]
Li K, Wang J H, He Y J, Abdulrazaq M A, Yan Y J. J. Biotechnol., 2018, 281: 87.

doi: 10.1016/j.jbiotec.2018.06.344 pmid: 29928917
[101]
Zhang Y F, Ge J, Liu Z. ACS Catal., 2015, 5(8): 4503.

doi: 10.1021/acscatal.5b00996
[102]
Ansari S A, Husain Q. Biotechnol. Adv., 2012, 30(3): 512.

pmid: 21963605
[103]
Jia F, Narasimhan B, Mallapragada S. Biotechnol. Bioeng., 2014, 111(2): 209.

doi: 10.1002/bit.25136 pmid: 24142707
[104]
Li Y, Fei X, Liang L W, Tian J, Xu L Q, Wang X Y, Wang Y. J. Mol. Catal. B:Enzym., 2016, 133: 92.

doi: 10.1016/j.molcatb.2016.08.001
[105]
Zhang B L, Li P T, Zhang H P, Wang H, Li X J, Tian L, Ali N, Ali Z, Zhang Q Y. Chem. Eng. J., 2016, 291: 287.

doi: 10.1016/j.cej.2016.01.104
[106]
He G L, Hu W H, Li C M. Colloids Surfaces B: Biointerfaces, 2015, 135: 613.

pmid: 26322475
[107]
He L H, Zhang S, Ji H F, Wang M H, Peng D L, Yan F F, Fang S M, Zhang H Z, Jia C X, Zhang Z H. Biosens. Bioelectron., 2016, 79: 553.

doi: 10.1016/j.bios.2015.12.095 pmid: 26749096
[108]
Altinkaynak C, Yilmaz I, Koksal Z, Özdemir H, Ocsoy I, Özdemir N. Int. J. Biol. Macromol., 2016, 84: 402.

doi: 10.1016/j.ijbiomac.2015.12.018 pmid: 26712698
[109]
Gutierrez H, Portman T, Pershin V, Ringuette M. J. Appl. Microbiol., 2013, 114(3): 680.

doi: 10.1111/jam.12094 pmid: 23228103
[1] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[2] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.
[3] Sun Yue, Zhou Xiaoxin, Lou Zimo, Liu Yu, Fu Ruiqi, Xu Xinhua*. Functionalized Iron-Based Nano-Materials for Removal of Mercury from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(8): 1156-1169.
[4] Xing Liwen, Ma Zhanfang. Non-Enzymatic Electrochemical Sensors Based on Carbon Nanomaterials for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid [J]. Progress in Chemistry, 2016, 28(11): 1705-1711.
[5] Yang Caiyun, Cao Changqian, Cai Yao, Zhang Tongwei, Pan Yongxin. The Surface Modification of Ferritin and Its Applications [J]. Progress in Chemistry, 2016, 28(1): 91-102.
[6] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[7] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[8] Shi Weiqun, Zhao Yuliang, Chai Zhifang. A Preview of Nano-Materials and Nano-Technologies Applied in Advanced Nuclear Energy System [J]. Progress in Chemistry, 2011, 23(7): 1478-1484.
[9] Meng Yali, Li Zhen, Chen Jing, Xia Chungu. Application Studies of Ionic Liquid Based Microemulsions [J]. Progress in Chemistry, 2011, 23(12): 2442-2456.
[10] Zhao Tao1,2 Sun Rong2 Leng Jing2,3 Du Ruxu2,3 Zhang Zhijun1**. Liquid-Phase Synthesis of Ferrimagnetic/Ferromagnetic NanoMaterials [J]. Progress in Chemistry, 2007, 19(11): 1703-1709.
[11] Zhiguang Guo 1,2,Weimin Liu 1**. Progress in Biomimicing of Super-Hydrophobic Surface [J]. Progress in Chemistry, 2006, 18(06): 721-726.
[12] Zhou Defeng, Zhao Yanling, Hao Jie, Ma Yue,Wang Rongshun*. Studies on Nanometer Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2003, 15(06): 445-.
[13] Ge Dongtao,Wang Jixiao*, Wang Shichang. Synthesis of Polypyrrole Nanowires (Nanotubules) [J]. Progress in Chemistry, 2003, 15(06): 456-.