中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1753-1765 DOI: 10.7536/PC200682 Previous Articles   Next Articles

Bio-Inspired ortho-Quinone Catalysis

Ruipu Zhang2,3, Runze Zhang1, Sanzhong Luo1,2,**()   

  1. 1. Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
    2. Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Sanzhong Luo
  • Supported by:
    the National Natural Science Foundation of China(21672217, 21521002)
Richhtml ( 30 ) PDF ( 464 ) Cited
Export

EndNote

Ris

BibTeX

Quinoproteins are an important type of redox enzymes for the oxidative metabolism of alcohols and amines, which employ ortho-quinones as the cofactors. On the basis of catalytic principles and strategies of quino-enzymes, a number of molecular quinone catalysts have been developed during the past two decades. With copper amine oxidases(CuAOs) as a blueprint, small molecular ortho-quinone catalysts have been developed for amine oxidation. These catalysts could mimic the catalytic performance of CuAOs, and expand the substrate scope to α-branched primary amines, secondary amines and tertiary amines. Recent studies have also uncovered a new type of quinoproteins, methanol dehydrogenase(MDH), utilizing rare earth elements as the active metal. In this review, we summarize the major types of quinoproteins, the development of their mimics ortho-quinone catalyst as well as perspective on the future development of bio-inspired ortho-quinone catalysis.

Contents

1 Introduction

2 Quinoprotein

2.1 Alcohol dehydrogenase

2.2 Copper amine oxidase

3 Bio-inspired ortho-quinone catalysis

3.1 Amine oxidation

3.2 Alcohol oxidation

4 Conclusion and outlook

Fig.1 Quinone cofactors in nature
Fig.2 Comparison of active sites of methanol dehydrogenase(left: MxaF-MDH, 1W6S; right: XoxF-MDH, 6DAM)
Scheme 1 Possibile reaction pathway of alcohol dehydrogenation catalyzed by PQQ[8, 15, 25~30]
Fig.3 Active site of copper amine oxidase(PDB: 1IU7)
Scheme 2 Reaction mechanism of copper amine oxidase[35, 36]
Scheme 3 Oxidation of nonactivated primary amines under electrochemical conditions[38]
Scheme 4 Substituents effects of Q1[39]
Scheme 5 Cooperative catalytic system reported by Largeron et al[41]
Scheme 6 Organocatalytic aerobic oxidation of primary amines[42]
Scheme 7 Heterogeneous catalysis combining ortho-quinone catalyst and nanotube[43]
Scheme 8 Aerobic oxidation of α-branched primary amines[44]
Scheme 9 o-Naphthoquinone-catalyzed aerobic oxidation of amines[46]
Scheme 10 Chemoselective oxidative cross-coupling of primary amines[48]
Scheme 11 Aerobic oxidation of amines catalyzed by alloxan[49]
Scheme 12 Cross-coupling of amines catalyzed by a novel ortho-quinone catalyst[50]
Scheme 13 Aerobic deaminative cross-coupling between primary amines and nitroalkanes catalyzed by naphthoquinone[52]
Scheme 14 Cooperative catalytic system of metal nanoclusters and catechol derivatives[53]
Scheme 15 Oxidation of secondary amines and nitrogen heterocycles[54]
Scheme 16 Modified quinone catalyst system for dehydrogenation of tetrahydroquinolines[55]
Scheme 17 o-Naphthoquinone-catalyzed aerobic oxidation of secondary amines[46]
Scheme 18 Cooperative catalyst system reported by Doris and co-workers[56]
Scheme 19 Aerobic oxidation of secondary amines reported by Luo and co-workers[45]
Scheme 20 Aerobic oxidation of tertiary amines reported by Luo and co-workers[45]
Scheme 21 Aerobic oxidation of tertiary amines reported by Stahl and co-workers[57]
Scheme 22 Synthesis of benzimidazole catalyzed byortho-quinone[58]
Scheme 23 Oxidative trimerization of 1-phenylethanamines[44,60]
Scheme 24 Oxidative trimerization of 1-phenylethanamines[44,46]
Scheme 25 Synthesis of nitrogen heterocycles catalyzed by polydopamine[61]
Scheme 26 N-Nitrosation of amine catalyzed by naphthoquinon[52]
Scheme 27 Reaction mechanism of primary amine oxidation
Scheme 28 Reaction mechanism of secondary amine oxidation
Scheme 29 Synthetic model of XoxF-MDHreported by Schelter and co-workers(the two other nitric anions were omitted for clarity)[62]
[1]
Anthony C. Biochem. J ., 1996,320:697.
[2]
Mure M. Acc. Chem. Res., 2004,37:131.
[3]
Hauge J G .. Biol. Chem., 1964,239:3630.
[4]
Largeron M. Org.Biomol. Chem ., 2017,15:4722.
[5]
Zhang R P , Luo S Z. Chin. Chem. Lett., 2018,29:1193.
[6]
Largeron M. Pure Appl . Chem., 2019,92:233.
[7]
Anthony C , Zatman L J. Biochem. J., 1967,104:960.
[8]
Salisbury S A, Forrest H S , Cruse W B T, Kennard O. Nature, 1979,280:843.
[9]
Itoh S, Kawakami H, Fukuzumi S .. Am. Chem. Soc., 1997,119:439.
[10]
Itoh S, Kawakami H, Fukuzumi S . Biochemistry, 1998,37:6562.
[11]
Fukuzumi S, Itoh S, Komori T, Suenobu T, Ishida A, Fujitsuka M, Ito O .. Am. Chem. Soc., 2000,122:8435.
[12]
Rodriguez E J, Bruice T C .. Am. Chem. Soc., 1989,111:7947.
[13]
Bruice T C. Proc. Natl. Acad. Sci. U. S. A., 1997,94:11881.
[14]
Zheng Y J, Xia Z, Chen Z, Mathews F S , Bruice T C. Proc. Natl. Acad. Sci. U. S. A., 2001,98:432.
[15]
Itoh S, Ogino M, Fukui Y, Murao H, Komatsu M, Ohshiro Y, Inoue T, Kai Y, Kasai N .. Am. Chem. Soc., 1993,115:9960.
[16]
Frank J, Krimpen S H , Verwiel P E J, Jongejan J A, Mulder A C, Duine J A. Eur.[J]. Biochem., 1989,184:187.
[17]
Fitriyanto N A, Fushimi M, Matsunaga M, Pertiwiningrum A, Iwama T, Kawai K .. Biosci. Bioeng., 2011,111:613.
[18]
Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K .. Biosci. Bioeng., 2011,111:547.
[19]
Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S, Iwama T, Hayakawa T, Kawai K . PLoS One, 2012,7:e50480.
[20]
Chistoserdova L, Lidstrom M E . Microbiology, 1997,143:1729.
[21]
Pol A, Barends T R, Dietl A, Khadem A F, Eygensteyn J, Jetten M S , Op den Camp H[J]. Environ. Microbiol., 2014,16:255.
[22]
Good N M, Vu H N, Suriano C J, Subuyuj G A, Skovran E , Martinez-Gomez N C.[J]. Bacteriol., 2016,198:3109.
[23]
Huang J, Yu Z, Groom J, Cheng J F, Tarver A, Yoshikuni Y, Chistoserdova L. ISME J ., 2019,13:2005.
[24]
Featherston E R, Rose H R , McBride M J, Taylor E M, Boal A K,Cotruvo J A Jr. ChemBioChem, 2019,20:2360.
[25]
Xia Z X, He Y N, Dai W W, White S A, Boyd G D, Mathews F S . Biochemistry, 1999,38:1214.
[26]
Dekker R H, Duine J A, Frank J, Verwiel P E , Westerling J. Eur. J. Biochem., 1982,125:69.
[27]
Leopoldini M, Russo N , Toscano M. Chem. Eur. J., 2007,13:2109.
[28]
Prejano M, Marino T , Russo N. Chem. Eur. J., 2017,23:8652.
[29]
Zhang X, Reddy S Y , Bruice T C. Proc. Natl. Acad. Sci. U. S. A., 2007,104:745.
[30]
Idupulapati N B, Mainardi D S . J. Phys. Chem. A, 2010,114:1887.
[31]
Oubrie A, Rozeboom H J, Kalk K H, Olsthoorn A J, Duine J A , Dijkstra B W. EMBO J., 1999,18:5187.
[32]
Li J, Gan J H, Mathews F S , Xia Z X. Biochem. Biophys. Res. Commun., 2011,406:621.
[33]
Klinman J P. Chem. Rev., 1996,96:2541.
[34]
Janes S, Mu D, Wemmer D, Smith A, Kaur S, Maltby D, Burlingame A, Klinman J . Science, 1990,248:981.
[35]
Finney J, Moon H J, Ronnebaum T, Lantz M , Mure M. Arch. Biochem. Biophys., 2014,546:19.
[36]
Brazeau B J, Johnson B J , Wilmot C M. Arch. Biochem. Biophys., 2004,428:22.
[37]
Largeron M, Fleury M B .. Org. Chem., 2000,65:8874.
[38]
Largeron M, Neudorffer A , Fleury M B. Angew. Chem. Int. Ed., 2003,42:1026.
[39]
Largeron M, Chiaroni A , Fleury M B. Chem. Eur. J., 2008,14:996.
[40]
Largeron M , Fleury M B. Org. Lett., 2009,11:883.
[41]
Largeron M , Fleury M B. Angew. Chem. Int. Ed., 2012,51:5409.
[42]
Wendlandt A E , Stahl S S. Org. Lett., 2012,14:2850.
[43]
Jawale D V, Gravel E, Villemin E, Shah N, Geertsen V, Namboothiri I N, Doris E. . Chem. Commun., 2014,50:15251.
[44]
Qin Y, Zhang L, Lv J, Luo S , Cheng J P. Org. Lett., 2015,17:1469.
[45]
Zhang R, Qin Y, Zhang L, Luo S .. Org. Chem., 2019,84:2542.
[46]
Goriya Y, Kim H Y, Oh K. Org. Lett ., 2016,18:5174.
[47]
Golime G, Bogonda G, Kim H Y, Oh K. ACS Catal ., 2018,8:4986.
[48]
Largeron M , Fleury M B. Chem. Eur. J., 2015,21:3815.
[49]
Murray A T, King R , Donnelly J V G, Dowley M J H, Tuna F, Sells D, John M P, Carbery D R. ChemCatChem, 2016,8:510.
[50]
Largeron M , Fleury M B. Chem. Eur. J., 2017,23:6763.
[51]
Largeron M, Deschamps P, Hammad K , Fleury M B. Green Chem., 2020,22:1894.
[52]
Si T, Kim H Y, Oh K. ACS Catal ., 2019,9:9216.
[53]
Yuan H, Yoo W J, Miyamura H, Kobayashi S .. Am. Chem. Soc., 2012,134:13970.
[54]
Wendlandt A E, Stahl S S .. Am. Chem. Soc., 2014,136:506.
[55]
Wendlandt A E, Stahl S S .. Am. Chem. Soc., 2014,136:11910.
[56]
Jawale D V, Gravel E, Shah N, Dauvois V, Li H, Namboothiri I N , Doris E. Chem. Eur. J., 2015,21:7039.
[57]
Li B, Wendlandt A E, Stahl S S, Org. Lett ., 2019,21:1176.
[58]
Nguyen K M , Largeron M. Chem. Eur. J., 2015,21:12606.
[59]
Nguyen K M H, Largeron M . Eur.[J]. Org. Chem., 2016,2016:1025.
[60]
Zhang R, Qin Y, Zhang L, Luo S. Org. Lett ., 2017,19:5629.
[61]
Pawar S A, Chand A N , Kumar A V. ACS Sustain. Chem. Eng., 2019,7:8274.
[62]
McSkimming A, Cheisson T, Carroll P J, Schelter E J . . Am. Chem. Soc., 2018,140:1223.
[63]
Zuilhof H, Gahtory D, Sen R, Kuzmyn A R , Escorihuela J. Angew. Chem. Int. Ed., 2018,57:10118.
[64]
Oliveira B L, Guo Z , Bernardes G J L. Chem. Soc. Rev., 2017,46:4895.
[1] Zhang Yuqi, Yu Jicheng, Shen Qundong, Gu Zhen. Glucose-Responsive Synthetic Closed-Loop Insulin Delivery Systems [J]. Progress in Chemistry, 2015, 27(1): 11-26.
[2] Wang Yun, Huang Haibo, Chu Guang, Xu Yan*. Bio-Inspired Functional Integration by Self-Assembly and Mineralization of Polysaccharides [J]. Progress in Chemistry, 2013, 25(04): 589-610.
[3] Liu Juan, Yang Qinglin*, Xu Jingjing, Liu Kesong*, Guo Lin, Jiang Lei. Adhesive Materials Inspired by Gecko and Mussel [J]. Progress in Chemistry, 2012, (10): 1946-1954.
[4] . Bio-inspired Mineralization Process in Gel Media [J]. Progress in Chemistry, 2010, 22(11): 2224-2231.
[5] Zhang Tengyun 1,2** Fang Hongbo1 Zhong Li2. Aerobic Oxidation of Alcohols in Supercritical CO2 [J]. Progress in Chemistry, 2008, 20(09): 1270-1275.
[6] Cai Guobin|Guo Xiaohui|Yu Shuhong**. Polymer Controlled Biomimetic Mineralization [J]. Progress in Chemistry, 2008, 20(0708): 1001-1014.
Viewed
Full text


Abstract

Bio-Inspired ortho-Quinone Catalysis