中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1766-1803 DOI: 10.7536/PC200607 Previous Articles   Next Articles

Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis

Huina Zou1, Shoufei Zhu1,**()   

  1. 1. State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Contact: Shoufei Zhu
  • Supported by:
    the National Natural Science Foundation of China(21625204,21971119); the “111” Project of the Ministry of Education of China,(B06005); the National Program for Special Support of Eminent Professionals.()
Richhtml ( 67 ) PDF ( 1897 ) Cited
Export

EndNote

Ris

BibTeX

1,10-Phenanthroline and its derivatives, classic bidentate N-donor ligands, can form stable complexes with a variety of transition metals and have been widely used as catalysts in various organic reactions. Ferritic elements(iron, cobalt, nickel) have the advantages of high natural abundance, low cost, low toxicity and unique catalytic performance. The complexes of 1,10-phenanthroline type ligands and ferritic elements are ideal alternative catalysts. In recent years, 1,10-phenanthroline type ligands have been widely used in Fe/Co/Ni-catalyzed organic reactions,especially in cross-coupling reactions, addition reactions,and redox reactions,showing unique ligand effects. More and more studies revealed that the rigid aromatic structure of 1,10-phenanthroline plays an important role in improving the stability of the catalyst, and the substituents of 1,10-phenanthroline have a significant impact on the activity and selectivity of corresponding catalyst. More interestingly, a few recent studies disclosed that 1,10-phenanthroline ligands might change the spin state and three-dimensional electronic structure of the Fe/Co/Ni catalysts, which accounts for their unique reactivity as well as selectivity.Although with the above-mentioned progresses, there are still several important challenges in this field, including the poor structural diversity of 1,10-phenanthroline type ligands and poor understanding of the electron effect of 1,10-phenanthroline ligands to corresponding metal catalysts.In this review, we summarized the applications of 1,10-phenanthroline ligands in Fe/Co/Ni-catalyzed organic reactions, and gave an outlook of this promising field.

Contents

1 Introduction

2 Application of 1,10-phenanthroline type ligands in Fe-catalyzed reactions

2.1 Coupling reactions

2.2 Oxidation reactions

2.3 Reduction reactions

2.4 Addition reactions

2.5 Other reactions

3 Application of 1,10-phenanthroline type ligands in Co-catalyzed reactions

3.1 Addition reactions

3.2 Cycloaddition reactions

3.3 C—H functionalization reactions

3.4 Carboxylation reactions

3.5 Coupling reactions

3.6 Other reactions

4 Application of 1,10-phenanthroline type ligands in Ni-catalyzed reactions

4.1 Cross-coupling reactions

4.2 Reductive coupling reactions

4.3 Oxidation reactions

4.4 Hydrogen-borrowing reactions

4.5 Decarboxylative coupling reactions

4.6 Addition reactions

4.7 Oxidative reactions

5 Conclusion and outlook

Fig.1 1,10-Phenanthroline
Fig.2 1,10-Phenanthroline ligands used in ferritic elements catalysis
Scheme 1 (A) Direct arylation through directed C—H bond activation[32];(B) Oxidative [2 + 2 + 2] annulation of Grignard reagents with alkynes[33]
Scheme 2 (A) Direct arylation through an aryl radical transfer pathway[34];(B) Direct arylation of unactivated arenes[35];(C) Oxidative coupling of arylboronic acids with benzene derivatives[36];(D) Proposed mechanism of(C)[36]
Scheme 3 Cross dehydrogenative coupling of α-substituted β-ketoesters with phenols[37]
Scheme 4 Cross-coupling hydrogen evolution reactions of alcohols with P(O)-H compounds[38]
Scheme 5 Arylation of α-aryl-α-diazoesters[39]
Scheme 6 (A) Synthesis of pyrimidines by multicomponent dehydrogenative coupling[40];(B) Proposed mechanism[40]
Scheme 7 Regioselective α-C—H alkylation of N-methylanilines[41]
Scheme 8 Silylation of(hetero)aryl chlorides with Et3SiBpin[42]
Scheme 9 Asymmetric epoxidation of β,β-disubstituted enones[43]
Scheme 10 Dehydrogenation of secondary benzylic alcohols[44]
Scheme 11 (A) Reduction of aromatic and aliphatic primary amides[45];(B) Proposed mechanism[45]
Scheme 12 Photocatalytic CO2reduction[46]
Scheme 13 (A) Reductive cyclization of o-nitrostyrenes[47];(B) Proposed mechanism[47]
Scheme 14 (A) Intramolecular amino-hydroxylation of olefins[48];(B) Intermolecular amino-oxygenation of olefins[49];(C) Intramolecular amino-chlorination of olefins[50]
Scheme 15 Hydrogenation of styrene[51]
Scheme 16 (A) Cyanotri?ation of alkynes[52];(B) Proposed mechanism[52]
Scheme 17 Intermolecular hydrothiolation of internal alkynes with thiosalicylic acids and sequential intramolecular cyclization reaction[53]
Scheme 18 (A) Highly regioselective alkene hydrosilylation[54];(B) Proposed mechanism[54]
Scheme 19 (A) Dihydrosilylation of terminal alkynes[55];(B) Proposed mechanism of the second hydrosilylation[55]
Scheme 20 (A) Electronically mismatched cycloaddition reactions[56];(B) Proposed mechanism[56]
Scheme 21 Modular pyrimidine synthesis of saturated carbonyl compounds with amidines[57]
Scheme 22 Reductive cyclization reaction of 1,6-enynes[58];(B) Proposed mechanism[58]
Scheme 23 Direct synthesis of NH sulfoximines from sulfoxides[59]
Scheme 24 (A) Cyclization-fragmentation of N-vinyl-α,β-unsaturated ketonitrones[60];(B) Proposed mechanism[60]
Scheme 25 Decarboxylative olefination cycloalkyl silyl peroxide with α,β-unsaturated carboxylic acids[61];(B) Proposed mechanism[61]
Scheme 26 (A) E-selective cross-dimerization of terminal alkynes[62];(B) Proposed mechanism[62]
Scheme 27 [3 + 2] annulation of o-haloaryl imines with alkenes andalkynes[63]
Scheme 28 Regioselective syntheses of indeno[2,1-c]pyridines from nitriles and diynes[64]
Scheme 29 Cycloisomerization of N,N-diallylanilines[65]
Scheme 30 (A) Cyclization/hydroboration of 1,6-diynes with pinacolborane[66];(B) Proposed mechanism[66]
Scheme 31 Monoselective ortho alkylation of aromatic imines[67]
Scheme 32 Monoselective ortho ethylation of aromatic carboxamides with organoaluminum reagent[68]
Scheme 33 (A) Carboxylation of propargyl acetates[69];(B) Carboxylation of alkenyl and sterically hindered aryl tri?ates[70]
Scheme 34 Homocoupling of terminal alkynes: synthesis of 1,3-diynes[71]
Scheme 35 (A) Synthesis of biarylketones from organoboronic acids and aldehydes[72];(B) Proposed mechanism[72]
Scheme 36 Direct alkylation of 5-aryloxazoles and benzothiazoles with N-tosylhydrazones bearing unactivated alkyl groups[73]
Scheme 37 (A) Cross-coupling of organozinc halides with bromoalkynes[74];(B) Three-component coupling of mixed aromatic organozinc species, carbonyl compounds and michael acceptors[75]
Scheme 38 Negishi-type cross-coupling of alkylzinc reagents with alkyl iodides[76]
Scheme 39 (A) Alkoxycarbonylation of aliphatic amines[77];(B) Proposed mechanism[77]
Scheme 40 Synthesis of quinazolin-4(3H)-ones[78]
Scheme 41 Preparation of arylindium reagents from aryl and heteroaryl bromides[79]
Scheme 42 Amination of aryl chlorides[80];(B) Amination of aryl and heteroaryl chlorides[81]
Scheme 43 C-alkylation of nitroalkanes with unactivated alkyl iodides[82]
Scheme 44 (A) Direct arylation of azoles with aryl bromides[83];(B) Proposed mechanism[83]
Scheme 45 (A) C—H bond alkynylation of heteroarenes[84];(B) Proposed mechanism[84]
Scheme 46 Direct alkylation of benzoxazoles with N-tosylhydrazones bearing unactivated alkyl groups[73]
Scheme 47 (A) Photoredox, HAT, and nickel-catalyzed cross-coupling: aryl halide and C—H nucleophiles[85];(B) Proposed mechanism[85]
Scheme 48 (A) Coupling of C(sp3)-H bonds with C(sp2)-O electrophiles[86];(B) Arylation of aniline C—H bonds with phenols by an in-situ activation strategy[87];(C) Proposed mechanism of (B)[87]
Scheme 49 Arylation of amide and urea C—H bonds with aryl tosylates generated in situ from phenols[88]
Scheme 50 (A) Phosphorylation of alkenyl and aryl C—O bonds via photoredox/nickel dual catalysis[89];(B) Proposed mechanism[89]
Scheme 51 (A) C—H functionalization and tandem cyclization of 1,3-dicarbonyls with terminal alkynes[90];(B) Proposed mechanism[90]
Scheme 52 Suzuki cross-couplings of unactivated secondary alkyl bromides and iodides[91]
Scheme 53 (A) Coupling reaction of α-bromo-α-?uoroketones with arylboronic acids[92];(B) Proposed mechanism[92]
Scheme 54 Cross-coupling of potassium alkenyltri?uoroborates with alkyl halides[93]
Scheme 55 Fluoromethylation of arylboronic acids[94];(B) Proposed mechanism[94]
Scheme 56 Cross-coupling of alkylpyridinium salts with aryl boronic acids[95]
Scheme 57 (A) Carbonylation of secondary aliphatic electrophiles with arylboronic acids[96];(B) Proposed mechanism[96]
Scheme 58 Suzuki-Miyaura coupling of a tertiary iodocyclopropane with wide boronic acid[97]
Scheme 59 Cross-couplings of organosilicon reagents with unactivated secondary alkyl bromides[98]
Scheme 60 Haloselective cross-coupling via Ni/photoredox dual catalysis[99]
Scheme 61 (A) Cross-coupling of N-tosylaziridines and alkylzinc reagents[100];(B) Proposed mechanism[100]
Scheme 62 (A) Regioselective cross-coupling of alkylzinc halides and propargyl bromides to allenes[101];(B) Proposed mechanism[101]
Scheme 63 Reductive cross-coupling of aryl and alkyl bromides[102]
Scheme 64 Synthesis of chiral α-amino acids through reductive cross-coupling[103]
Scheme 65 (A) Direct reductive coupling of alkyl iodides with aryl acid anhydrides[104];(B) Reductive coupling of alkyl halides with aryl acid chlorides[105,106]
Scheme 66 Intramolecular nickel-catalyzed reductive cross coupling reactions of benzylic esters with aryl halides[107]
Scheme 67 (A) Nickel-catalyzed reductive relay cross-coupling of alkyl bromides and aryl bromides[108];(B) Photochemical nickel-catalyzed reductive migratory cross-coupling of alkyl bromides with aryl bromides[109];(C) Electrochemical reductive relay cross-coupling of alkyl halides to aryl halides[110]
Scheme 68 Reductive coupling between C-N and C-O electrophiles[111]
Scheme 69 (A) Reductive cross-coupling of aromatic amides and Katritzky salts for ketone synthesis[112];(B) Proposed mechanis[112]
Scheme 70 Cyanation of aryl halides and triflates with acetonitrile[113]
Scheme 71 Carboxylation of unactivated primary alkyl bromides and sulfonates with CO2[114]
Scheme 72 Carboxylation of unactivated alkyl chlorides with CO2
Scheme 73 Carboxylation of cyclopropyl bromides with CO2
Scheme 74 (A) Carboxylation of aromatic and aliphatic bromides with CO2 by dual visible-light-nickel catalysis[117];(B) Remote C(sp3)-H carboxylation enabled by the merger of photoredox and nickel catalysis[118];(C) Proposed mechanism of (A)[117]
Scheme 75 Divergent cyclization/carboxylation of unactivated primary and secondary alkyl halides with CO2[119]
Scheme 76 (A) Application to the direct catalytic conversion of biomass-derived feedstocks into single fatty acids via a tandem bromination/carboxylation process[120];(B) Switchable site-selective carboxylation of unactivated alkyl bromides at remote C(sp3)-H sites[120];(C)Proposed mechanism[120]
Fig.3 C—O bond energy and availability comparison[123]
Scheme 77 (A) Carboxylation of alkenyl and sterically hindered aryl tri?ates utilizing CO2[70];(B) Reductive carboxylation of allyl esters with C[122];(C) Carboxylation of aryl and heteroaryl fluorosulfates with CO2[122];(D) Proposed mechanism of (C)[122]
Scheme 78 (A) Carboxylation of allylic alcohols with CO2[123];(B) Carboxylation of allylic and propargylic alcohols with CO2[124]
Scheme 79 Carboxylation of benzylic C—N bonds with CO2[125]
Scheme 80 (A) Carboxylation of C(sp2)-S bonds with CO2[126];(B)Proposed mechanism[126]
Scheme 81 Reductive coupling reaction of imines and conjugated alkenes[127];(B) Proposed mechanism[127]
Scheme 82 (A) Selective activation/coupling of polyhalogenated nucleophiles[128];(B) Proposed mechanism[128]
Scheme 83 (A) Direct amidation of esters with nitroarenes[129];(B) Proposed mechanism[130]
Scheme 84 (A) Nickel-catalyzed photoredox-mediated cross-coupling of aryl electrophiles and aryl azides[131];(B) Proposed mechanism[131]
Scheme 85 (A) Direct cross-coupling of azoles with arylboronic acids[132];(B) Proposed mechanism[132]
Scheme 86 (A) α-Alkylation of ketones with alcohols to prepare branched gem-bis(alkyl) ketones[133];(B) α-Alkylation of methyl ketones with alcohols for the synthesis of monoselective linear ketones[134];(C) Proposed mechanism of (B)[134]
Scheme 87 (A) Direct olefinations of alcohols with sulfones[135];(B) Proposed mechanism[135]
Scheme 88 (A) Hiyama-type decarboxylative coupling of propiolic acids and organosilanes[136];(B) Proposed mechanism[136]
Scheme 89 (A) Decarboxylative coupling of alkyl acid anhydrides with vinyl tri?ates and halides[137];(B) Proposed mechanism[137]
Scheme 90 Reductive conjugate addition to enones[139]
Scheme 91 Hydrocarboxylation of unsaturated hydrocarbons with CO2[140]
Scheme 92 Site-selective dicarboxylation of 1,3-dienes with CO2[141]
Scheme 93 (A) Reductive 1,2-dicarbofunctionalization of alkenes[142];(B) Proposed mechanism[143]
Scheme 94 (A) Nickel-catalyzed 1,2-arylboration of vinylarenes[144];(B) Proposed mechanism[144]
Scheme 95 (A) Remote hydrothiolation of alkenes with thiols[145];(B) Proposed mechanism[145]
Scheme 96 (A) Difunctionalization of enamides[146];(B) Proposed mechanism[146]
Scheme 97 (A) Regioselective hydrocarboxylation of alkynes with CO2[147];(B) Proposed mechanism[147]
Scheme 98 Hydroamidation of alkynes with isocyanates[148]
Scheme 99 Catalytic hydroxylation of polyethylenes[149]
Scheme 100 (A) Wacker-type oxidation at remote C(sp3)-H sites[150];(B) Proposed mechanism[150]
[1]
Bullock R M ( Ed.). Catalysis Without Precious Metals, Wiley-VCH, 2010.
[2]
Schröder D, Shaik S , Schwarz H. Acc. Chem. Res., 2000,33:139.
[3]
Poli R , Harvey J N. Chem. Soc. Rev., 2003,32:1.
[4]
Chirik P J. Angew. Chem. Int. Ed., 2017,56:5170.
[5]
Stradiotto M, Lundgren R J .( eds) Ligand design in metal chemistry: Wiley-VCH, 2016.
[6]
Summers L A. Adv. Heterocycl. Chem., 1978,22:1.
[7]
Happ B, Winter A, Hager M D , Schubert U S. Chem. Soc. Rev., 2012,41:2222.
[8]
Schöne S, Radoske T, März J, Stumpf T, Ikeda-Ohno A. Inorg. Chem ., 2018,57:13318.
[9]
Ying C H, Yan S B , Duan W L. Org. Lett., 2014,16:500.
[10]
Alreja P, Kaur N. RSC Adv ., 2016,6:23169.
[11]
Sigman D S, Mazumder A , Perrin D M. Chem. Rev., 1993,93:2295.
[12]
Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin Complexes. London: Academic Press, 1991.
[13]
Vrábel M, Hocek M, Havran L, Fojta M, Votruba I , Klepetá ová B, Pohl R, Rulíšek L, Zendlová L, Hobza P. Eur. [J]. Inorg. Chem., 2007,2007:1752.
[14]
Teulade-Fichou M-P, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny J L, David A, Lehn J M, Wilson W D . . Am. Chem. Soc., 2003,125:4732.
[15]
Ma D L , Chan D S H, Leung C H. Acc. Chem. Res., 2014,47:3614.
[16]
Marko I E, Giles P R, Tsukazaki M, Brown S M, Urch C J . Science, 1996,274:2044.
[17]
ten Brink G J, Arends I W, Sheldon R A . Science, 2000,287:1636.
[18]
Oeschger R J, Larsen M A, Bismuto A, Hartwig J F .. Am. Chem. Soc., 2019,141:16479.
[19]
Chelucci G , Thummel R P. Chem. Rev., 2002,102:3129.
[20]
Schoffers E. Eur. J. Org. Chem., 2003,2003:1145.
[21]
Kwong H L, Yeung H L, Yeung C T, Lee W S, Lee C S , Wong W L. Coord. Chem. Rev., 2007,251:2188.
[22]
Blau F. Monatsh. Chem ., 1898,19:647.
[23]
Halcrow B E, Kermack W O .. Chem. Soc., 1946,155.
[24]
Belser P, Bernhard S, Guerig U . Tetrahedron., 1996,52:2937.
[25]
Riesgo E C, Jin X, Thummel R P .. Org. Chem., 1996,61:3017.
[26]
Lu Y , Jahng Y. Chin. J. Chem., 2019,37:221.
[27]
Larsen A F, Ulven T. Org. Lett ., 2011,13:3546.
[28]
Graf G I , Hastreiter D, da Silva L E, Rebelo R A, Montalban A G, McKillop A. Tetrahedron., 2002,58:9095.
[29]
De K, Legros J, Crousse B, Chandrasekaran S , Bonnet-Delpon D. Org. Biomol. Chem., 2011,9:347.
[30]
Wang T, Wang H, Li G, Li M, Bo Z, Chen Y . Macromolecules, 2016,49:4088.
[31]
Sun X T, Zhu J, Xia Y T, Wu L . Chem CatChem., 2017,9:2463.
[32]
Norinder J, Matsumoto A, Yoshikai N, Nakamura E .. Am. Chem. Soc., 2008,130:5858.
[33]
Ilies L, Matsumoto A, Kobayashi M, Yoshikai N, Nakamura E . Synlett., 2012,23:2381.
[34]
Valléé F, Mousseau J J, Charette A B .. Am. Chem. Soc., 2010,132:1514.
[35]
Huang Y, Moret M E , Klein Gebbink R J. Eur.[J]. Org. Chem., 2014,2014:3788.
[36]
Uchiyama N, Shirakawa E, Nishikawa R, Hayashi T. . Chem. Commun., 2011,47:11671.
[37]
Parnes R, Kshirsagar U A, Werbeloff A, Regev C, Pappo D. Org. Lett ., 2012,14:3324.
[38]
Li C, Chen T , Han L B. Dalton. Trans., 2016,45:14893.
[39]
Yang J M, Cai Y, Zhu S F , Zhou Q L. Org. Biomol. Chem., 2016,14:5516.
[40]
Mondal R, Sinha S, Das S, Chakraborty G , Paul N D. Adv. Synth. Catal., 2020,362:594.
[41]
Li Z L, Sun K K, Wu P Y, Cai C .. Org. Chem., 2019,84:6830.
[42]
Jia J, Zeng X, Liu Z, Zhao L, He C Y, Li X F, Feng Z. Org. Lett ., 2020,22:2816.
[43]
Nishikawa Y, Yamamoto H .. Am. Chem. Soc., 2011,133:8432.
[44]
Song H, Kang B , Hong S H. ACS Catal., 2014,4:2889.
[45]
Das S, Wendt B, Möller K, Junge K , Beller M. Angew. Chem. Int. Ed., 2012,51:1662.
[46]
Takeda H, Ohashi K, Sekine A, Ishitani O .. Am. Chem. Soc., 2016,138:4354.
[47]
Shevlin M, Guan X , Driver T G. ACS Catal., 2017,7:5518.
[48]
Liu G S, Zhang Y Q, Yuan Y A, Xu H .. Am. Chem. Soc., 2013,135:3343.
[49]
Lu D F, Zhu C L, Jia Z X, Xu H .. Am. Chem. Soc., 2014,136:13186.
[50]
Zhu C L, Tian J S, Gu Z Y, Xing G W, Xu H. Chem. Sci ., 2015,6:3044.
[51]
Guo N, Hu M Y, Feng Y , Zhu S F. Org. Chem. Front., 2015,2:692.
[52]
Wang X, Studer A .. Am. Chem. Soc., 2016,138:2977.
[53]
Sonehara T, Murakami S, Yamazaki S, Kawatsura M. Org. Lett ., 2017,19:4299.
[54]
Hu M Y, He Q, Fan S J, Wang Z C, Liu L Y, Mu Y J, Peng Q , Zhu S F. Nat. Commun., 2018,9:221.
[55]
Hu M Y, Lian J, Sun W, Qiao T Z, Zhu S F .. Am. Chem. Soc., 2019,141:4579.
[56]
Shin J H, Seong E Y, Mun H J, Jang Y J , Kang E J. Org. Lett., 2018,20:5872.
[57]
Chu X Q, Cao W B, Xu X P, Ji S J .. Org. Chem., 2017,82:1145.
[58]
Xia X F, He W, Zhang G W , Wang D. Org. Chem. Front., 2019,6:342.
[59]
Yu H, Li Z , Bolm C. Angew. Chem. Int. Ed., 2018,57:324.
[60]
Chen C H, Wu Q Y, Wei C, Liang C, Su G F , Mo D L. Green. Chem., 2018,20:2722.
[61]
Gao P, Wu H, Yang J C , Guo L N. Org. Lett., 2019,21:7104.
[62]
Ueda Y, Tsurugi H , Mashima K. Angew. Chem. Int. Ed., 2020,59:1552.
[63]
Paul J , Lisa Luong Van M, Behar-Pirès M, Guillaume C, Léonel E, Presset M, Le Gall E.[J]. Org. Chem., 2018,83:4078.
[64]
Xu M, Zheng Z, Wang M, Kong L, Ao Y , Li Y. Org. Biomol. Chem., 2018,16:8761.
[65]
Liu J, Yang Z, Zheng M, Wu H, Chen N, Xu J . Synthesis, 2019,51:3320.
[66]
Huang Q, Hu M Y , Zhu S F. Org. Lett., 2019,21:7883.
[67]
Gao K , Yoshikai N. Angew. Chem. Int. Ed., 2011,50:6888.
[68]
Wang H, Zhang S, Wang Z, He M, Xu K. Org. Lett ., 2016,18:5628.
[69]
Nogi K, Fujihara T, Terao J, Tsuji Y. . Chem. Commun., 2014,50:13052.
[70]
Nogi K, Fujihara T, Terao J, Tsuji Y .. Org. Chem., 2015,80:11618.
[71]
Krafft M, Hirosawa C, Dalal N, Ramsey C, Stiegman A. Tetrahedron. Lett ., 2001,42:7733.
[72]
Karthikeyan J, Parthasarathy K , Cheng C H. Chem. Commun., 2011,47:10461.
[73]
Yao T, Hirano K, Satoh T , Miura M. Angew. Chem. Int. Ed., 2012,51:775.
[74]
Corpet M, Bai X Z , Gosmini C. Adv. Synth. Catal., 2014,356:2937.
[75]
Paul J, Presset M, Le Gall E, Léonel E, Retailleau P . Synthesis, 2018,50:254.
[76]
Lutter F H, Grokenberger L, Benz M, Knochel P. Org. Lett ., 2020,22:3028.
[77]
Li C L, Jiang X, Lu L Q, Xiao W J , Wu X F. Org. Lett., 2019,21:6919.
[78]
Sinha S, Das S, Mondal R, Mandal S , Paul N D. Dalton Trans., 2020,49:8448.
[79]
Adak L, Yoshikai N .. Org. Chem., 2011,76:7563.
[80]
Wolfe J P, Buchwald S L .. Am. Chem. Soc., 1997,119:6054.
[81]
Manolikakes G, Gavryushin A, Knochel P .. Org. Chem., 2008,73:1429.
[82]
Rezazadeh S, Devannah V, Watson D A .. Am. Chem. Soc., 2017,139:8110.
[83]
Hachiya H, Hirano K, Satoh T, Miura M. Org. Lett ., 2009,11:1737.
[84]
Khake S M, Soni V, Gonnade R G , Punji B. Chem. Eur. J., 2017,23:2907.
[85]
Shaw M H, Shurtleff V W, Terrett J A, Cuthbertson J D , MacMillan D W. Science, 2016,352:1304.
[86]
Gui Y Y, Liao L L, Sun L, Zhang Z, Ye J H, Shen G, Lu Z P, Zhou W J , Yu D G. Chem. Commun., 2017,53:1192.
[87]
Gui Y Y, Wang Z X, Zhou W J, Liao L L, Song L, Yin Z B, Li J , Yu D G. Asian. J. Org. Chem., 2018,7:537.
[88]
Gui Y Y, Chen X W, Zhou W J, Yu D G . Synlett., 2017,28:2581.
[89]
Liao L L, Gui Y Y, Zhang X B, Shen G, Liu H D, Zhou W J, Li J , Yu D G. Org. Lett., 2017,19:3735.
[90]
Mohanty A , Roy S. Eur. J. Org. Chem., 2019,2019:6702.
[91]
Zhou J, Fu G C .. Am. Chem. Soc., 2004,126:1340.
[92]
Liang J, Han J, Wu J, Wu P, Hu J, Hu F, Wu F. Org. Lett ., 2019,21:6844.
[93]
Molander G A , Argintaru O A. Org. Lett., 2014,16:1904.
[94]
An L, Xiao Y L, Min Q Q , Zhang X. Angew. Chem. Int. Ed., 2015,54:9079.
[95]
Basch C H, Liao J, Xu J, Piane J J, Watson M P .. Am. Chem. Soc., 2017,139:5313.
[96]
Cheng R, Zhao H Y, Zhang S, Zhang X. ACS Catal ., 2019,10:36.
[97]
Yotsuji K, Hoshiya N, Kobayashi T, Fukuda H, Abe H, Arisawa M , Shuto S. Adv. Synth. Catal., 2015,357:1022.
[98]
Powell D A, Fu G C .. Am. Chem. Soc., 2004,126:7788.
[99]
Lin K, Wiles R J, Kelly C B, Davies G H , Molander G A. ACS. Catal., 2017,7:5129.
[100]
Jensen K L, Standley E A, Jamison T F .. Am. Chem. Soc., 2014,136:11145.
[101]
Soler-Yanes R , Arribas-Álvarez I, Guisán-Ceinos M, Buñuel E, Cárdenas D J. Chem. Eur. J., 2017,23:1584.
[102]
Everson D A, Jones B A, Weix D J .. Am. Chem. Soc., 2012,134:6146.
[103]
Lu X, Yi J, Zhang Z Q, Dai J J, Liu J H, Xiao B, Fu Y , Liu L. Chem. Eur. J., 2014,20:15339.
[104]
Yin H, Zhao C, You H, Lin K, Gong H. . Chem. Commun., 2012,48:7034.
[105]
Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett ., 2012,14:3044.
[106]
Lu W, Liang Z, Zhang Y, Wu F, Qian Q, Gong H . Synthesis, 2013,45:2234.
[107]
Konev M O, Hanna L E , Jarvo E R. Angew. Chem. Int. Ed., 2016,55:6730.
[108]
Peng L, Li Y, Li Y, Wang W, Pang H, Yin G. ACS. Catal ., 2018,8:310.
[109]
Peng L, Li Z, Yin G. Org. Lett ., 2018,20:1880.
[110]
Jiao K J, Liu D, Ma H X, Qiu H, Fang P , Mei T S. Angew. Chem. Int. Ed., 2020,59:6520.
[111]
He R D, Li C L, Pan Q Q, Guo P, Liu X Y, Shu X Z .. Am. Chem. Soc., 2019,141:12481.
[112]
Yu C G, Matsuo Y. Org. Lett ., 2020,22:950.
[113]
Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci ., 2019,10:994.
[114]
Liu Y, Cornella J, Martin R .. Am. Chem. Soc., 2014,136:11212.
[115]
Börjesson M, Moragas T, Martin R .. Am. Chem. Soc., 2016,138:7504.
[116]
Moragas T, Martin R . Synthesis, 2016,48:2816.
[117]
Meng Q Y, Wang S , König B. Angew. Chem. Int. Ed., 2017,56:13426.
[118]
Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q Y, Crespi S, König B , Martin R. Chem. Eur. J., 2019,25:9001.
[119]
Wang X, Liu Y, Martin R .. Am. Chem. Soc., 2015,137:6476.
[120]
Juliá-Hernández F, Moragas T, Cornella J, Martin R . Nature., 2017,545:84.
[121]
Moragas T, Cornella J, Martin R .. Am. Chem. Soc., 2014,136:17702.
[122]
Ma C, Zhao C Q, Xu X T, Li Z M, Wang X Y, Zhang K , Mei T S. Org. Lett., 2019,21:2464.
[123]
van Gemmeren M, Börjesson M, Tortajada A, Sun S Z, Okura K, Martin R . Angew. Chem. Int. Ed., 2017,56:6558.
[124]
Chen Y G, Shuai B, Ma C, Zhang X J, Fang P , Mei T S. Org. Lett., 2017,19:2969.
[125]
Moragas T, Gaydou M , Martin R. Angew. Chem. Int. Ed., 2016,55:5053.
[126]
Yanagi T, Somerville R J, Nogi K, Martin R, Yorimitsu H. ACS. Catal ., 2020,10:2117.
[127]
Yeh C H, Prasad Korivi R , Cheng C H. Angew. Chem. Int. Ed., 2008,47:4892.
[128]
Yan W, Li Z, Kishi Y .. Am. Chem. Soc., 2015,137:6219.
[129]
Cheung C W, Ploeger M L, Hu X. Nat. Commun ., 2017,8:14878.
[130]
Ploeger M L, Darù A, Harvey J N, Hu X. ACS Catal ., 2020,10:2845.
[131]
Konev M O , McTeague T A, Johannes J W. ACS Catal., 2018,8:9120.
[132]
Hachiya H, Hirano K, Satoh T, Miura M . Chemcatchem., 2010,2:1403.
[133]
Das J, Singh K, Vellakkaran M, Banerjee D. Org. Lett ., 2018,20:5587.
[134]
Das J, Vellakkaran M, Banerjee D .. Org. Chem., 2019,84:769.
[135]
Waiba S, Das A, Barman M K, Maji B. ACS Omega ., 2019,4:7082.
[136]
Raja G C E, Irudayanathan F M, Kim H S, Kim J, Lee S . . Org. Chem., 2016,81:5244.
[137]
Chen H, Sun S, Liao X. Org. Lett ., 2019,21:3625.
[138]
Chen H, Liao X . Tetrahedron., 2019,75:4186.
[139]
Shrestha R , Dorn S C M, Weix D J.[J]. Am. Chem. Soc., 2013,135:751.
[140]
Gaydou M, Moragas T, Juliá-Hernández F, Martin R .. Am. Chem. Soc., 2017,139:12161.
[141]
Tortajada A, Ninokata R, Martin R .. Am. Chem. Soc., 2018,140:2050.
[142]
Kuang Y, Wang X, Anthony D, Diao T. . Chem. Commun., 2018,54:2558.
[143]
Lin Q, Diao T .. Am. Chem. Soc., 2019,141:17937.
[144]
Wang W, Ding C, Pang H, Yin G. Org. Lett ., 2019,21:3968.
[145]
Zhang Y, Xu X, Zhu S. Nat. Commun ., 2019,10:1752.
[146]
Xu C, Yang Z F, An L, Zhang X. ACS Catal ., 2019,9:8224.
[147]
Wang X, Nakajima M, Martin R .. Am. Chem. Soc., 2015,137:8924.
[148]
Wang X, Nakajima M, Serrano E, Martin R .. Am. Chem. Soc., 2016,138:15531.
[149]
Bunescu A, Lee S, Li Q , Hartwig J F. ACS Cent. Sci., 2017,3:895.
[150]
Liu B, Hu P, Xu F, Cheng L, Tan M, Han W. Commun. Chem ., 2019,2:5.
[151]
Zhang M, Hao P, Zuo W, Jie S, Sun W H .. Organomet. Chem., 2008,693:483.
[152]
Jie S, Zhang S, Wedeking K, Zhang W, Ma H, Lu X, Deng Y, Sun W H . C. R. Chimie., 2006,9:1500.
[153]
Yang Y, Yang P, Zhang C, Li G, Yang X J, Wu B, Janiak C . J. Mol. Catal. A: Chem., 2008,296:9.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[7] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[12] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[13] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[14] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[15] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.