中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1804-1823 DOI: 10.7536/PC200608 Previous Articles   Next Articles

Photo-/Electro-Driven Carbohydrate-Based Reactions

Hanyu Zhang1, Meng Liu1, Xia Wu1, Miao Liu1, Decai Xiong1,**(), Xinshan Ye1,**()   

  1. 1. State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Contact: Decai Xiong, Xinshan Ye
  • Supported by:
    the National Key Research and Development Program of China(2018YFA0507602); the National Natural Science Foundation of China(21738001); and the National New Drug Innovation Major Project of China(2019ZX09301106)
Richhtml ( 44 ) PDF ( 972 ) Cited
Export

EndNote

Ris

BibTeX

Carbohydrates are the most abundant organic compounds in nature, which play essential roles in the fields of medicine, materials, energy and environment. Due to the specific characteristic of high polarity, sophisticated structure and microheterogeneity, it is particularly difficult to separate, purify and synthesize carbohydrates. At present, the acquirement of carbohydrate compounds with homogeneous and diverse structures and in high purity mainly depends on chemical synthesis. However, the effective synthesis of carbohydrates has become a bottleneck of restricting the progress of glycoscience. The development of new methods and strategies for the synthesis of carbohydrates is the core topic in carbohydrate chemistry. The reaction driven by photon/electron energy usually takes place under mild conditions, which meets the requirements of green chemistry and sustainable development, and is also one of the research frontiers in modern organic synthesis. Nowadays, with the development of photo-/electro-synthetic technology, many achievements have been made in carbohydrate-based reactions driven by photon/electron energy. In view of reaction type, mechanism and status, this review will systematically summarize the latest advances on photo-/electro-driven reactions in the synthesis of carbohydrates. This review will also analyze the current challenges and new opportunities of carbohydrate-based reactions driven by photon/electron energy.

Contents

1 Introduction

2 Photo-/electro-driven glycosylation

2.1 Thioglycosides as the donors

2.2 Selenoglycosides as the donors

2.3 Telluroglycosides as the donors

2.4 O-glycosides as the donors

2.5 Glycosyl trichloroacetimidates as the donors

2.6 Glycosyl halides as the donors

2.7 Glycals as the donors

3 Photo-driven modifications of carbohydrates

3.1 Photo-driven reductive defunctionalization

3.2 Photo-driven halogenation

3.3 Photo-driven functionalization on the anomeric O-/S-atoms

3.4 Photo-driven decarboxylation

3.5 Photo-driven isomerization

4 Conclusion and outlook

Fig.1 Electro-glycosylation based on phenyl thioglycosides[20, 21]
Fig.2 Electro-glycosylation based on ethyl thioglycosides[22]
Fig.3 NBS- or Br2-catalyzed electro-N-glycosylation[23]
Fig.4 Electro-glycosylation using a catalytic amount of sodium trifluoromethanesulfonate as the supporting electrolyte[24]
Fig.5 Cation-pool or intermediate based electroglycosylation[25, 26]
Fig.6 Electro-glycosylation-Fmoc deprotection based one-pot oligosaccharide synthesis[27]
Fig.7 Automated solution-phase synthesis of oligosaccharides via electro-glycosylation [28]
Fig.8 Automated synthesis of other oligosaccharides via electro-glycosylation[35,36,37]
Fig.9 UV-induced thioglycoside activation and O-glycosylation[38]
Fig.10 UV-induced unprotected 2-deoxythioglycoside activation and glycosylation[39]
Fig.11 Visible light mediated PMP-thioglycoside activation and O-glycosylation[40]
Fig.12 UV-induced C—S bond cleavage of thioglycosides and glycosylation[41]
Fig.13 Light-driven rapid glycosylation[42]
Fig.14 Visible-light induced sialylation[45]
Fig.15 Visible-light promoted O-glycosylation without photocatalyst [46]
Fig.16 Visible light enables aerobic iodine catalyzed glycosylation[47]
Fig.17 UV light-induced glycosylation using TPT as photosensitizer [50]
Fig.18 UV-induced glycosylation using N-methylquinoliniumhexafluorophosphate as photosensitizer[51]
Fig.19 Visible light induced selenoglycosides activation and glycosylation[52]
Fig.20 Selenoglycoside-based electro-glycosylation[53]
Fig.21 Telluroglycoside-based light-glycosylation[54]
Fig.22 Telluroglycoside-based electro-glycosylation[55]
Fig.23 Phenolic glycoside-based electro-glycosylation[56]
Fig.24 Novel nucleophilic substitution reaction by radical cation intermediates[57]
Fig.25 Blue light photocatalytic glycosylation without electrophilic additives[59]
Fig.26 Photo-induced glycosylation using 2-naphthol as organophotoacid[62]
Fig.27 Photoinduced glycosylation using aryl thiourea as organo-photoacid[63]
Fig.28 Photo-glycosylation using diaryldisulfide as organo-Lewis photoacid[64]
Fig.29 Photo-glycosylation using Eosin Y as organo photoacid[65]
Fig.30 Glycosyl halide-based photo-C-glycosylation[66]
Fig.31 Glycosyl halide-based photo-O-glycosylation[69]
Fig.32 Glycal-based photo-O-glycosylation[75]
Fig.33 Photo-glycosylation starting from glycals[76]
Fig.34 Glycal-based electro-glycosylation[77]
Fig.35 Visible light-mediated reductive deiodination[78]
Fig.36 UV-mediated reductive desulfurization [79]
Fig.37 Visible light-mediated synthesis of glycosyl bromides[81]
Fig.38 Visible light-mediated trifluoromethylation of glycals[83]
Fig.39 Visible light-mediated synthesis of thioglycosides[87, 88]
Fig.40 Visible light-mediated preparation of thioglycosides[89]
Fig.41 Visible light-mediated synthesis of phenolic glycosides[90]
Fig.42 Visible light-mediated synthesis of glycoaminoacids[91]
Fig.43
[1]
Cai M S , Li Z J. Carbohydrate Chemistry, Beijing: Chemical Industry Press, 2007.
[2]
Wang, H, Wu P, R, Zhao, X, Zeng, J , Wan Q. Acta Chim. Sinica., 2019,77: 231.
[3]
Boons G, J , Guo Z. Carbohydrate-Based Vaccines and Immunotherapies, Wiley, Hoboken, NJ, 2009.
[4]
Wang H, Y, Blaszczyk S, A, Xiao, G , Tang W. Chem. Soc.Rev., 2018,47: 681.
[5]
叶辉(Ye H) , 肖聪(Xiao C), 陆良秋(Lu L Q).有机化学(Chin. J. Org. Chem.), 2018, 38: 1897.
[6]
Zeng, J, Xu, Y, Wang, H , Meng, L, Wan Q. Sci. China Chem., 2017,60: 1162.
[7]
陈朗秋(Chen L Q) , 赖端(Lai D), 宋志伟(Song Z W), 赵兴俄(Zhao X E), 孔繁祚(Kong F Z).有机化学(Chin. J. Org. Chem.), 2006, 26: 627.
[8]
王咏诗(Wang Y S) , 叶新山(Ye X S).中国科学(Sci. Sin. Chim.), 2018, 48: 1307.
[9]
Mazmanian S, K , Kasper D L. Nat. Rev. Immunol., 2006,6: 849.
[10]
Peri F. Chem Soc, Rev. , 2013,42: 4543.
[11]
Yan, M, Kawamata, Y , Baran P S. Chem. Rev., 2017,117: 13230.
[12]
Yoshida, J, Kataoka, K, Horcajada, R , Nagaki A. Chem. Rev., 2008,108: 2265.
[13]
Manmode, S, Matsumoto, K, Nokami, T , Itoh T. Asian J. Org. Chem., 2018,7: 1719.
[14]
Sangwan, R , Mandal P K. RSC Adv., 2017,7: 26256.
[15]
Hilt G. Chem., ElectroChem. , 2020,7: 395.
[16]
Park, K, Pintauro P, N, Baizer M, M , Nobe K. J. Electrochem. Soc., 1985,132: 1850.
[17]
Yu J, C, Baizer M, M , Nobe K. J. Electrochem. Soc., 1988,135: 1400.
[18]
Zehavi, U, Ami, B , Patchornik A. J. Org. Chem., 1972,37: 2281.
[19]
Lian, G, Zhang, X , Yu B. Carbohydr. Res., 2015,403: 13.
[20]
Amatore, C, Jutand, A, Mallet J, M, Meyer, G , Sinaÿ P. J. Chem. Soc. Chem. Commun., 1990,1: 718.
[21]
Balavoine, G, Gref, A, Fischer J, C , Lubineau A. Tetrahedron Lett., 1990,31: 5761.
[22]
Mallet J, M, Meyer, G, Yvelin, F, Jutand, A, Amatore, A , Sinaÿ P. Carbohydr. Res., 1993,244: 237.
[23]
Nokami, J, Osafune, M, Ito, Y, Miyake, F, Sumida, S , Torii S. Chem. Lett., 1999,28: 1053.
[24]
Tanaka, N, Ohnishi, F, Uchihata, D, Torii, S , Nokami J. Tetrahedron Lett., 2007,48: 7383.
[25]
Suzuki, S, Matsumoto, K, Kawamura, K, Suga, S , Yoshida J. Org. Lett., 2004,6: 3755.
[26]
Mitsudo, K, Kawaguchi, T, Miyahara, S, Matsuda, W, Kuroboshi, M , Tanaka H. Org. Lett., 2005,7: 4649.
[27]
Nokami, T, Tsuyama, H, Shibuya, A, Nakatsutsumi, A , Yoshida J. Chem. Lett., 2008,37: 942.
[28]
Nokami, T, Hayashi, R, Saigusa, Y, Shimizu, A, Liu C, Y, Mong K, K , Yoshida J. Org. Lett., 2013,15: 4520.
[29]
Rai, R, McAlexander, I , Chang C W. Org. Prep. Proced. Int., 2005,37: 337.
[30]
Magnet, S , Blanchard J. S. Chem. Rev., 2005,105: 477.
[31]
Herzner, H, Reipen, T, Schultz, M , Kunz H. Chem. Rev., 2000,100: 4495.
[32]
Dwek R A. Chem., Rev. , 1996,96: 683.
[33]
Hauser F, M , Ellenberger S R. Chem. Rev., 1986,86: 35.
[34]
Usuki, H, Nitoda, T, Ichikawa, M, Yamaji, N, Iwashita, T, Komura, H , Kanzaki H. J. Am. Chem. Soc., 2008,130: 4146.
[35]
Nokami, T, Isoda, Y, Sasaki, N, Takaiso, A, Hayase, S, Itoh, T, Hayashi, R, Shimizu, A , Yoshida J. Org. Lett., 2015,17: 1525.
[36]
Isoda, Y, Sasaki, N, Kitamura, K, Takahashi, S, Manmode, S, Takeda- Okuda, N, Tamura, J, Nokami, T , Itoh T. Beilstein J. Org. Chem., 2017,13: 919.
[37]
Manmode, S, Sato, T, Sasaki, N, Notsu, I, Hayase, S, Nokami, T , Itoh T. Carbohydr. Res., 2017,450: 44.
[38]
Griffin G, W, Bandara N, C, Clarke M, A, Tsang W, S, Garegg P, J, Oscarson, S , Silwanis B A. Heterocycles, 1990,30: 939.
[39]
Nakanishi, M, Takahashi, D , Toshima K. Org. Biomol. Chem., 2013,11: 5079.
[40]
Wever W, J, Cinelli M, A , Bowers A A. Org. Lett., 2013,15: 30.
[41]
Mao R, Z, Guo, F, Xiong D, C, Li, Q, Duan, J , Ye X S. Org. Lett., 2015,17: 5606.
[42]
Mao R, Z, Xiong D, C, Guo, F, Li, Q, Duan, J , Ye X S. Org. Chem. Front., 2016,3: 737.
[43]
Li B, H, Yao W, L, Yang, H, Wu C, Y, Xiong D, C, Yin Y, X , Ye X S. Org. Chem. Front., 2020,7: 1255.
[44]
MaoR, Z, Sun, L, Wang Y, S, Zhou M, M, Xiong D, C, Li, Q , Ye X S. Chin. Chem. Lett., 2018,29: 61.
[45]
Yu, Y, Xiong D, C, Mao R, Z , Ye X S. J. Org. Chem., 2016,8: 7134.
[46]
Sheffield, W, Kumar, R , Ragains J R. Angew. Chem. Int. Ed., 2016,55: 6515.
[47]
Krumb, M, Lucas, T , Opatz T. Eur. J. Org. Chem., 2019,1: 4517.
[48]
Ferrier R, J, Hay R, W , Vethaviyasar N. Carbohydr. Res., 1973,27: 55.
[49]
Cod e J D , C, Litjens R E J, N, van den Bos L, J, Overkleeft H, S , van der Marel G A. Chem. Soc. Rev., 2005,34: 769.
[50]
Furuta, T, Takeuchi, K , Iwamura M. Chem. Commun., 1996,1: 147.
[51]
Cumpstey, I , Crich D J. Carbohydr. Chem., 2011,30: 469.
[52]
Spell, M, Wang, X, Wahba A, E, Conner, E , Ragains J. Carbohydr. Res., 2013,369: 42.
[53]
France R, R, Compton R, G, Davis B, G, Fairbanks A, J, Rees N, V , Wadhawan J D. Org. Biomol. Chem., 2004,2: 2195.
[54]
Yamago, S, Miyazoe, H , Yoshida J. Tetrahedron Lett., 1999,40: 2339.
[55]
Yamago, S, Kokubo, K, Hara, O, Masuda, S , Yoshida J. J. Org. Chem., 2002,67: 8584.
[56]
Noyori, R , Kurimoto I. J. Org. Chem., 1986,51: 4320.
[57]
Hashimoto, S, Kurimoto, I, Fujii, Y , Noyori R. J. Am. Chem. Soc., 1985,107: 1427.
[58]
Zhu, Q, Gentry E, C , Knowles R R. Angew. Chem. Int. Ed., 2016,55: 9969.
[59]
Wen, P , Crich D. Org. Lett., 2017,19: 2402.
[60]
Schmidt R, R , Michel J. Angew Chem. Int. Ed., 1980,19: 731.
[61]
Schmidt R R. Angew Chem. Int., Ed. , 1986,25: 212.
[62]
Iwata, R, Uda, K, Takahashi, D , Toshima K. Chem. Commun., 2014,50: 10695.
[63]
Kimura, T, Eto, T, Takahashi, D , Toshima K. Org. Lett., 2016,18: 3190.
[64]
Iibuchi, N, Eto, T, Aoyagi, M, Kurinami, R, Sakai, H, Hasobe, T, Takahashi, D , Toshima K. Org. Biomol. Chem., 2020,18: 851.
[65]
Liu, J, Yin, S, Wang H, M, Li H, F , Ni G H. Carbohydr. Res., 2020,490: 107963.
[66]
Andrews R, S, Becker J, J , Gagn M R. Angew. Chem. Int. Ed. , 2010,49: 7274.
[67]
Andrews R, S, Becker J, J , Gagn M R. Angew. Chem. Int. Ed. , 2012,51: 4140.
[68]
Zhao, W, Wurz P, R, Peters C, J , Fu C J.J. Am. Chem. Soc., 2017,139: 12153.
[69]
Yu, F, Dickson L, J, Loka S, R, Xu H, F, Schaugaard N, R, Schlegel B, H, Luo, L , Nguyen M H. ACS Catal., 2020,10: 5990.
[70]
Daniel P, T, Koert, U , Schuppan J. Angew. Chem. Int. Ed., 2006,45: 872.
[71]
Balmond E, I, Coe D, M, Galan M, C , McGarrigle E M.Angew. Chem. Int. Ed., 2012,51: 9152.
[72]
Balmond E, I, Beni-to-Alifonso, D, Coe D, M, Alder R, W, McGarrigle E, M, Galan M C. Angew., Chem. , Int. Ed., 2014,53: 8190.
[73]
Sau, A, Williams, R, Palo-Nieto, C, Franconetti, A, Medina, S , Galan M C. Angew. Chem. Int. Ed., 2017,129: 3694.
[74]
Palo-Nieto, C, Sau, A , Galan M C. J. Am. Chem. Soc., 2017,139: 14041.
[75]
Rasool, F, Bhat A, H, Hussain, N , Mukherjee D. ChemistrySelect, 2016,1: 6553.
[76]
Zhao, G, Wang T. Angew., Chem. , Int. Ed., 2018,57: 6120.
[77]
Liu, M , Liu K M, Xiong D C, Zhang H Y, Li T, Li B H, Qin X J, Bai J H, Ye X S. Angew. Chem., Int. Ed., 2020. DOI: 10.1002/anie.202006115.
[78]
Wang, H, Tao, J, Cai, X, Chen, W, Zhao, Y, Xu, Y, Yao, W, Zeng, J , Wan Q. Chem.-Eur. J., 2014,20: 17319.
[79]
Ge J, T, Zhou, L , Dong H. Org. Lett., 2019,21: 5903.
[80]
Kaeothip, S, Yasomanee P, J , Demchenko V A. J. Org. Chem., 2012,77: 291.
[81]
Yuan X, L, Cheng, S, Shi Y, B , Xue W H. Synthesis., 2014,46: 331.
[82]
Furuya, T, Kamlet A, S , Ritter T. Nature, 2011,473: 470.
[83]
Wang, B, Xiong D, C , Ye X S. Org. Lett., 2015,17: 5698.
[84]
Tyson E, L, Ament M, S , Yoon T P. J. Org. Chem., 2013,78: 2046.
[85]
Tyson E, L, Niemeyer Z, L , Yoon T P. J. Org. Chem., 2014,79: 1427.
[86]
Keylor M, H, Park J, E, Wallentin C, J , Stephenson C R. J. Tetrahedron., 2014,70: 4264.
[87]
Zhao, G, Kaur, S , Wang T. Org. Lett., 2017,19: 3291.
[88]
Kaur, S, Zhao, G , Wang T. Org. Biomol. Chem., 2019,17: 1955.
[89]
Zhu M, X, Dagousset, G, Alami, M, Magnier, E , Messaoudi S.Org. Lett., 2019,21: 5132.
[90]
Ye, H, Xiao, C, Zhou Q, Q, Wang P, G , Xiao W J. J. Org. Chem., 2018,83: 13325.
[91]
Ji, P, Zhang Y, T, Wei Y, Y, Huang, H, Hu W, B, Mariano A, P , Wang W. Org. Lett., 2019,21: 3086.
[92]
Wang, Y, Carder H, M , Wendlandt A E. Nature, 2020,20: 403.
[93]
Wu, Y , Ye X S. Acta. Chim. Sinica, 2019,77: 581.
[94]
Wu, Y, Xiong D, C, Chen S, C, Wang Y, S , Ye X S. Nat. Commun., 2017,8: 14851.
[1] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[2] Wenjie Liu, Kaihui Liu, Yanwei Zhang, Liang Wang, Mengyi Zhang, Jing Li. The Mechanism of Glycosylation in SARS-CoV-2 Infection and Application in Drug Development [J]. Progress in Chemistry, 2021, 33(4): 524-532.
[3] Axin Liang, Bo Tang, Liquan Sun, Xin Zhang, Huipeng Hou, Aiqin Luo. New Materials for the Separation and Enrichment of N-Glycopeptides/Glycoproteins [J]. Progress in Chemistry, 2019, 31(7): 996-1006.
[4] Wang Kerang. Chiral Supramolecular Assemblies Based on Aromatic Molecules-Carbohydrate Conjugates and Their Applications [J]. Progress in Chemistry, 2015, 27(6): 775-784.
[5] Xiong Yuting, Li Minmin, Xiong Peng, Yang Meng, Qing Guangyan, Sun Taolei. Artificial Carbohydrate Receptors in Aqueous Media [J]. Progress in Chemistry, 2014, 26(01): 48-60.
[6] Cai Xiaohui, Shi Lin, Liu Xingfen*, Huang Yanqin, Fan Quli, Huang Wei*. Functionalized Conjugated Polymers and Their Application in the Biological and/or Chemical Analysis [J]. Progress in Chemistry, 2013, 25(06): 975-989.
[7] Chen Hongzhang, Peng Xiaowei. Steam Explosion Technology Applied to High-Value Utilization of Herb Medicine Resources [J]. Progress in Chemistry, 2012, (9): 1857-1864.
[8] Guo Jiaxiao, Hou Xin. Recent Advances of Carbohydrate Microarrays [J]. Progress in Chemistry, 2011, 23(8): 1719-1727.
[9] Hu Suqin, Zhang Xiaodong, Xu Min, Sun Li. Application of Ionic Liquids in Biomass Utilization [J]. Progress in Chemistry, 2011, 23(4): 731-738.
[10] Shi Yugang, Cai Yan, Li Jianrong, Chu Yenho. Enzyme-Catalyzed Regioselective Synthesis of Carbohydrate Fatty Acid Esters in Ionic Liquids [J]. Progress in Chemistry, 2011, 23(11): 2247-2257.
[11] Wang Sheng, Zou Xia, Zhang Yan. Recent Advances in Mass Spectrometry Based Analysis of Protein O-glycosylation [J]. Progress in Chemistry, 2010, 22(12): 2428-2435.
[12] Li Yan, Wei Zuojun, Chen Chuanjie, Liu Yingxin. Preparation of 5-hydroxymethylfurfural by Dehydration of Carbohydrates [J]. Progress in Chemistry, 2010, 22(08): 1603-1609.
[13] Wang Hongmin Zhang Ping Huang Linjuan Wang Zhongfu. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry(MALDI) Application in Carbohydrates Analysis [J]. Progress in Chemistry, 2009, 21(6): 1335-1343.
[14] . Immobilization Strategies for Carbohydrate Microarrays [J]. Progress in Chemistry, 2009, 21(04): 747-754.
[15]

Wang Yadan, Wang Fei, Miao Zhiwei**, Chen Ruyu**

. Chiral Phosphorus Ligands Derived from Carbohydrate Scaffolds for Asymmetric Catalysis [J]. Progress in Chemistry, 2008, 20(12): 1923-1932.