中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 649-669 DOI: 10.7536/PC200512 Previous Articles   Next Articles

• Review •

Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries

Shihao Zhou1,2, Xianwen Wu1(), Yanhong Xiang3, Ling Zhu3, Zhixiong Liu3, Caixian Zhao2   

  1. 1 School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
    2 College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
    3 School of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou 416000, China
  • Received: Revised: Online: Published:
  • Contact: Xianwen Wu
  • Supported by:
    the National Natural Science Foundation of China(51704124); the National Natural Science Foundation of China(51762017); the National Natural Science Foundation of China(51262008); the Research Foundation of Education Bureau of Hunan Province, China(18A285); and the Huxiang Youth Talent Support Program(2018RS3098)
Richhtml ( 133 ) PDF ( 2009 ) Cited
Export

EndNote

Ris

BibTeX

Aqueous zinc-ion batteries(AZIBs) have a broad application prospect in large-scale energy storage field with low cost, high safety and high environmental friendliness characteristics. At present, the cathode materials which have attracted much attention have become the research hotspot. Manganese-based compound is one of the most promising cathode materials in the market due to the advantages of abundant resources, environmental friendliness and low price. In this paper, the structural characteristics of different manganese-compounds and manganese-based AZIBs involved four kinds of energy storage mechanisms in the charging and discharging process are reviewed in detail, and the existing problems and optimization strategies of AZIBs manganese-based cathode materials are discussed. Finally, the possible research direction of AZIBs cathode materials is proposed, which is expected to play a certain role in the development of AZIBs.

Contents

1 Introduction

2 Manganese-based cathode materials for aqueous zinc ion batteries

2.1 MnO2

2.2 Mn2O3

2.3 Mn3O4

2.4 MnO

2.5 Other manganese compounds

3 Energy storage mechanism of manganese-based aqueous zinc ion batteries

3.1 Zn2+ insertion/extraction mechanism

3.2 Chemical conversion reaction mechanism

3.3 Zn2+ and H+ co-insertion/co-extraction

3.4 Dissolution/deposition mechanism

4 Problems and optimization strategies of manganese-based cathode materials

4.1 Doping

4.2 Surface modification

4.3 Introduction of defects

4.4 “Pillar” effect

4.5 Composite

4.6 Structural design

4.7 Electrolyte optimization

4.8 Other strategies

5 Conclusion and outlook

Table 1 Comparison of characteristics between AZIBs and LIBs[9,17??~20]
Fig.1 Schematic diagram of various crystal structures of MnO2: (a) α-MnO 2[31], (b) β-MnO 2[32], (c) γ-MnO 2[33], (d) R-MnO2[9], (e) Todorokite MnO2[34], (f) δ-MnO 2[37] (g) λ-MnO 2[41], (h) ε-MnO 2[32]
Fig.2 Crystal structure diagram: (a) α-Mn 2O3[43], (b) Mn3O4[44], (c) MnO[45],(d) ZnMn2O4[48], (e) MnS[50]
Fig.3 The mechanism of Zn2+insertion/extraction in (a) α-MnO 2[36], (c) γ-MnO 2[33], (d) δ-MnO 2[37], (e) α-Mn 2O3[43], (f) Mn3O4[44], (b) in situ XRD during β-MnO 2 cycle[52]
Fig.4 (a) XRD diagram of KMO electrode during discharge,(b) SEM photograph of KMO electrode discharging to 1.0 V,(c) energy storage process diagram of KMO[52]
Fig. 5 (a) The GITT curve of MnO2 anode,(b) discharge curve of electrode in MnSO4 electrolyte with or without ZnSO4,(c) the XRD pattern at the discharge depths of 1.3 V and 1.0 V[56],(d) energy storage process of diagram MnO[57],(e) energy storage process of diagram δ-MnO 2[56]
Fig.6 (a) In situ XRD of α-MnO 2 electrode during charge and discharge,(b) SEM of α-MnO 2 electrode during full charge,(c),(d) SEM, EDX of α-MnO 2 electrode during full discharge[59]
Fig.7 (a),(b) SEM of α-MnO 2 and δ-MnO 2 during charging and discharging,(c) schematic diagram of energy storage process of MnO2[60], (d) schematic diagram of energy storage process of ZnMn2O4[61]
Fig.8 (a) XRD of Ce doped MnO2[68], (b) XRD of V-doped MnO2[70], (c) XRD of NixMn3-xO4@C with different Ni doping contents[72], (d) TEM of MnOx@N-C[53]
Fig.9 (a) TEM diagram of α-MnO 2@Graphene,(b) comparison diagram of specific energy between α-MnO 2@Graphene and other materials[80],(c),(d) SEM images and TEM images of ZnMn2O4@PEDOT[84]
Fig.10 (a) The complete Zn2+ adsorption/desorption diagram of δ-MnO 2and Od-MnO2,(b) XANES diagram of od-MnO2,(c) K-edge X-ray absorption near edge spectrum[94],(d) the diagram of Zn2+ embedded/removed from ZnMn2O4 spinel, and the Zn2+ diffusion path without Mn vacancy and with Mn vacancy in ZnMn2O4 spinel[99]
Fig.11 (a) The structure of zinc vacancy formation energy (Evac) of ZnMn2O4 and OD-ZMO,(b) The energy distribution of Zn diffusion in ZnMn2O4 and (c) OD-ZMO[84]
Fig.12 (a) The structure of zinc interlayer and relative energy(left panel), the formation of Zn-Mn dumbbell structure(right panel number is the distance between atoms)[101],(b) Schematic illustration of H+ diffusion into KMO with perfect structure and oxygen defect structure[52],(c) structure diagram of KxMn8-xO16[105],(d) structure diagram of Na0.46Mn2O4·1.4H2O[107],(e) structure diagram of PANI embedded δ-MnO2[111]
Fig.13 (a) TEM image of ZnMn2O4/Mn2O3 composite,(b) the galvanostatic charge-discharge profiles,(c) the cyclic voltammograms of as-prepared ZnMn2O4/Mn2O3 composite at different scan rates and(d) the relationships between the peak current and square root of scan rate in the main cathodic and anodic processes[117]
Fig.14 (a) TEM image of ZnMn2O4,(b) N2 adsorption-desorption isotherm of hollow porous ZnMn2O4 and the corresponding pore size distribution curve(inset),(c) The rate performance of ZnMn2O4/Zn at different current densities,(d) The cycling performance of ZnMn2O4/Zn at different C-rates[54]
Fig.15 (a) Synthesis schematic,(b) SEM image, and(c) EIS spectra of SSWM@Mn3O4[122], (d) Schematic illustration of the nanocrystalline MnO2 electrodeposited on CFP process, and the corresponding SEM images of CFP before and after electrodeposition,(e) MnO2@CFP of SEM image, inset showing the high-magnified SEM.(f) The EIS comparison diagram of cathode after the first, second, and 100th cycles at 1.3 C[56]
Fig.16 (a) Schematic of the electrolytic Zn-MnO2 battery,(b) working potential window of the electrolytic Zn-MnO2 battery[17]
Table 2 Summary of the configuration and electrochemical performances of various Mn base meterials using in AZIBs
Cathode Morphology Electrolyte Voltage(V) Capacity(mA·h·g-1) Capacity retention/n cycles/y A·g-1 ref
ɑ-MnO2 nanorod 1 M ZnSO4 1~1.8 233(83 mA·g-1) 65%/50 cycles/0.083 31
ɑ-MnO2 nanorod 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 161(500 mA·g-1) 92%/5000 cycles/5 C 55
ɑ-MnO2@Graphene nanowire 2 M ZnSO4 + 0.1 M MnSO4 1~1.85 382.2(300 mA·g-1) 94%/3000 cycles/3 80
α-MnO2@CNT nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 306(61.6 mA·g-1) 97%/1000/2.772 81
α-MnO2@CNT HMs microsphere 2 M ZnSO4 + 0.1 M MnSO4 1.2~1.85 296(200 mA·g-1) 97%/1000/2.772 138
MnO2@porous-C nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 239(100 mA·g-1) 100%/1000 cycles/1 73
α-MnO2@In2O3 nanotube 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 425(100 mA·g-1) 75 mA·h·g-1/3000 cycles/3 87
Hollow MnO2/CC nanosheet 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 263.9(1A·g-1) 263.9/300 cycles/1 123
β-MnO2 nanorod 1 M ZnSO4 1~1.8 270(100 mA·g-1) 75%/200 cycles/0.2 139
β-MnO2 nanorod 3 M Zn(CF3SO3)2+ 0.1 M Mn(CF3SO3)2 0.8~1.9 258(0.65 C) 94%/2000 cycles/6.5C 32
β-MnO2@C nanoparticle 3 M Zn(CF3SO3)2 + 0.1 M MnSO4 1.0~1.8 150(200 mA·g-1) 100%/400 cycles/0.3 74
γ-MnO2 mesoporous 1 M ZnSO4 0.8~1.8 285(0.05 mA·c m - 2 ) 63%/40 cycles/0.5mA·c m - 2 33
γ-MnO2@C nanorod 2 M ZnSO4 + 0.4 M MnSO4 0.8~1.8 301(500 mA·g-1) 64.1%/300 cycles/10 75
Todorokite-MnO2 nanoflake 1 M ZnSO4 0.7~2.0 108(0.5 C) 72%50 cycles/0.5C 34
δ-MnO2 nanoflake 1 M ZnSO4 1.0~1.8 252(83 mA·g-1) 44%/100 cycles/0.1 38
δ-MnO2 nanoparticle 1 M Zn(TFSI)2+0.1 M Mn(TFSI)2 0.9~1.8 238(0.2 C) 93%/4000 cycles/20C 58
λ-MnO2 nanoparticle 1 M ZnSO4 1~1.8 136(100 mA·g-1) - 41
ε-MnO2@CFP nanoparticle 2 M ZnSO4 + 0.2 M MnSO4 1~1.8 290(1 C) 100%/10 000 cycles/6.5C 56
ɑ-Mn2O3 nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 1~1.9 148(100 mA·g-1) 51%/2000 cycles/0.1 43
Mn2O3/Al2O3 microbundle 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 289(300 mA·g-1) 118 mAh·g-1/1100 cycle/1.5 117
Mn3O4 nanoparticle 2 M ZnSO4 0.8~1.9 239.2(1 A·g-1) 73%/300 cycles/0.5 44
Porous cube-like Mn3O4 @C porous nanocube 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.9 102.3(2 A·g-1) 77.1%/200 cycles/0.5 119
Mn3O4@NC nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.9 280(100 mA·g-1) 77.6%/700 cycles/1 77
MnO nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 1.0~1.9 330(100 mA·g-1) 300 mAh·g-1/300 cycles/0.3 57
Mn0.610.39O @C nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 117.2(1 A·g-1) 99%/1500 cycles/1 45
ZnMn2O4 microrod 1 M ZnSO4 + 0.1 M MnSO4 0.6~1.9 240(200 mA·g-1) 79%/1000 cycles/2 61
Hollow ZnMn2O4 hollow microsphere 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.9 220(100 mA·g-1) 106.5 mAh·g-1/300 cycles/0.1 54
ZnMn2O4/C nanoparticle 3 M Zn(CF3SO3)2 0.8~1.9 150(50 mA·g-1) 94%/500 cycles/0.5 99
ZnMn2O4@PCPs nanoparticle 1 M ZnSO4 +0.05 M MnSO4 0.8~1.8 145.2(1000 mA·g-1) 86.5%/2000 cycles/1 121
HM-ZnMn2O4@rGO hollow nanosphere 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 147(300 mA·g-1) 72.7/6500 cycles/1 140
OD-ZnMn2O4@PEDOT nanofiber PVA/LiCl/ZnCl2/MnSO4Gel 0.8~1.9 221(0.5 mA·c m - 2 ) 93.8%/300 cycles/8 mA·c m - 2 84
MnS nanoparticle 2 M ZnSO4 1~1.8 110(500 mA·g-1) 63.6%/100 cycles/0.5 50
MnOx@N-C nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 100(2 A·g-1) 100 mA·h·g-1/1600 cycles/2 53
V-doped MnO2 nanoparticle 1 M ZnSO4 1~1.8 266(66 mA·g-1) 49%/100 cycles/0.066 70
Ce-doped α-MnO 2 nanorod 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 134(5 C) 70%/100 cycles/5 C 68
Ti-MnO2 nanowire 3 M Zn(CF3SO3)2+ 0.1 M Mn(CF3SO3)2 ~ 259(100 mA·g-1) 86%/4000 cycles/1 71
NixMn3-xO4@C nanoparticle 2M ZnSO4 + 0.15 M MnSO4 1~1.85 133.7(200 mA·g-1) 91.9%/850 cycles/0.4 72
ZnNixCoyMn2-x-yO4@N-GO nanoparticle 2 M ZnSO4 +0.1 M MnSO4 0.7~1.7 3.5(1.5 A·g-1) 79%/900 cycles/1 121
H2O-intercalated δ-MnO 2 nanoflake 1 M ZnSO4 1~1.9 154(3 A·g-1) 75.3%/200 cycles 101
Na0.46Mn2O4·1.4H2O nanoplates 2 M ZnSO4 + 0.2 M MnSO4 0.9~1.9 159(2 A·g-1) 98%/10 000 cycles/20 C 107
La+-intercalated δ-MnO 2 nanofloret 1 M ZnSO4 + 0.4 M MnSO4 0.8~1.9 278.5(100 mA·g-1) - 108
K0.8Mn8O16 nanorod 2 M ZnSO4 + 0.2 M MnSO4 1~1.8 330(100 mA·g-1) 150 mAh·g-1/1000 cycles/1 52
KxMn8-xO16 nanodendrite 1 M Zn(CF3SO3)2 + 0.05 M MnSO4 0.8~1.8 116(100 mA·g-1) 74%/300 cycles/0.1 105
P-MnO2-x@VMG nanosheet PVA/ZnCl2/MnSO4 Gel 1~1.8 302.8(500 mA·g-1) 90%/1000 cycles/2 109
ZnMn2O4/NG nanoparticle 1 M ZnSO4 +0.05 M MnSO4 0.8~1.8 221(100 mA·g-1) 97.4%/2500 cycles/1 76
MnOx/PPy nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 0.4~1.9 302(150 mA·g-1) 114 mAh·g-1/1000 cycles/6 141
ZnMn2O4/Mn2O3 microsphere 1 M ZnSO4 0.8~1.9 82.6(500 mA·g-1) 112 mAh·g-1/300 cycles/0.5 117
Binder-free Mn3O4 nanoflower 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 296(100 mA·g-1) 100%/100 cycles/0.5 122
oxygen-deficient δ-MnO 2 nanosheet 1 M ZnSO4 + 0.2 M MnSO4 1~1.8 159(200 mA·g-1) 80%/3000 cycles/5 94
oxygen-deficient β-MnO 2 nanowire 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 302(50 mA·g-1) 94%/3000 cycles/5 95
[1]
Dillon A C. Chem. Rev., 2010, 110(11): 6856.
[2]
Leng J, Wang Z X, Wang J X, Wu H H, Yan G C, Li X H, Guo H J, Liu Y, Zhang Q B, Guo Z P. Chem. Soc. Rev., 2019, 48(11): 3015.

pmid: 31098599
[3]
Nitta N, Wu F X, Lee J T, Yushin G. Mater. Today, 2015, 18(5): 252.
[4]
Lin M C, Gong M, Lu B G, Wu Y P, Wang D Y, Guan M Y, Angell M, Chen C X, Yang J, Hwang B J, Dai H J. Nature, 2015, 520(7547): 324.
[5]
Zubi G, Dufo-LÓpez R, Carvalho M, Pasaoglu G. Renew. Sustain. Energy Rev., 2018, 89: 292.
[6]
Ni J F, Fu S D, Wu C, Maier J, Yu Y, Li L. Adv. Mater., 2016, 28(11): 2259.

pmid: 26789864
[7]
Chen S Q, Wu C, Shen L F, Zhu C B, Huang Y Y, Xi K, Maier J, Yu Y. Adv. Mater., 2017, 29(48): 1700431.
[8]
Zhang Q, Wang Z J, Zhang S L, Zhou T F, Mao J F, Guo Z P. Electrochem. Energ. Rev., 2018, 1(4): 625.
[9]
Tang B Y, Shan L T, Liang S Q, Zhou J. Energy Environ. Sci., 2019, 12(11): 3288.
[10]
Son S B, Gao T, Harvey S P, Steirer K X, Stokes A, Norman A, Wang C S, Cresce A, Xu K, Ban C M. Nat. Chem., 2018, 10(5): 532.

pmid: 29610460
[11]
Wang D, Gao X W, Chen Y H, Jin L Y, Kuss C, Bruce P G. Nat. Mater., 2018, 17(1): 16.

doi: 10.1038/nmat5036 pmid: 29180779
[12]
Wang T T, Li C P, Xie X S, Lu B A, He Z X, Liang S Q, Zhou J. ACS Nano, 2020, 14: 16321.
[13]
Zeng X H, Hao J N, Wang Z J, Mao J F, Guo Z P. Energy Storage Mater., 2019, 20: 410.
[14]
Zhao Y L, Zhu Y H, Zhang X B. InfoMat, 2020, 2(2): 237.
[15]
Kordesh K, Weissenbacher M. J. Power Sources, 1994, 51(1/2): 61.
[16]
Ming J, Guo J, Xia C, Wang W X, Alshareef H N. Mater. Sci. Eng.: R: Rep., 2019, 135: 58.
[17]
Chao D L, Zhou W H, Ye C, Zhang Q H, Chen Y G, Gu L, Davey K, Qiao S Z. Angew. Chem. Int. Ed., 2019, 58(23): 7823.
[18]
Li H F, Ma L T, Han C P, Wang Z F, Liu Z X, Tang Z J, Zhi C Y. Nano Energy, 2019, 62: 550.
[19]
Wu X W, Li Y H, Xiang Y H, Liu Z X, He Z Q, Wu X M, Li Y J, Xiong L Z, Li C C, Chen J. J. Power Sources, 2016, 336: 35.
[20]
Wu X W, Li Y H, Li C C, He Z X, Xiang Y H, Xiong L Z, Chen D, Yu Y, Sun K T, He Z Q, Chen P. J. Power Sources, 2015, 300: 453.
[21]
Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Chem. Rev., 2020, 120(15): 7795.
[22]
Chen L N, An Q Y, Mai L Q. Adv. Mater. Interfaces, 2019, 6(17): 1900387.
[23]
He P, Chen Q, Yan M Y, Xu X, Zhou L, Mai L Q, Nan C W. EnergyChem, 2019, 1(3): 100022.
[24]
Pan Z H, Yang J, Yang J, Zhang Q C, Zhang H, Li X, Kou Z K, Zhang Y F, Chen H, Yan C L, Wang J. ACS Nano, 2020, 14(1): 842.

pmid: 31869204
[25]
Kang Z, Wu C L, Dong L B, Liu W B, Mou J, Zhang J W, Chang Z W, Jiang B Z, Wang G X, Kang F Y, Xu C J. ACS Sustainable Chem. Eng., 2019, 7(3): 3364.
[26]
Hu P, Zhu T, Wang X P, Zhou X F, Wei X J, Yao X H, Luo W, Shi C W, Owusu K A, Zhou L, Mai L Q. Nano Energy, 2019, 58: 492.
[27]
Li W, Wang K, Cheng S, Jiang K. Energy Storage Mater., 2018, 15: 14.
[28]
Wei W F, Cui X W, Chen W X, Ivey D G. Chem. Soc. Rev., 2011, 40(3): 1697.

pmid: 21173973
[29]
Selvakumaran D, Pan A Q, Liang S Q, Cao G Z. J. Mater. Chem. A, 2019, 7(31): 18209.
[30]
Fan X L, Zhu Y J, Luo C, Suo L M, Lin Y, Gao T, Xu K, Wang C S. ACS Nano, 2016, 10(5): 5567.
[31]
Alfaruqi M H, Gim J, Kim S, Song J J, Jo J, Kim S, Mathew V, Kim J. J. Power Sources, 2015, 288: 320.
[32]
Zhang N, Cheng F Y, Liu J X, Wang L B, Long X H, Liu X S, Li F J, Chen J. Nat. Commun., 2017, 8: 405.

pmid: 28864823
[33]
Alfaruqi M H, Mathew V, Gim J, Kim S, Song J J, Baboo J P, Choi S H, Kim J. Chem. Mater., 2015, 27(10): 3609.
[34]
Lee J, Ju J B, Cho W I, Cho B W, Oh S H. Electrochimica Acta, 2013, 112: 138.
[35]
Lee B, Yoon C S, Lee H R, Chung K Y, Cho B W, Oh S H. Sci. Rep., 2014, 4: 6066.

pmid: 25317571
[36]
Lee B, Lee H R, Kim H, Chung K Y, Cho B W, Oh S H. Chem. Commun., 2015, 51(45): 9265.
[37]
Alfaruqi M H, Islam S, Putro D Y, Mathew V, Kim S, Jo J, Kim S, Sun Y K, Kim K, Kim J. Electrochimica Acta, 2018, 276: 1.
[38]
Alfaruqi M H, Gim J, Kim S, Song J J, Pham D T, Jo J, Xiu Z L, Mathew V, Kim J. Electrochem. Commun., 2015, 60: 121.
[39]
Guo C, Liu H M, Li J F, Hou Z G, Liang J W, Zhou J, Zhu Y C, Qian Y T. Electrochimica Acta, 2019, 304: 370.
[40]
Xu W W, Wang Y. Nano-Micro Lett., 2019, 11: 90.
[41]
Yuan C L, Zhang Y, Pan Y, Liu X W, Wang G L, Cao D X. Electrochimica Acta, 2014, 116: 404.
[42]
Song M, Tan H, Chao D L, Fan H J. Adv. Funct. Mater., 2018, 28(41): 1802564.
[43]
Jiang B Z, Xu C J, Wu C L, Dong L B, Li J, Kang F Y. Electrochimica Acta, 2017, 229: 422.
[44]
Hao J W, Mou J, Zhang J W, Dong L B, Liu W B, Xu C J, Kang F Y. Electrochimica Acta, 2018, 259: 170.
[45]
Zhu C Y, Fang G Z, Liang S Q, Chen Z X, Wang Z Q, Ma J Y, Wang H, Tang B Y, Zheng X S, Zhou J. Energy Storage Mater., 2020, 24: 394.
[46]
Tang F, Gao J Y, Ruan Q Y, Wu X W, Wu X S, Zhang T, Liu Z X, Xiang Y H, He Z Q, Wu X M. Electrochimica Acta, 2020, 353: 136570.
[47]
Tang F, He T, Zhang H H, Wu X W, Li Y K, Long F N, Xiang Y H, Zhu L, Wu J H, Wu X M. J. Electroanal. Chem., 2020, 873: 114368.
[48]
Xu B, Qian D N, Wang Z Y, Meng Y S. Mater. Sci. Eng.: R: Rep., 2012, 73(5/6): 51.
[49]
Aravindan V, Lee Y S, Madhavi S. Adv. Energy Mater., 2015, 5(13): 1402225.
[50]
Liu W B, Hao J W, Xu C J, Mou J, Dong L B, Jiang F Y, Kang Z, Wu J L, Jiang B Z, Kang F Y. Chem. Commun., 2017, 53(51): 6872.
[51]
Palacín M R. Chem. Soc. Rev., 2009, 38(9): 2565.

pmid: 19690737
[52]
Islam S, Alfaruqi M H, Mathew V, Song J J, Kim S, Kim S, Jo J, Baboo J P, Pham D T, Putro D Y, Sun Y K, Kim J. J. Mater. Chem. A, 2017, 5(44): 23299.
[53]
Fu Y, Wei Q, Zhang G, Wang X, Zhang J, Hu Y, Wang D, Zuin L, Zhou T, Wu Y. Adv. Energy Mater., 2018, 8: 1801445.
[54]
Wu X W, Xiang Y H, Peng Q J, Wu X S, Li Y H, Tang F, Song R C, Liu Z X, He Z Q, Wu X M. J. Mater. Chem. A, 2017, 5(34): 17990.
[55]
Pan H L, Shao Y Y, Yan P F, Cheng Y W, Han K S, Nie Z M, Wang C M, Yang J H, Li X L, Bhattacharya P, Mueller K T, Liu J. Nat. Energy, 2016, 1(5): 16039.
[56]
Sun W, Wang F, Hou S, Yang C Y, Fan X L, Ma Z H, Gao T, Han F D, Hu R Z, Zhu M, Wang C S. J. Am. Chem. Soc., 2017, 139(29): 9775.

doi: 10.1021/jacs.7b04471 pmid: 28704997
[57]
Wang J J, Wang J G, Liu H Y, You Z Y, Wei C G, Kang F Y. J. Power Sources, 2019, 438: 226951.
[58]
Jin Y, Zou L F, Liu L L, Engelhard M H, Patel R L, Nie Z M, Han K S, Shao Y Y, Wang C M, Zhu J, Pan H L, Liu J. Adv. Mater., 2019, 31(29): 1900567.
[59]
Lee B, Seo H R, Lee H R, Yoon C S, Kim J H, Chung K Y, Cho B W, Oh S H. ChemSusChem, 2016, 9(20): 2948.

pmid: 27650037
[60]
Guo X, Zhou J, Bai C L, Li X K, Fang G Z, Liang S Q. Mater. Today Energy, 2020, 16: 100396.
[61]
Soundharrajan V, Sambandam B, Kim S, Islam S, Jo J, Kim S, Mathew V, Sun Y K, Kim J. Energy Storage Mater., 2020, 28: 407.
[62]
Oberholzer P, Tervoort E, Bouzid A, Pasquarello A, Kundu D P. ACS Appl. Mater. Interfaces, 2019, 11(1): 674.

pmid: 30521309
[63]
Kim H, Kim J C, Bianchini M, Seo D H, Rodriguez-Garcia J, Ceder G. Adv. Energy Mater., 2018, 8(9): 1702384.
[64]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[65]
Wang H W, Wang C, Dang B K, Xiong Y, Jin C D, Sun Q F, Xu M. ChemElectroChem, 2018, 5(17): 2367.
[66]
Zhu X Y, Quan J B, Huang J C, Ma Z, Chen Y X, Zhu D C, Ji C X, Li D C. RSC Adv., 2018, 8(14): 7361.
[67]
Fu Y, Jiang H, Hu Y J, Dai Y H, Zhang L, Li C Z. Ind. Eng. Chem. Res., 2015, 54(15): 3800.
[68]
Wang J W, Sun X L, Zhao H Y, Xu L L, Xia J L, Luo M, Yang Y D, Du Y P. J. Phys. Chem. C, 2019, 123(37): 22735.
[69]
Hu Z M, Xiao X, Huang L, Chen C, Li T Q, Su T C, Cheng X F, Miao L, Zhang Y R, Zhou J. Nanoscale, 2015, 7(38): 16094.

doi: 10.1039/c5nr04682c pmid: 26371824
[70]
Alfaruqi M H, Islam S, Mathew V, Song J J, Kim S, Tung D P, Jo J, Kim S, Baboo J P, Xiu Z L, Kim J. Appl. Surf. Sci., 2017, 404: 435.
[71]
Lian S T, Sun C L, Xu W N, Huo W C, Luo Y Z, Zhao K N, Yao G, Xu W W, Zhang Y X, Li Z, Yu K S, Zhao H B, Cheng H W, Zhang J J, Mai L Q. Nano Energy, 2019, 62: 79.
[72]
Long J, Gu J X, Yang Z H, Mao J F, Hao J N, Chen Z F, Guo Z P. J. Mater. Chem. A, 2019, 7(30): 17854.
[73]
Liu W F, Liu P G, Hao R, Huang Y P, Chen X X, Cai R Z, Yan J, Liu K Y. ChemElectroChem, 2020, 7(5): 1166.
[74]
Jiang W W, Xu X J, Liu Y X, Tan L, Zhou F C, Xu Z W, Hu R Z. J. Alloy. Compd., 2020, 827: 154273.
[75]
Wang C, Zeng Y X, Xiao X, Wu S J, Zhong G B, Xu K Q, Wei Z F, Su W, Lu X H. J. Energy Chem., 2020, 43: 182.
[76]
Chen L L, Yang Z H, Qin H G, Zeng X, Meng J L. J. Power Sources, 2019, 425: 162.
[77]
Sun M, Li D S, Wang Y F, Liu W L, Ren M M, Kong F G, Wang S J, Guo Y Z, Liu Y M. ChemElectroChem, 2019, 6(9): 2510.
[78]
Qin H G, Yang Z H, Chen L L, Chen X, Wang L M. J. Mater. Chem. A, 2018, 6(46): 23757.
[79]
Pang Q, Sun C L, Yu Y H, Zhao K N, Zhang Z Y, Voyles P M, Chen G, Wei Y J, Wang X D. Adv. Energy Mater., 2018, 8(19): 1800144.
[80]
Wu B K, Zhang G B, Yan M Y, Xiong T F, He P, He L, Xu X, Mai L Q. Small, 2018, 14(13): 1703850.
[81]
Li H F, Han C P, Huang Y, Huang Y, Zhu M S, Pei Z X, Xue Q, Wang Z F, Liu Z X, Tang Z J, Wang Y K, Kang F Y, Li B H, Zhi C Y. Energy Environ. Sci., 2018, 11(4): 941.
[82]
Li Y R, Yuan L X, Li Z, Qi Y Z, Wu C, Liu J, Huang Y H. RSC Adv., 2015, 5(55): 44160.
[83]
Mao J, Wu F F, Shi W H, Liu W X, Xu X L, Cai G F, Li Y W, Cao X H. Chin. J. Polym. Sci., 2020, 38(5): 514.
[84]
Zhang H Z, Wang J, Liu Q Y, He W Y, Lai Z Z, Zhang X Y, Yu M H, Tong Y X, Lu X H. Energy Storage Mater., 2019, 21: 154.
[85]
Yang H X, Song T, Lee S, Han H, Xia F, Devadoss A, Sigmund W, Paik U. Electrochimica Acta, 2013, 91: 275.
[86]
Qin S, Lei W W, Liu D, Lamb P, Chen Y. Mater. Lett., 2013, 91: 5.
[87]
Gou L, Xue D, Mou K L, Zhao S P, Wang Y, Fan X Y, Li D L. J. Electrochem. Soc., 2019, 166(14): A3362.
[88]
Khan M A, Erementchouk M, Hendrickson J, Leuenberger M N. Phys. Rev. B, 2017, 95(24): 245435.
[89]
Hu L P, Zhu T J, Liu X H, Zhao X B. Adv. Funct. Mater., 2014, 24(33): 5211.
[90]
Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A, Terrones M. 2D Mater., 2016, 3(2): 022002.
[91]
Pan X Y, Yang M Q, Fu X Z, Zhang N, Xu Y J. Nanoscale, 2013, 5(9): 3601.

pmid: 23532413
[92]
Zhao Y X, Chang C, Teng F, Zhao Y F, Chen G B, Shi R, Waterhouse G I N, Huang W F, Zhang T R. Adv. Energy Mater., 2017, 7(18): 1700005.
[93]
Kim H S, Cook J B, Lin H, Ko J S, Tolbert S H, Ozolins V, Dunn B. Nat. Mater., 2017, 16(4): 454.

pmid: 27918566
[94]
Xiong T, Yu Z G, Wu H J, Du Y H, Xie Q D, Chen J S, Zhang Y W, Pennycook S J, Lee W S V, Xue J M. Adv. Energy Mater., 2019, 9(14): 1803815.
[95]
Han M M, Huang J W, Liang S Q, Shan L T, Xie X S, Yi Z Y, Wang Y R, Guo S, Zhou J. iScience, 2020, 23(1): 100797.

pmid: 31927485
[96]
Knight J C, Therese S, Manthiram A. J. Mater. Chem. A, 2015, 3(42): 21077.
[97]
Chen D J, Chen C, Baiyee Z M, Shao Z P, Ciucci F. Chem. Rev., 2015, 115(18): 9869.

pmid: 26367275
[98]
Kim C, Phillips P J, Key B, Yi T H, Nordlund D, Yu Y S, Bayliss R D, Han S D, He M N, Zhang Z C, Burrell A K, Klie R F, Cabana J. Adv. Mater., 2015, 27(22): 3377.

pmid: 25882455
[99]
Zhang N, Cheng F Y, Liu Y C, Zhao Q, Lei K X, Chen C C, Liu X S, Chen J. J. Am. Chem. Soc., 2016, 138(39): 12894.

pmid: 27627103
[100]
Nam K W, Kim S, Lee S, Salama M, Shterenberg I, Gofer Y, Kim J S, Yang E, Park C S, Kim J S, Lee S S, Chang W S, Doo S G, Jo Y N, Jung Y, Aurbach D, Choi J W. Nano Lett., 2015, 15(6): 4071.

pmid: 25985060
[101]
Nam K W, Kim H, Choi J H, Choi J W. Energy Environ. Sci., 2019, 12(6): 1999.
[102]
Lanson B, Drits V A, Gaillot A C, Silvester E, Plançon A, Manceau A. Am. Mineral., 2002, 87(11/12): 1631.
[103]
Kwon K D, Refson K, Sposito G. Geochimica et Cosmochimica Acta, 2013, 101: 222.
[104]
Reed J, Ceder G, van der Ven A. Electrochem. Solid-State Lett., 2001, 4(6): A78.
[105]
Chen H Z, Zhang X R, Chen L L, Yang Z H, Zeng X, Meng J L. J. Energy Storage, 2020, 27: 101139.
[106]
Qiu G H, Huang H, Dharmarathna S, Benbow E, Stafford L, Suib S L. Chem. Mater., 2011, 23(17): 3892.
[107]
Wang D H, Wang L F, Liang G J, Li H F, Liu Z X, Tang Z J, Liang J B, Zhi C Y. ACS Nano, 2019, 13(9): 10643.

pmid: 31419380
[108]
Zhang H Z, Liu Q Y, Wang J, Chen K F, Xue D F, Liu J, Lu X H. J. Mater. Chem. A, 2019, 7(38): 22079.
[109]
Zhang Y, Deng S J, Pan G X, Zhang H Z, Liu B, Wang X L, Zheng X S, Liu Q, Wang X L, Xia X H, Tu J P. Small Methods, 2020, 4(6): 1900828.
[110]
Bin D, Huo W C, Yuan Y B, Huang J H, Liu Y, Zhang Y X, Dong F, Wang Y G, Xia Y Y. Chem, 2020, 6(4): 968.
[111]
Huang J H, Wang Z, Hou M Y, Dong X L, Liu Y, Wang Y G, Xia Y Y. Nat. Commun., 2018, 9: 2906.

pmid: 30046036
[112]
Yu X Y, David Lou X W. Adv. Energy Mater., 2018, 8(3): 1701592.
[113]
Fang G Z, Wang Q C, Zhou J, Lei Y P, Chen Z X, Wang Z Q, Pan A Q, Liang S Q. ACS Nano, 2019, 13(5): 5635.

pmid: 31022345
[114]
Wu Q L, Xu J G, Yang X F, Lu F Q, He S M, Yang J L, Fan H J, Wu M M. Adv. Energy Mater., 2015, 5(7): 1401756.
[115]
Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9(4): 353.

pmid: 20228818
[116]
Fang G Z, Wu Z X, Zhou J, Zhu C Y, Cao X X, Lin T Q, Chen Y M, Wang C, Pan A Q, Liang S Q. Adv. Energy Mater., 2018, 8(19): 1870092.
[117]
Yang S N, Zhang M S, Wu X W, Wu X S, Zeng F H, Li Y T, Duan S Y, Fan D H, Yang Y, Wu X M. J. Electroanal. Chem., 2019, 832: 69.
[118]
Gou L, Mou K L, Fan X Y, Zhao M J, Wang Y, Xue D, Li D L. Dalton Trans., 2020, 49(3): 711.

pmid: 31848556
[119]
Chen H, Zhou W H, Zhu D, Liu Z Z, Feng Z, Li J C, Chen Y G. J. Alloy. Compd., 2020, 813: 151812.
[120]
Fan X Y, Ni K F, Han J X, Wang S, Gou L, Li D L. Funct. Mater. Lett., 2019, 12(5): 1950073.
[121]
Yang C, Han M N, Yan H H, Li F, Shi M J, Zhao L P. J. Power Sources, 2020, 452: 227826.
[122]
Zhu C Y, Fang G Z, Zhou J, Guo J H, Wang Z Q, Wang C, Li J Y, Tang Y, Liang S Q. J. Mater. Chem. A, 2018, 6(20): 9677.
[123]
Wu F F, Gao X B, Xu X L, Jiang Y N, Gao X L, Yin R L, Shi W H, Liu W X, Lu G, Cao X H. ChemSusChem, 2020, 13(6): 1537.

doi: 10.1002/cssc.201903006 pmid: 31797574
[124]
Qiu W D, Jiao J Q, Xia J, Zhong H M, Chen L P. RSC Adv., 2014, 4(92): 50529.
[125]
Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Nat. Mater., 2018, 17(6): 543.

doi: 10.1038/s41563-018-0063-z pmid: 29662160
[126]
Wu K, Huang J H, Yi J, Liu X Y, Liu Y Y, Wang Y G, Zhang J J, Xia Y Y. Adv. Energy Mater., 2020, 10(12): 1903977.
[127]
Chen W, Li G D, Pei A, Li Y Z, Liao L, Wang H X, Wan J Y, Liang Z, Chen G X, Zhang H, Wang J Y, Cui Y. Nat. Energy, 2018, 3(5): 428.
[128]
Zhong C, Liu B, Ding J, Liu X R, Zhong Y W, Li Y, Sun C B, Han X P, Deng Y D, Zhao N Q, Hu W B. Nat. Energy, 2020, 5(6): 440.
[129]
Li C P, Xie X S, Liang S Q, Zhou J. Energy Environ. Mater., 2020, 3(2): 146.
[130]
Parveen N, Ansari M O, Ansari S A, Cho M H. J. Mater. Chem. A, 2016, 4(1): 233.
[131]
An H R, Li Y, Gao Y, Cao C, Han J K, Feng Y Y, Feng W. Carbon, 2017, 116: 338.
[132]
Su X H, Yu L, Cheng G, Zhang H H, Sun M, Zhang L, Zhang J J. Appl. Energy, 2014, 134: 439.
[133]
Liu X, Zhang H, Geiger D, Han J, Varzi A, Kaiser U, Moretti A, Passerini S. Chem. Commun., 2019, 55(16): 2265.
[134]
Hou D, Tao H S, Zhu X Z, Li M G. Appl. Surf. Sci., 2017, 419: 580.
[135]
Li Y Z, Zhao R, Chao S, Sun B L, Wang C, Li X. Chem. Eng. J., 2018, 344: 277.
[136]
Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B. ACS Appl. Mater. Interfaces, 2014, 6(11): 8845.

doi: 10.1021/am501632f pmid: 24787615
[137]
Sun J H, Xiao L H, Jiang S D, Li G X, Huang Y, Geng J X. Chem. Mater., 2015, 27(13): 4594.
[138]
Liu Y Z, Chi X W, Han Q, Du Y X, Huang J Q, Liu Y, Yang J H. J. Power Sources, 2019, 443: 227244.
[139]
Islam S, Alfaruqi M H, Mathew V, Song J J, Kim S, Kim S, Jo J, Baboo J P, Pham D T, Putro D Y, Sun Y K, Kim J. J. Mater. Chem. A, 2017, 5(44): 23299.
[140]
Chen L L, Yang Z H, Qin H G, Zeng X, Meng J L, Chen H Z. Electrochimica Acta, 2019, 317: 155.
[141]
Li Z X, Huang Y, Zhang J Y, Jin S Y, Zhang S D, Zhou H. Nanoscale, 2020, 12(6): 4150.

pmid: 32022061
[1] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[2] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[3] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[4] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[5] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[6] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[7] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[8] Rong Yang, Lan Li, Bing Ren, Dan Chen, Liping Chen, Yinglin Yan. Doped-Graphene in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2018, 30(11): 1681-1691.
[9] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[10] Yi Luocai, Ci Suqin, Sun Chengli, Wen Zhenhai. Cathode Materials of Non-Aqueous Lithium-Oxygen Battery [J]. Progress in Chemistry, 2016, 28(8): 1251-1264.
[11] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[12] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
[13] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[14] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[15] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.