中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1427-1436 DOI: 10.7536/PC200526 Previous Articles   

• Review •

Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation

Zhi Zhang1, Chentao Zou1, Shuijin Yang1,2,**()   

  1. 1. College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
    2. Institute for Advanced Materials of Hubei Normal University, Hubei 435002, China
  • Received: Revised: Online: Published:
  • Contact: Shuijin Yang
  • Supported by:
    the National Natural Science Foundation of China(21171053); the Natural Science Foundation of Hubei Province(2014CFA131)
Richhtml ( 62 ) PDF ( 1126 ) Cited
Export

EndNote

Ris

BibTeX

Due to the rapid development of industry and agriculture worldwide, water pollution has become the most important crisis facing humanity. Semiconductor-based photocatalytic method is one of the green technologies for controlling water pollution, which can effectively degrade and remove pollutants in water. The widespread use of metal oxide semiconductors in numerous photocatalytic materials, which stems from their salient features such as low toxicity, high stability, and resistance to chemical corrosion in aqueous solution. Among these, ternary metal oxides have surpassed other metal oxides in terms of photocatalytic activity under visible-light irradiation due to their reduced band gaps. This article systematically describes two typical ternary metal oxides-bismuth tungstate and bismuth molybdate. The preparation as well as the application and development of composite catalysts based on bismuth tungstate and bismuth molybdate in the field of photocatalytic degradation wastewater treatment are reviewed. The main problems in the design, mechanism research and modification methods of the composite materials on bismuth tungstate and bismuth molybdate are proposed, and the future development trend is prospected.

Contents

1 Introduction

2 Structure of pure phase bismuth tungstate/molybdate and disadvantages

3 Construction of bismuth tungstate/molybdate based composite materials

3.1 Photocatalytic degradation for purification of wastewater

3.2 Modification strategies

3.3 Key factors affecting catalyst performance

4 Conclusion and outlook

Fig.1 The crystal structure of Bi2WO6 and Bi2MoO6
Fig.2 The photodegradation mechanism of TiO2/Bi2WO6 89], Bi/Bi2MoO6 90] and C/Bi/Bi2WO6 91]
Table 1 The photocatalytic activity of pollutant degradation over different bismuth tungstate/molybdate based composite materials
Fig.3 Different charge transfer mechanism of Bi2O3/Bi2MoO6102] and Bi2O3/Bi2WO699] heterojunction. Copyright 2019, Elsevier; Copyright 2014, Royal Society of Chemistry
Fig.4 The photodegradation mechanism of Gd/Er/Lu/Bi2MoO6110] composites system. Copyright 2019, Elsevier
Fig.5 The mechanism and degradation pathway of photocatalytic degradation of NaPCP in Bi@Bi2MoO6120] composite system. Copyright 2020, American Chemical Society
Fig.6 Photocatalytic mechanism of Pt/Bi-Bi2WO6127] composites material for removing gaseous toluene. Copyright 2020, Elsevier
Fig.7 Preparation process of Bi2MoxW1-xO6132] solid solution and the efficiency of photocatalytic degradation of RhB. Copyright 2018, Elsevier
[1]
Homem V , Santos L. J. Environ. Manage., 2011, 92: 2304.f854b9dc-3a0b-4828-bd50-636345920686 http://www.sciencedirect.com/science/article/pii/S0301479711001782

doi: 10.1016/j.jenvman.2011.05.023
[2]
Stelo F , Kublik N , Ullah S , Wender H. J. Alloys Compd., 2020, 829: 154591.https://linkinghub.elsevier.com/retrieve/pii/S0925838820309543

doi: 10.1016/j.jallcom.2020.154591
[3]
Yagub M T , Sen T K , Afroze S , Ang H M. Adv. Colloid Interface Sci., 2014, 209: 172.https://linkinghub.elsevier.com/retrieve/pii/S0001868614001389

doi: 10.1016/j.cis.2014.04.002
[4]
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y. Science, 2001, 293: 269.
[5]
Cui W , Li J , Sun Y J , Wang H , Jiang G M , Lee S C , Dong F. Appl. Catal. B: Environ., 2018, 237: 938.
[6]
曹秀军( Cao X J ),张雷(Zhang L),朱元鑫(Zhu Y X),张鑫(Zhang X),吕超南(Lv C N),侯长民(Hou C M). 化学进展(Progress in Chemistry), 2020, 32(2/3): 262.
[7]
Zhao Y F , Zhao B , Liu J J , Chen G B , Gao R , Yao S Y , Li M Z , Zhang Q H , Gu L , Xie J L , Wen X D , Wu L Z , Tung C H , Ma D , Zhang T R. Angew. Chem. Int. Ed., 2016, 55: 4215.
[8]
Zhao Y F , Zhao Y X , Waterhouse G N , Zheng L R , Cao X Z , Teng F , Wu L Z , Tung C H , O’Hare D, Zhang T R. Adv. Mater., 2017, 29: 1703828.
[9]
丁星( Ding X ),杨祥龙(Yang X L),熊中亮(Xiong Z L),陈浩(Chen H),张礼知(Zhang L Z). 化学进展(Progress in Chemistry), 2017, 29(9): 1115.
[10]
Fujishima A , Honda K. Nature, 1972, 238: 37.
[11]
Chong M N , Jin B , Chow C W , Saint C . Water Res., 2010, 44: 2997.
[12]
Henderson M A. Surf. Sci. Rep., 2011, 66: 185.
[13]
Fan X X , Yu T , Zhang L Z , Chen X Y , Zou Z G. Chin. J. Chem. Phys., 2007, 20: 733.
[14]
Tian F , Xiong J Y , Zhao H P , Liu Y L , Xiao S Q , Chen R. CrystEngComm, 2014, 16: 4298.
[15]
Natarajan T S , Thampi K R , Tayade R J. Appl. Catal. B: Environ., 2018, 227: 296.
[16]
Low J X , Yu J G , Jaroniec M , Wageh S , Al-Ghamdi A A, Adv. Mater., 2017, 29: 1601694.
[17]
Navarro R M , Alvarez-Galvan M C, Mano J A, Al-Zahrani S M, Fierro J L. Energy Environ. Sci., 2010, 3: 1865.
[18]
Huang Y F , Xu H , Luo D , Zhao Y Z , Fang Y , Guo Q Y , Wei Y L , Fan L Q , Wu J H. J. Alloys Compd., 2019, 806: 418.
[19]
Zhang G , Hu Z Y , Sun M , Liu Y , Liu L M , Liu H J , Huang C P , Qu J H , Li J H. Adv. Funct. Mater., 2015, 25: 3726.
[20]
Wu D X , Zhu H T , Zhang C Y , Chen L . Chem. Commun., 2010, 46: 7250.
[21]
Zhang N , Ciriminna R , Pagliaro M , Xu Y J. Chem. Soc. Rev., 2014, 43: 5276.
[22]
Huang H W , Cao R R , Yu S X , Xu K , Hao W C , Wang Y G , Dong F , Zhang T R , Zhang Y H. Appl. Catal. B: Environ., 2017, 219: 526.
[23]
Li H D , Li W J , Wang F Z , Liu X T , Ren C J. Appl. Catal. B Environ., 2017, 217: 378.
[24]
Zhang K , Wang J , Jiang W J , Yao W Q , Yang H P , Zhu Y F. Appl. Catal. B: Environ., 2018, 232: 175.
[25]
Lv C D , Sun J X , Chen G , Zhou Y S , Li D Y , Wang Z K , Zhao B R. Appl. Catal. B: Environ., 2017, 208: 14.
[26]
Tang L , Wang J J , Jia C T , Lv G X , Xu G , Li W T , Wang L , Zhang J Y , Wu M H. Appl. Catal. B: Environ., 2017, 205: 587.
[27]
Yu J , Kudo A. Adv. Funct. Mater., 2006, 16: 2163.
[28]
Huang Y K , Kang S F , Yang Y , Qin H F , Ni Z J , Yang S J , Li X . Appl. Catal. B: Environ., 2016, 196: 89.
[29]
Li R G , Zhang F X , Wang D G , Yang J X , Li M R , Zhu J , Zhou X , Han H X , Li C . Nat. Commun., 2013, 4: 1432.
[30]
Zhou L , Wang W Z , Liu S W , Zhang L S , Xu H L , Zhu W. J. Mol. Catal. A: Chem., 2006, 252: 120.
[31]
Xi G C , Ye J H. Chem. Commun., 2010, 46: 1893.
[32]
Walsh A , Yan Y F , Huda M N , Al-Jassim M M, Wei S H. Chem. Mater., 2009, 21: 547.
[33]
Qin F , Li G F , Xiao H , Lu Z , Sun H Z , Chen R . Dalton Trans., 2012, 41: 11263.
[34]
Wei W , Dai Y , Huang B B. J. Phys. Chem. C, 2009, 113: 5658.
[35]
Hou D F , Hu X L , Hu P , Zhang W , Zhang M F , Huang Y H. Nanoscale, 2013, 5: 9764.
[36]
Yao W F , Wang H , Xu X H , Shang S X , Hou Y , Zhang Y , Wang M. Mater. Lett., 2003, 57: 1899.
[37]
Cao T P , Li Y J , Wang C H , Zhang Z Y , Zhang M Y , Shao C L , Liu Y C. J. Mater. Chem., 2011, 21: 6922.
[38]
Yuan X J , Shen D Y , Zhang Q , Zou H B , Liu Z L , Peng F. Chem. Eng. J., 2019, 369: 292.
[39]
Lv H , Liu Y M , Guang J , Ding Z W , Wang J J. RSC Adv., 2016, 6: 80226.
[40]
Li J Q , Liang Z , Guo L , Lei N , Song Q Q. Mater. Lett., 2018, 223: 93.
[41]
Wan J , Du X , Wang R M , Liu E Z , Jia J , Bai X , Hu X Y , Fan J. Chemosphere, 2018, 193: 737.
[42]
Shang Y R , Cui Y P , Shi R X , Yang P. Mater. Sci. Semicond. Process., 2019, 89: 240.
[43]
Sun H G , Tian Z X , Zhou G L , Zhang J M , Li P. Appl. Surf. Sci., 2019, 469: 125.
[44]
Shi Y H , Feng S H , Cao C S. Mater. Lett., 2000, 44: 215.
[45]
Dai W L , Hu X , Wang T Y , Xiong W W , Luo X B , Zou J P. Appl. Surf. Sci., 2018, 434: 481.
[46]
Li S J , Shen X F , Liu J S , Zhang L S. Environ. Sci.: Nano, 2017, 4: 1155.
[47]
Dai Z , Qin F , Zhao H P , Tian F , Liu Y L , Chen R. Nanoscale, 2015, 7: 11991.
[48]
Chen D M , Hao Q , Wang Z H , Ding H , Zhu Y F. CrystEngComm, 2016, 18: 1976.
[49]
He W J , Sun Y J , Jiang G M , Li Y H , Zhang X M , Zhang Y X , Zhou Y , Dong F. Appl. Catal. B: Environ., 2018, 239: 619.
[50]
Jin Y M , Shen X F , Liu Z X , Wang Z J , Zhu B , Xu P F , Luo L , Zhang L S. New J. Chem., 2018, 42: 411.
[51]
Zhang J L , Zhang L S , Yu N , Xu K B , Li S J , Wang H L , Liu J S. RSC Adv., 2015, 5: 75081.
[52]
Liu D , Wang J , Wang Y G , Zhu Y F. Catal. Sci. Technol., 2018, 8: 3278.
[53]
Xu C , Zou D B , Wang L H , Luo H , Ying T K. Ceram. Int., 2009, 35: 2099.
[54]
Ismailzade I H , Aliyev I M , Ismailov R M , Alekberov A I , Rzayev D A. Ferroelectrics, 1978, 22: 853.
[55]
Winger L A , Bradt R C , Hoke J H. J. Am. Ceram. Soc., 1980, 63: 291.
[56]
Murugan R. Phys. B: Condens. Matter, 2004, 352: 227.
[57]
Zhou D , Wang H , Pang L X , Randall C A , Yao X. J. Am. Ceram. Soc., 2009, 92: 2242.
[58]
Pang L X , Wang H , Zhou D , Yao X. J. Alloys Compd., 2010, 493: 626.
[59]
Jonjana S , Phuruangrat A , Thongtem T , Thongtem S . Mater. Lett., 2016, 172: 11.
[60]
Lv N , Li Y Y , Huang Z L , Li T , Ye S Y , Dionysiou D D , Song X L. Appl. Catal. B: Environ., 2019, 246: 303.
[61]
Lv J L , Zhang J F , Liu J , Li Z , Dai K , Liang C H. ACS Sustainable Chem. Eng., 2018, 6: 696.
[62]
Fu Y , Chang C , Chen P , Chu X L , Zhu L Y. J. Hazard. Mater., 2013, 254-255: 185.
[63]
Zhang Q , Dai Z , Cheng G , Liu Y L , Chen R . Ceram. Int., 2017, 43: 11296.
[64]
Huang J , Tan G Q , Ren H J , Yang W , Xu C , Zhao C C , Xia A. ACS Appl. Mater. Interfaces, 2014, 6: 21041.
[65]
Chen Y J , Tian G H , Shi Y H , Xiao Y T , Fu H G. Appl. Catal. B: Environ., 2015, 164: 40.
[66]
Geng B , Wei B , Gao H , Xu L L. J. Alloys Compd., 2017, 699: 783.
[67]
Huang H W , Liu L Y , Zhang Y H , Tian N. J. Alloys Compd., 2015, 619: 807.
[68]
Zhang J , Niu C G , Ke J , Zhou L F , Zeng G M. Catal. Commun., 2015, 59: 30.
[69]
Li B S , Lai C , Zeng G M , Qin L , Yi H , Huang D L , Zhou C Y , Liu X G , Cheng M , Xu P , Zhang C , Huang F L , Liu S Y. ACS Appl. Mater. Interfaces, 2018, 10: 18824.
[70]
Sun Y Y , Wu J , Ma T J , Wang P C , Cui C Y , Ma D. Appl. Surf. Sci., 2017, 403: 141.
[71]
Chen S G , Li Y H , Wu Z X , Wu B X , Li H B , Li F J. J. Solid State Chem., 2017, 249: 124.
[72]
Yu H G , Zhu Z F , Zhou J H , Wang J , Li J Q , Zhang Y L. Appl. Surf. Sci., 2013, 265: 424.
[73]
Song J , Zhang L , Yang J , Huang X H , Hu J S. Ceram. Int., 2017, 43: 9214.
[74]
Lai K R , Zhu Y T , Lu J B , Dai Y , Huang B B. Comput. Mater. Sci., 2013, 67: 88.
[75]
Wang Z N , Bai F Y , Wang X , Shang D , Xing Y H. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2016, 163: 73.
[76]
Low J X , Yu J G , Li Q , Cheng B. Phys. Chem. Chem. Phys., 2014, 16: 1111.
[77]
Zhao Q , Gong M , Liu W P , Mao Y L , Le S K , Ju S , Long F , Liu X F , Liu K , Jiang T S. Appl. Surf. Sci., 2015, 332: 138.
[78]
Li J Q , Guo Z Y , Zhu Z F. Ceram. Int., 2014, 40: 6495.
[79]
Dumrongrojthanath P , Phuruangrat A , Junploy P , Thongtem S , Thongtem T. Res. Chem. Intermed., 2016, 42: 1651.
[80]
Li M M , Li D G , Zhou Z R , Wang P F , Mi X Y , Xia Y G , Wang H T , Zhan S H , Li Y , Li L M. Chem. Eng. J., 2020, 382: 122762.
[81]
Zhang B , Li J , Gao Y Y , Chong R F , Wang Z L , Guo L , Zhang X W , Li C. J. Catal., 2017, 345: 96.
[82]
Chen Y , Yang W Y , Gao S , Sun C X , Li Q. ACS Appl. Nano Mater., 2018, 1: 3565.
[83]
Xu X , Ding X , Yang X L , Wang P , Li S , Lu Z X , Chen H. J. Hazard. Mater., 2019, 364: 691.
[84]
Wang J G , Liang H , Zhang C , Jin B , Men Y. Appl. Catal.B: Environ., 2019, 256: 117874.
[85]
Qiu G H , Wang R S , Han F , Tao X Q , Xiao Y , Li B X. Ind. Eng. Chem. Res., 2019, 58: 17389.
[86]
荆涛( Jing T ),戴瑛(Dai Y). 物理化学学报(Acta Physico-Chimica Sinica), 2017, 33(2): 295.
[87]
Song J M , Hu H Q , Wang X Z , Zhao S J , Shi Y L , Ren M S. J. Inorg. Mater., 2013, 28: 1275.
[88]
Castro A , Bégué P , Jiménez B , Ricote J , Jiménez R , Galy J. Chem. Mater., 2003, 15: 3395.
[89]
Yang Z Y , Chen L , Yang Y , Wang J J , Huang Y K , Liu X X , Yang S J. Semicond. Sci. Technol., 2017, 32: 065008.
[90]
Zou C T , Yang Z Y , Liang M J , He Y P , Yang Y , Yang S J. NANO, 2018, 13: 1850127.
[91]
Liang M J , Yang Z Y , Yang Y , Mei Y , Zhou H R , Yang S J. J. Mater. Sci.-Mater. Electron., 2019, 30: 1310.
[92]
Mahlambi M M , Ngila C J , Mamba B B. J. Nanomater., 2015, 2015: 1.
[93]
Peng Y , Wang K K , Liu T , Xu J , Xu B G. Appl. Catal. B: Environ., 2017, 203: 946.
[94]
Liu C , Zou L D , Wang L , Zhang H B , Zhang Z Y. J. Mater. Sci., 2020, 55: 6915.
[95]
Xu F , Xu C Y , Chen H M , Wu D P , Gao Z Y , Ma X M , Zhang Q , Jiang K. J. Alloys Compd., 2019, 780: 634.
[96]
Chen J F , Hu C , Deng Z , Gong X P , Su Y , Yang Q , Zhong J B , Li J Z , Duan R. Chem. Phys. Lett., 2019, 716: 134.
[97]
Jia J , Du X , Zhang Q Q , Liu E Z , Fan J. Appl. Surf. Sci., 2019, 492: 527.
[98]
Li S J , Hu S W , Jiang W , Zhang J L , Xu K B , Wang Z H. J. Colloid Interface Sci., 2019, 556: 335.
[99]
Peng Y , Yan M , Chen Q G , Fan C M , Zhou H Y , Xu A W. J. Mater. Chem. A, 2014, 2: 8517.
[100]
Li S J , Hu S W , Jiang W , Liu Y , Liu J S , Wang Z H. J. Colloid Interface Sci., 2017, 501: 156.
[101]
Zhao C C , Shao C L , Li X H , Li X W , Tao R , Zhou X J , Liu Y C. J. Alloys Compd., 2018, 747: 916.
[102]
Fu F , Shen H D , Xue W W , Zhen Y Z , Soomro R A , Yang X X , Wang D J , Xu B , Chi R. J. Catal. 2019, 375: 399.
[103]
Erwin S C , Zu L J , Haftel M I , Efros A L , Kennedy T A , Norris D J. Nature, 2005, 436: 91.
[104]
Norris D J , Efros A L , Erwin S C. Science, 2008, 319: 1776.
[105]
Jo W J , Jang J W , Kong K J , Kang H J , Kim J Y , Jun H , Parmar K P , Lee J S. Angew. Chem. Int. Ed., 2012, 51: 3147.
[106]
Lei F C , Zhang L , Sun Y F , Liang L , Liu K T , Xu J Q , Zhang Q , Pan B C , Luo Y , Xie Y. Angew. Chem. Int. Ed., 2015, 54: 9266.
[107]
Shim M , Guyot-Sionnest P. Nature, 2000, 407: 981.
[108]
Hoang L H , Phu N D , Peng H , Chen X B. J. Alloys Compd., 2018, 744: 228.
[109]
Zhu F Y , Lv Y Z , Li J J , Ding J , Xia X H , Wei L L , Jiang J Q , Zhang G S , Zhao Q L. Chemosphere, 2020, 252: 126577.
[110]
Li H D , Li W J , Liu X T , Ren C J , Miao X , Li X Y. Appl. Surf. Sci., 2019, 463: 556.
[111]
Teoh W Y , Mädler L , Beydoun D , Pratsinis S E , Amal R. Chem. Eng. Sci., 2005, 60: 5852.
[112]
Chen X , Zhu H Y , Zhao J C , Zheng Z F , Gao X P. Angew. Chem. Int. Ed., 2008, 47: 5353.
[113]
Wang Y H , Liu M , Chen W , Mao L Q , Shangguan W F. J. Alloys Compd., 2019, 786: 149.
[114]
Height M J , Pratsinis S E , Mekasuwandumrong O , Praserthdam P. Appl.Catal. B: Environ., 2006, 63: 305.
[115]
Wu Q S , Cui Y , Yang L M , Zhang G Y , Gao D Z. Sep. Purif. Technol., 2015, 142: 168.
[116]
Phuruangrat A , Putdum S , Dumrongrojthanath P , Ekthammathat N , Thongtemd S , Thongtemb T. Mater. Sci. Semicond. Process., 2015, 34: 175.
[117]
Dong F , Xiong T , Sun Y J , Zhao Z W , Zhou Y , Feng X , Wu Z B. Chem. Commun., 2014, 50: 10386.
[118]
Zhang L L , Wang Z Q , Hu C , Shi B Y. Appl. Catal. B: Environ., 2019, 257: 117785.
[119]
Yu S X , Zhang Y H , Li M , Du X , Huang H W. Appl. Surf. Sci., 2017, 391: 491.
[120]
Xu X , Yang N , Wang P , Wang S Y , Xiang Y G , Zhang X H , Ding X , Chen H. ACS Appl. Mater. Interfaces, 2020, 12: 1867.
[121]
Yan D F , Li Y X , Huo J , Chen R , Dai L M , Wang S Y. Adv. Mater. 2017, 29, 1606459.
[122]
Jiao X C , Chen Z W , Li X D , Sun Y F , Gao S , Yan W S , Wang C M , Zhang Q , Lin Y , Luo Y , Xie Y. J. Am. Chem. Soc., 2017, 13: 7586.
[123]
Wang H , Sun X S , Li D D , Zhang X D , Chen S C , Shao W , Tian Y P , Xie Y. J. Am. Chem. Soc., 2017,139: 2468.
[124]
Xing M Y , Zhou Y , Dong C Y , Cai L J , Zeng L X , Shen B , Pan L H , Dong C C , Chai Y , Zhang J L , Yin Y D. Nano Lett., 2018, 18: 3384.
[125]
Jing K Q , Ma W , Ren Y H , Xiong J H , Guo B B , Song Y J , Liang S J , Wu L. Appl.Catal. B: Environ., 2019, 243: 10.
[126]
Bai J W , Li X M , Hao Z W , Liu L. J. Colloid Interface Sci., 2020, 560: 510.
[127]
Zhang S S , Pu W H , Chen A Y , Xu Y K , Wang Y Y , Yang C Z , Gong J Y. J. Hazard. Mater., 2020, 384: 121478.
[128]
Li X Z , Li F H , Lu X W , Zuo S X , Yao C , Ni C Y. J. Alloys Compd., 2017, 709: 285.
[129]
Song X C , Zheng Y F , Ma R , Zhang Y Y , Yin H Y. J. Hazard. Mater., 2011, 192: 186.
[130]
Zhou L , Yu M M , Yang J , Wang Y H , Yu C Z. J. Phys. Chem. C, 2010, 114: 18812.
[131]
Morales-Cruz D , Paraguay-Delgado F , Borja-Urby R , Basurto-Cereceda S , Herrera-Pérez G , Longod P , Malac M. Mater. Sci. Semicond. Process., 2017, 63: 184.
[132]
Li W Q , Ding X G , Wu H T , Yang H. Appl. Surf. Sci., 2018, 447: 636.
[133]
韩锐暄( Han R X ),赵彬侠(Zhao B X),贺贝贝(He B B),骆海东(Luo H D),李志亮(Li Z L),邱爽(Qiu S),张小里(Zhang X L). 人工晶体学报(Journal of Synthetic Crystals), 2018, 47(10): 2148.
[134]
Yang L M , Zhang G Y , Wang H R , Bai X , Shen X Q , Liu J W , Gao D Z. CrystEngComm, 2016, 18: 3683.
[135]
Jiang J , Zhao K , Xiao X Y , Zhang L Z. J. Am. Chem. Soc., 2012, 134: 4473.
[136]
Sun H G , Tian Z X , Zhou G L , Zhang J M , Li P. Appl. Surf. Sci., 2019, 469: 125.
[137]
Fang G L , Liu J , Yan X H , Wang D Y , Israr J , Xue T. Adv. Mater. Interfaces, 2018, 5: 1800844.
[138]
Wang D J , Shen H D , Guo J , Wang C , Fu F , Liang Y C. Appl. Surf. Sci., 2018, 436: 536.
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[6] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[7] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[8] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[9] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[12] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[13] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[14] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.