中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 111-123 DOI: 10.7536/PC200557 Previous Articles   Next Articles

• Review •

Metal Complexes in Application of Two-Photon Luminescence Probes

Jiaen Xie1, Yuheng Luo1, Qianling Zhang1, Pingyu Zhang1,*()   

  1. 1 College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
  • Received: Revised: Online: Published:
  • Contact: Pingyu Zhang
  • Supported by:
    the National Natural Science Foundation of China(21701113); the Science and Technology Foundation of Shenzhen(JCYJ20190808153209537); the Peacock Talent Fund(827-000389); the Natural Science Foundation of SZU(2018036)
Richhtml ( 17 ) PDF ( 721 ) Cited
Export

EndNote

Ris

BibTeX

During the past years, metal complexes have attracted intensive research interest in biological sensors and imaging of cellular dynamics during a series of biological events. This is due to their unique advantages includes the following:(1) easily tunable chemical and photophysical properties resulting from their synthetic versatility;(2) high emission quantum yields and long phosphorescence lifetimes, which may avoid interferences from background auto-fluorescence;(3) large Stokes shifts for effective discrimination of excitation and emission wavelengths, as well as prevention of fluorescence quenching induced by self-absorption, and(4) emissive properties that are sensitive to subtle changes in the local environment. In recent years, metal complexes with obvious two-photon absorption have been attracted extensive attention in luminescence detection of biomolecules and organelle dyes because of their superior depth resolution and low light damage compared with traditional one-photon absorption. This review describes the latest two-photon absorption metal complexes with detection of biomolecules(pH, O2, HClO, NO, SO2, GSH, DNA, and so on) for diagnosis of diseases, as well as organelle probes(mitochondria, lysosomes, lipid droplets, nucleus, and so on) for intracellular dynamic behaviors and evolution processes. Finally, the perspectives of metal complexes in application of biomolecular probes and organelle dyes were analyzed and discussed.

Contents

1 Introduction

2 Two-photon technology

2.1 Two-photon absorption

2.2 Two-photon emission and two-photon absorption parameters measurement

2.3 Study on two-photon luminescent probes of metal complexes

3 Two-photon luminescent biosensors

3.1 O2

3.2 Amino acids

3.3 DNA

3.4 pH

3.5 SO2

3.6 HClO

3.7 NO

3.8 Metal ions

4 Two-photon luminescent organelle dyes

4.1 Mitochondria

4.2 Lysosomes

4.3 Lipid droplets

4.4 Nucleus

5 Conclusion and outlook

Fig. 1 Jablonski diagrams of two-photon(A) and one-photon(B) excitation[42]
Fig. 2 (A) Schematic illustration of the ruthenium(Ⅱ) anthraquinone complexes 1a~c as two-photon luminescent hypoxia probes;(B) Two-photon luminescence confocal microscopy images of A549 cancer cells incubated with complex 1c at various oxygen concentrations for 1 h;(C) Two-photon confocal luminescence images of the head of zebrafish under hypoxia after incubation of 1c for 1 h[46]
Fig. 3 Detection mechanism of the mitochondrial O2-sensitive iridium(Ⅲ)-anthraquinone complexes 2a~d[47]
Fig. 4 (A) Schematic diagram of complex 3 coated on gold nanoparticles;(B) OPM and TPM images of HeLa cells incubated with RuNH2@AuNPS for 1 h;(C) HeLa cells pre-treated with N-ethylmaleimide(NEM) and then treated with RuNH2@AuNPS for 1 h[57]
Fig. 5 The chemical structures of complexes 4a,b for Cys/Hcy two-photon probes[58]
Fig. 6 (A)The reaction scheme of gold(Ⅰ) complexes 5a~d with R-SH in the dark or upon irradiation;(B) One- and two-photon fluorescence images of HepG2 cells treated with 10 μM of 5b for 1 h[69]
Fig. 7 Fig. 7 (A) The chemical structure of complex 6;(B) Confocal two-photon fluorescence images of living HepG2 cells incubated with 10 μM complex 6 for 10 min(λex= 820 nm, λem = 580~620 nm);(C) The STED micrographs of complex 6 staining the nucleus;(D and E) Amplified confocal two-photon fluorescence imaging and STED micrographs of living HepG2 cells incubated with 10 μM complex 6.(F) The fluorescence intensity profile from confocal two-photon fluorescence imaging and the STED micrographs(inset: S/N ratio of confocal and STED microscopy). The scale bar = 5 μm[71]
Fig. 8 Chemical structures of complexes 7a,b[75] and 8[76]
Fig. 9 The protonated chemical structures of complexes 9a,b[80]
Fig. 10 The chemical structure of complex 10[86]
Fig. 11 Reaction mechanism and chemical structure of complex 11[90]
Fig. 12 (A) Illustration of the reaction of probe complex 12 with NO;(B) One-photon and two-photon phosphorescence and bright field images of the complex 12-loaded RAW 264.7cells after adding different concentrations of NO;(C) PLIM images of the complex 12-loaded RAW 264.7 cells incubated with LPS, IFN-γ and L-Arg at different times. Scale bar: 10 μm[95]
Fig. 13 Illustration of the reaction of complex 13 and NO[96]
Fig. 14 (A) The reaction mechanism of complex 14 and Cu 2+;(B) OPM and(C) TPM images of HeLa cells incubated with complex 14 before and after the exogenous Cu source treatment;(D) Luminescence imaging of five-day-old zebrafish incubated with complex 14 for 1 h;(E) Zebrafish incubated with complex 14, then further incubated with the exogenous Cu source treatment[103]
Fig. 15 Reaction mechanism and chemical structure of complex 15[113]
Fig. 16 Chemical structures of complexes 16a~f[116]
Fig. 17 Chemical structures of complexes 17a~e[123]
Fig. 18 (A) Synthetic route to complexes 18;(B)Two-photon phosphorescent images of 3D tumor spheroids after incubation with complexes 18(2 μM) for 6 h;(C) The two-photon 3D Z-stack images of an intact tumor spheroid;(D) The two-photon Z-stack images from different sections from top to bottom. λex = 750 nm[131]
Fig. 19 Schematic diagram of the self-assembly process of complexes 19a,b[132]
Fig. 20 Chemical structures of complexes(A) 20a,b[135] and(B) 21[136]
Fig. 21 Chemical structures of complexes(A)22a~d[138] and(B)23a,b[139]
[1]
Hu M Y, Li L, Wu H, Su Y, Yang P Y, Uttamchandani M, Xu Q H, Yao S Q. J. Am. Chem. Soc., 2011, 133: 12009.

doi: 10.1021/ja200808y
[2]
Ingaramo M, York A G, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson G H. Proc. Natl. Acad. Sci. U. S. A. , 2014, 111: 5254.
[3]
Zhao M, Zhang H, Li Y, Ashok A, Liang R, Zhou W, Peng L. Biomed. Opt. Express., 2014, 5: 1296.

doi: 10.1364/BOE.5.001296
[4]
So P T C, Dong C Y, Masters B R, Berland K M. Annu. Rev. Biomed. Eng., 2000, 2: 399.

doi: 10.1146/annurev.bioeng.2.1.399
[5]
Sancataldo G, Lavagnino Z, d’Amora M, Zanacchi F C, Diaspro A. Biophys. J., 2015, 108: 326.
[6]
Lee J H, Lee S, Gho Y S, Song I S, Tchah H, Kim M J, Kim K H. Exp. Eye. Res. , 2015, 13: 2101.
[7]
Hammerer F, Garcia G, Chen S, Poyer F, Achelle S, Debuisschert C F, Fichou M P T, Maillard P. J. Org. Chem., 2014, 79: 1406.

doi: 10.1021/jo402658h
[8]
Bobo M G, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Desce M B, Morere A, Garcia M, Durand amd J O, Raehm L. Angew. Chem., 2011, 123: 11627.

doi: 10.1002/ange.v123.48
[9]
Schmitt J, Heitz V, Sour A, Bolze F, Ftouni H, Nicoud J F, Flamigni L, Venture B. Angew. Chem. Int. Ed., 2015, 54: 169.

doi: 10.1002/anie.201407537
[10]
Secret E, Maynadier M, Gallud A, Chaix A, Bouffard E, Bobo M G, Marcotte N, Mongin O, Cheikh K E, Hugues V, Auffan M, Frochot C, Morere A, Maillard P, Desce M B, Sailor M J, Garcia M, Durand J O, Cunin F. Adv. Mater., 2014, 26: 7643.

doi: 10.1002/adma.201403415
[11]
Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J Q, Rockel H, Rumi M, Wu X L, Marder S R, Perry J W. Nature , 1999, 398: 51.

doi: 10.1038/17989
[12]
Li L, Wang P, Hu Y, Lin G, Huang W, Zhao Q, Spectrochim. Acta A , 2015, 139: 243.

doi: 10.1016/j.saa.2014.10.122
[13]
Gao R, Cao D, Guan Y, Yan D P. ACS Appl. Mater. Interfaces , 2015, 7: 9904.

doi: 10.1021/acsami.5b01996
[14]
Corredor C C, Huang Z L, Belfield K D. Adv. Mater. , 2006, 18: 2910.

doi: 10.1002/(ISSN)1521-4095
[15]
Chan E M, Levy E S, Cohen B E. Adv. Mater. , 2015, 27: 38.
[16]
Gao Z, Chen Y. RSC Adv., 2015, 5: 20712.

doi: 10.1039/C5RA00095E
[17]
Sivakumar S, van Veggel F, May P S. J. Am. Chem. Soc., 2007, 129: 620.

doi: 10.1021/ja065378x
[18]
LaFratta C N, Fourkas J T, Baldacchini T, Farrer R A. Angew. Chem. Int. Ed., 2007, 46: 6238.

doi: 10.1002/anie.v46:33
[19]
Dvornikov A S, Walker E P, Rentzepis P M. J. Phys. Chem. A , 2009, 113: 13633.

doi: 10.1021/jp905655z
[20]
Denk W, Strickler J H, Webb W W. Science , 1990, 248: 73.

doi: 10.1126/science.2321027
[21]
Squirrell J M, Wokosin D L, White J G, Bavister B D. Nat. Biotechnol. , 1999, 17: 763.

doi: 10.1038/11698
[22]
Masanta G, Lim C S, Kim H J, Han J H, Kim H M, Cho B R. J. Am. Chem. Soc., 2011, 133: 5698.

doi: 10.1021/ja200444t
[23]
Lim C S, Masanta G, Kim H J, Han J H, Kim H M, Cho B R. J. Am. Chem. Soc., 2011, 133: 11132.

doi: 10.1021/ja205081s
[24]
Bae S K, Heo C H, Choi D J, Sen D, Joe E H, Cho B R, Kim H M. J. Am. Chem. Soc., 2013, 135: 9915.

doi: 10.1021/ja404004v
[25]
Kim H M, Cho B R. Acc. Chem. Res., 2009, 42: 863.

doi: 10.1021/ar800185u
[26]
Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S, Neurosci J. Meth., 2001, 111: 29.
[27]
Sakadži S, Roussakis E, Yaseen M A, Mande-ville E T, Srinivasan V J, Arai K, Ruvinskaya S, Devor A, Lo E H, Vinogradov S A, Boas D A. Nat. Meth., 2010, 7: 755.

doi: 10.1038/nmeth.1490
[28]
Lin Q, Huang Q, Li C, Bao C, Liu Z, Li F, Zhu L. J. Am. Chem. Soc., 2010, 132: 10645.

doi: 10.1021/ja103415t
[29]
Jimenez C M, Croissant J, Maynadier M, Cattoen X, Man M W C, Vergnaud J, Chaleix V, Sol V, Garcia M, Bobo M G, Raehma L, Durand J O. J. Mater. Chem. B , 2015, 18: 3681.
[30]
Layland K S, Riemann I, Damour O, Stock U A, Konig K. Adv. Drug Deliver. Rev., 2006, 58: 878.

doi: 10.1016/j.addr.2006.07.004
[31]
Nemoto T, Kawakami R, Hibi T, Iijima K, Otomo K. Microscopy (Tokyo ), 2015, 64: 9.

doi: 10.1093/jmicro/dfu110
[32]
Pawlicki M, Collins H A, Denning R G, Anderson H L. Angew. Chem. Int. Ed., 2009, 48: 3244.

doi: 10.1002/anie.v48:18
[33]
Yao S, Belfield K D. Eur. J. Org. Chem. , 2012, 17: 3199.
[34]
Kaiser W K, Garrett C G B. Phys. Rev. Lett., 1961, 7: 229.

doi: 10.1103/PhysRevLett.7.229
[35]
Tian H, Feng Y, Mater J. Chem , 2008, 18: 1617.
[36]
Lu L H, Chan D S H, Kwong D W J, He H Z, Leung C H, Ma D L. Chem. Sci., 2014, 5: 4561.

doi: 10.1039/c4sc02032d
[37]
Wang X, Nguyen D M, Yanez C O, Rodriguez L, Ahn H Y, Bondar M V, Belfield K D. J. Am. Chem. Soc., 2010, 132: 12237.

doi: 10.1021/ja1057423
[38]
Botchway S W, Charnley M, Haycock J W, Parker A W, Rochester D L, Weinstein J A, Williams J A G. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 16071.
[39]
Wang J M , Shi L , Liu H Y . Progress in Chemistry , 2015, 27: 755.

doi: 10.7536/PC150227
王家敏, 史蕾, 刘海洋. 化学进展, 2015, 27: 755.

doi: 10.7536/PC150227
[40]
He L , Tang C P , Cao Q , Mao Z W . Progress in Chemistry , 2018, 30: 1548.
何良, 谭彩萍, 曹乾, 毛宗万. 化学进展, 2018, 30: 1548.
[41]
Qiu K Q , Zhu H Y , Ji L N , Chao H . Progress in Chemistry , 2018, 30: 1524.
邱康强, 朱宏翊, 计亮年, 巢晖. 化学进展, 2018, 30: 1524.
[42]
Encyclopedia of Life Sciences, John Wiley & Sons, Ltd., Chichester , 2002.
[43]
Kizaka-Kondoh S , Inoue M , Harada H , Hiraoka M . Cancer Sci ., 2003, 94( 12): 1021.

doi: 10.1111/cas.2003.94.issue-12
[44]
Thambi T, Deepagan V G, Yoon H Y, Han H, Kim S H, Son S, Jo D G, Ahn C H, Suh Y D, Kim K, Kwon I C, Lee D S, Park J H. Biomaterials , 2014, 35: 1735.

doi: 10.1016/j.biomaterials.2013.11.022
[45]
Anada T, Fukuda J, Sai Y, Suzuki O. Biomaterials , 2012, 33: 8430.

doi: 10.1016/j.biomaterials.2012.08.040
[46]
Zhang P, Huang H, Chen Y, Wang J, Ji L, Chao H. Biomaterials , 2015, 53: 522.

doi: 10.1016/j.biomaterials.2015.02.126
[47]
Sun L, Chen Y, Kuang S, Li G, Guan R, Liu J, Ji L, Chao H. Chem. Eur. J., 2016, 22: 8955.

doi: 10.1002/chem.201600310
[48]
Medzhitov R, Schneider D S, Soares M P. Science , 2012, 335: 936.

doi: 10.1126/science.1214935
[49]
Sua D D, Teoha C L, Sahua S, Dasa R K, Chang Y T. Biomaterials , 2014, 35: 6078.

doi: 10.1016/j.biomaterials.2014.04.035
[50]
Ren W X, Han J Y, Pradhan T, Lim J Y, Lee J H, Lee J, Kim J H, Kim J S. Biomaterials , 2014, 35: 4157.

doi: 10.1016/j.biomaterials.2014.01.055
[51]
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. Biol. Chem., 2014, 395: 203.

doi: 10.1515/hsz-2013-0241
[52]
Chen X, Zhou Y, Peng X, Yoon J. Chem. Soc. Rev., 2010, 39: 2120.

doi: 10.1039/b925092a
[53]
Jung H S, Han J H, Pradhan T, Kim S, Lee S W, Sessler J L, Sessler J L, Kim T W, Kang C, Kim J S. Biomaterials , 2012, 33: 945.

doi: 10.1016/j.biomaterials.2011.10.040
[54]
Jung H S, Pradhan T, Han J H, Heo K J, Lee J H, Kang C, Kim J S. Biomaterials , 2012, 33: 8495.

doi: 10.1016/j.biomaterials.2012.08.009
[55]
Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C. J. Am. Chem. Soc., 2007, 129: 10322.

doi: 10.1021/ja073140i
[56]
Shao N, Jin J Y, Cheung S M, Yang R H, Chan W H, Mo T. Angew. Chem. Int. Ed., 2006, 118: 5066.

doi: 10.1002/(ISSN)1521-3757
[57]
Zhang P , Wang J , Huang H , Chen H , Guan R , Chen Y , Ji L , Chao H . Biomaterials , 2014, 35( 32): 9003.

doi: 10.1016/j.biomaterials.2014.07.021
[58]
Wang H , Hu L , Du W , Tian X , Hu Z , Zhang Q , Zhou H , Wu J , Uvdal K , Tian Y . Sens. Actuators B , 2018, 255( 1): 408.

doi: 10.1016/j.snb.2017.08.074
[59]
Pizarro A M, Habtemariam A, Sadler P J. Top. Organomet. Chem. , 2010, 32: 21.
[60]
Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L. Med. Res. Rev. , 2010, 30: 550.

doi: 10.1002/med.20168
[61]
Mulcahy S P, Meggers E. Top. Organomet. Chem., 2010, 32: 141.
[62]
Köster S D, Alborzinia H, Can S, Kitanovic I, Wölfl S, Rubbiani R, Ott I, Riesterer P, Prokop A, Merz K, Metzler-Nolte N. Chem. Sci. , 2012, 3: 2062.

doi: 10.1039/c2sc01127a
[63]
Oehninger L, Rubbiani R, Ott I. Dalton Trans., 2013, 42: 3269.

doi: 10.1039/C2DT32617E
[64]
Berners-Price S J, Barnard P J. Ligand Design in Medicinal Inorganic Chemistry , John Wiley & Sons, Ltd. , 2014.
[65]
Bertrand B, Casini A. Dalton Trans., 2014, 43: 4209.

doi: 10.1039/C3DT52524D
[66]
Nardon C, Boscutti G, Fregona D. Anticancer Res., 2014, 34: 487.
[67]
Frik M, Fernández-Gallardo J, Gonzalo O, Mangas-Sanjuan V, González-Alvarez M, Serrano del Valle A, Hu C, González-Alvarez I, Bermejo M, Marzo I, Contel M. J. Med. Chem., 2015, 58: 5825.

doi: 10.1021/acs.jmedchem.5b00427
[68]
FernándezGallardo J, Elie B T, Sadhukha T, Prabha S, Sanaú M, Rotenberg S A, Ramos J W, Contel M. Chem. Sci., 2015, 6: 5269.

doi: 10.1039/C5SC01753J
[69]
Luo H, Cao B, Chan A S C, Sun W, Zou T. Angew. Chem., 2020, 132: 2.

doi: 10.1002/ange.v132.1
[70]
Creighton T E. Trends Biochem. Sci., 1999, 2: 1147.
[71]
Zhang Q, Lu X, Wang H, Tian X, Wang A, Zhou H, Wu J, Tian Y. Chem. Commun., 2018, 54: 3771.

doi: 10.1039/C8CC00908B
[72]
Hong Y, Chen S, Leung C W T, Lam J W Y, Tang B Z. Chem. Asian J., 2013, 8: 1806.

doi: 10.1002/asia.v8.8
[73]
Kanony C , Akerman B , Tuite E. J. Am. Chem. Soc., 2001, 123: 7985.

doi: 10.1021/ja001047n
[74]
Kim D, Ryu H G, Ahn K H. Org. Biomol. Chem., 2014, 12: 4550.

doi: 10.1039/C4OB00431K
[75]
Baggaley E, Gill M R, Green N H, Turton D, Sazanovich I, Botchway S W, Smythe C, Haycock J W, Weinstein J A, Thomas J A. Angew. Chem. Int. Ed., 2014, 53: 3367.

doi: 10.1002/anie.201309427
[76]
Wang X, Tian X, Zhang Q, Sun P, Wu J, Zhou H, Jin B, Yang J, Zhang S, Wang C, Tao X, Jiang M, Tian Y. Chem. Mater., 2012, 24( 5): 954.

doi: 10.1021/cm2029855
[77]
Friedman J R, Nunnari J. Nature , 2014, 505: 335.

doi: 10.1038/nature12985
[78]
Wallace D C. Nat. Rev. Cancer , 2012, 12: 685.

doi: 10.1038/nrc3365
[79]
Chance B, Sies H, Boveris A. Physiol. Rev., 1979, 59: 527.
[80]
Qiu K, Ke L, Zhang X, Liu Y, Rees T W, Ji L, Diao J, Chao H. Chem. Commun., 2018, 54: 2421.

doi: 10.1039/C8CC00299A
[81]
Vally H, Misso N L, Madan V. Clin. Exp. Allergy., 2009, 39: 1643.

doi: 10.1111/cea.2009.39.issue-11
[82]
Ji A J, Savon S R, Jacobsen D W. Clin. Chem., 1995, 41: 897.

doi: 10.1093/clinchem/41.6.897
[83]
Wang X B, Jin H F, Tang C S, Du J B. Eur. J. Pharmacol., 2011, 670: 1.

doi: 10.1016/j.ejphar.2011.08.031
[84]
Li X, Bazer F W, Gao H, Jobgen W, Johnson G A, Li P, McKnight J R, Satterfield M C, Spencer T E, Wu G. Amino Acids , 2009, 37: 65.

doi: 10.1007/s00726-009-0264-5
[85]
Wang X B, Du J B, Cui H. Life Sci., 2014, 98: 63.

doi: 10.1016/j.lfs.2013.12.027
[86]
Li G, Chen Y, Wang J, Lin Q, Zhao J, Ji L, Chao H. Chem. Sci., 2013, 4: 4426.

doi: 10.1039/c3sc52301b
[87]
Winterbourn C C, Hampton M B, Livesey J H, Kettle A J. J. Biol. Chem., 2006, 281: 39860.

doi: 10.1074/jbc.M605898200
[88]
Chan J, Dodani S C, Chang C J. Nat. Chem., 2012, 4: 973.

doi: 10.1038/NCHEM.1500
[89]
Yap Y W, Whiteman M, Cheung N S. Cell Signal , 2007, 19: 219.

doi: 10.1016/j.cellsig.2006.06.013
[90]
Li G Y, Lin Q, Sun L, Feng C, Zhang P, Yu B, Chen Y, Wen Y, Wang H, Ji L N, Chao H. Biomaterials , 2015, 53: 285.

doi: 10.1016/j.biomaterials.2015.02.106
[91]
Faro M L L, Fox B, Whatmore J L, Winyard P G, Whiteman M. Nitric Oxide , 2014, 41: 38.

doi: 10.1016/j.niox.2014.05.014
[92]
Riccio D A, Schoenfisch M H. Chem. Soc. Rev., 2012, 41: 3731.

doi: 10.1039/c2cs15272j
[93]
Gladwin M T, Kim-Shapiro D B. Nature , 2012, 491: 344.

doi: 10.1038/nature11640
[94]
Lundberg J O, Gladwin M T, Weitzberg E. Nat. Rev. Drug Discovery , 2015, 14: 623.
[95]
Wu W , Guan R , Liao X , Yan X, Rees T W, Ji L N, Chao H. Anal. Chem., 2019, 91: 15.
[96]
Ghosh M, van den Akker N M, Wijnands K A, Poeze M, Weber C, McQuade L E, Pluth M D, Lippard S J, Post M J, Molin D G, van Zandvoort M A. PLoS One , 2013, 8( 9): 75331.
[97]
Thompson K H, Orvig C. Science , 2003, 300: 936.

doi: 10.1126/science.1083004
[98]
Lippard S J, Berg J. University Science Books , Mill Valley, CA , 1994.
[99]
Tapiero H, Townsend D M, Tew K D. Biomed. Pharmacother. , 2003, 57: 386.

doi: 10.1016/S0753-3322(03)00012-X
[100]
Gaggelli E, Kozlowski H, Valensin D, Valensin G. Chem . Rev. , 2006, 106: 1995.
[101]
Yang Y M, Zhao Q, Feng W, Li F Y. Chem. Rev., 2013, 113: 192.
[102]
Denk W, Strickler J H, Webb W W. Science , 1990, 248: 73.

doi: 10.1126/science.2321027
[103]
Zhang P, Pei L, Chen Y, Xu W, Lin Q, Wang J, Wu J, Shen Y, Ji L, Chao H. Chem. Eur. J., 2013, 19: 15494.

doi: 10.1002/chem.v19.46
[104]
Nolan E M, Lippard S J. Chem. Rev. , 2008, 108: 3443.

doi: 10.1021/cr068000q
[105]
Clifton J C. Pediatr. Clin. N. Am. , 2007, 54: 237.
[106]
Yang Z D, Feng J K, Ren A M. Inorg. Chem., 2008, 47: 10841.

doi: 10.1021/ic800417g
[107]
Shao P, Li Y, Yi J, Pritchett T M, Sun W. Inorg. Chem., 2010, 49: 4507.

doi: 10.1021/ic902281a
[108]
Flynn D C, Ramakrishna G, Yang H B, Northrop B H, Stang P J, Goodson T. J. Am. Chem. Soc., 2010, 132: 1348.

doi: 10.1021/ja9082655
[109]
Tao C H, Yang H, Zhu N, Yam V W W, Xu S J. Organometallics , 2008, 27: 5453.

doi: 10.1021/om800338x
[110]
Shi H F , Zhao Q , An Z F , Xu W J , Liu S J , Huang W . Progress in Chemistry , 2010, 22: 1741.
史慧芳, 赵强, 安众福, 许文娟, 刘淑娟, 黄维. 化学进展, 2010, 22: 1741.
[111]
Flynn D C, Ramakrishna G, Yang H B, Northrop B H, Stang P J, Goodson T. J. Am. Chem. Soc., 2010, 132: 1348.
[112]
Tao C H, Yang H, Zhu N, Yam V W W, Xu S J. Organometallics , 2008, 27: 5453.

doi: 10.1021/om800338x
[113]
Zhang J F, Lim C S, Cho B R, Kim J S. Talanta , 2010, 83: 658.

doi: 10.1016/j.talanta.2010.10.016
[114]
Vaupel P, Schlenger K, Knoop C, Hockel M. Cancer Res., 1991, 51: 3316.
[115]
Qiu K, Chen Y, Rees T W, Ji L, Chao H. Coord. Chem. Rev., 2019, 378: 66.

doi: 10.1016/j.ccr.2017.10.022
[116]
Liang H, Li Z, Zhang D, Liang H, Liu W, Yang J, Tan C, Ji L, Mao Z. Chem. Sci. , 2019, 10 : 1285
[117]
Henze K, Martin W. Nature , 2003, 42: 127.
[118]
Green D R. Cell , 1998, 94: 695.

doi: 10.1016/S0092-8674(00)81728-6
[119]
Bossy-Wetzel E, Barsoum M J, Godzik A, Schwarzenbacher R, Lipton S A. Curr. Opin. Cell. Biol., 2003, 15: 706.

doi: 10.1016/j.ceb.2003.10.015
[120]
Liesa M, Palacín M, Zorzano A. Physiol. Rev., 2009, 89: 799.

doi: 10.1152/physrev.00030.2008
[121]
Korobova F, Ramabhadran V, Higgs H N. Science , 2013, 339: 464.

doi: 10.1126/science.1228360
[122]
Komatsu H, Shindo Y, Oka K, Hill J P, Ariga K. Angew. Chem. Int. Ed., 2014, 53: 3993.

doi: 10.1002/anie.201311192
[123]
Huang H, Yang L, Zhang P, Qiu K, Huang J, Chen Y, Diao J, Liu J, Ji L, Long J, Chao H. Biomaterials , 2016, 83: S0142961216000168.
[124]
Luzio J P, Pryor P R, Bright N A. Nat. Rev. Mol. Cell Biol., 2007, 8: 622.

doi: 10.1038/nrm2217
[125]
Saftig P, Klumperman J. Nat. Rev. Mol. Cell Biol. , 2009, 10: 623.
[126]
Repnik U, Turk B. Mitochondrion , 2010, 10: 662.

doi: 10.1016/j.mito.2010.07.008
[127]
Guicciardi M E, Leist M. Gores G J. Oncogene , 2004, 23: 2881.

doi: 10.1038/sj.onc.1207512
[128]
Ghosh M, Carlsson F, Laskar A, Yuan X M, Li W. FEBS Lett. , 2011, 585: 623.

doi: 10.1016/j.febslet.2010.12.043
[129]
Hu Q, Bally M B, Madden T D. Nucleic Acids Res., 2002, 30: 3632.

doi: 10.1093/nar/gkf448
[130]
Shi H, He X, Yuan Y, Wang K, Liu D. Anal. Chem., 2010, 82: 2213.
[131]
Qiu K, Huang H, Liu B, Liu Y, Huang Z, Chen Y, Ji L, Chao H. ACS Appl. Mater. Interfaces , 2016, 8: 12702.

doi: 10.1021/acsami.6b03422
[132]
Zhou Z , Liu J , Huang J , Rees T W, Wang Y , Wang H , Li X , Chao H , Stang P J. Proc. Natl. Acad. Sci. U. S. A., 2019, 116, 41: 20296.
[133]
Farese R V, Walther T C. Cell , 2009, 139: 855.

doi: 10.1016/j.cell.2009.11.005
[134]
Fujimoto T, Parton R G. Perspect. Biol., 2011, 3: a004838.
[135]
Liang H, Cao J J, Zhang D Y, Hao L, Zhang M F, Tan C, Ji L, Mao Z. Sens. Actuators B , 2018, 262: 313.

doi: 10.1016/j.snb.2018.02.022
[136]
Koshel E I, Chelushkin P S, Melnikov A S, Serdobintsev P Y, Stolbovaia A Y, Saifitdinova A F, Shcheslavskiy V I, Chernyavskiy O, Gaginskaya E R, Koshevoy I O, Tunik S P. J. Photochem. Photobiol. A , 2017, 332: 122.
[137]
Zwerger M, Ho C Y, Lammerding J. Annu. Rev. Biomed. Eng. , 2011, 13: 397.

doi: 10.1146/annurev-bioeng-071910-124736
[138]
Tian X, Zhang Q, Zhang M, Uvdal K, Wang Q, Chen J, Du W, Huang B, Wua J, Tian Y. Chem. Sci. , 2017, 8: 142.

doi: 10.1039/C6SC02342H
[139]
Zhang Q, Zhang M, Wang H, Tian X, Ma W, Luo L, Wu J, Zhou H, Li S, Tian Y. J. Inorg. Biochem., 2019, 192: 1.

doi: 10.1016/j.jinorgbio.2018.12.001
[1] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[2] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[3] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[4] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[5] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[6] Xinda Yang, Qin Jiang, Pengfei Shi*. Two-Photon Absorptive Multinuclear Complexes [J]. Progress in Chemistry, 2018, 30(8): 1172-1185.
[7] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[8] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[9] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[10] Deng Yunpan, Yang Bo, Yu Gang, Zhuo Qiongfang, Deng Shubo, Zhang Hong. Catalytic Hydrodehalogenation of Halogenated Organic Compounds with Metal Complexes [J]. Progress in Chemistry, 2016, 28(4): 564-576.
[11] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[12] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[13] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[14] Cheng Long, Lü Xiaofeng, Li Ming, Zhang Lin, Hou Hongwei. Study on Third-Order Nonlinear Optical Properties of Functional Complexes [J]. Progress in Chemistry, 2013, 25(10): 1625-1630.
[15] Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei. Conjugated Polymers with Two-Photon Absorption for Bioimaging [J]. Progress in Chemistry, 2013, 25(10): 1739-1750.