中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC200441 Previous Articles   Next Articles

Research and Prospect of Selective Oxidation of HMF

Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu   

  1. Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
  • Online: Published:
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhe jiang Province(No. LY16B030002)
Cited
Export

EndNote

Ris

BibTeX

In recent years,the use of abundant and renewable biomass resources to prepare high value-added chemicals and liquid fuels is one of the hot spots in the chemical research field,which is in line with the national strategy of sustainable development. 5-hydroxymethylfurfural(HMF)is one of the key biomass platform compounds,widely used in the preparation of fine platform compounds,drug intermediates,polymer synthesis and liquid fuel precursor. Therefore,the selective oxidation of HMF has gradually become a research hotspot in the field of biomass. This paper mainly introduces the research on preparation of biomass derivatives such as DFF,FFCA and FDCA by selective oxidation of HMF in last five years,and the transformation of biomass with HMF as intermediate. The selective oxidation of HMF mainly focuses on two ways:thermalcatalytic and photocatalytic. Among them,the selective oxidation of HMF to DFF and FDCA by thermalcatalytic is widely studied. The catalytic system under this approach mainly introduces the noble metals and non-precious metals. In the few photocatalytic pathways,the main catalytic system is g-C3N4 catalyst. In addition,the deficiencies in there search on the oxidation of HMF are pointed out and the possible solutions are proposed.

CLC Number: 

[1] Bozell J J,Petersen G R. Green Chemistry,2010,12(4):539.
[2] Ma J,Du Z,Xu J,Chu Q,Pang Y. ChemSusChem,2011,4(1):51.
[3] Rose M,Weber D,Lotsch B,Kremer R,Goddard R,Palkovits R. Microporous and Mesoporous Materials,2013,181:217.
[4] 李艳(Li Y),魏作君(Wei Z J),陈传杰(Chen C J),刘迎新(Liu Y X).化学进展(Progress in Chemistry). 2010,22(08):1603.
[5] Wei Z,Liu Y,Thushara D,Ren Q. Green Chemistry,2012,14(4):1220.
[6] Wei Z,Li Y,Thushara D,Liu R,Ren Q. Journal of The Taiwan Institute of Chemical Engineers,2011,42(2):363.
[7] Tong X L,Ma Y,Li Y D. Applied Catalysis A:General,2010,385(1/2):1.
[8] Zhang Z,Huber G W. Chemical Society Reviews,2018,47(4):1351.
[9] Pichler C M,Al-Shaal M G,Gu D,Joshi H,Ciptonugroho W,Schuth F. ChemSusChem,2018,11(13):2083.
[10] Antonyraj C A,Huynh N T T,Lee K W,Kim Y J,Shin S,Shin J S,Cho J K. Journal of Chemical Sciences,2018,130(11):156.
[11] Liu H,Cao X J,Wang T,Wei J N,Tang X,Zeng X H,Sun Y,Lei T Z,Liu S J,Lin L. Journal of Industrial and Engineering Chemistry,2019,77:209.
[12] Zheng L F,Zhao J Q,Du Z X,Zong B N,Liu H C. Science China Chemistry,2017,60(7):950.
[13] Wang S G,Zhang Z H,Liu B,Li J L. Industrial & Engineering Chemistry Research,2014,53(14):5820.
[14] Mosby B,Díaz A,Clearfield A. Dalton Transactions,2014,43(27):10328.
[15] Hajipour A R,Karimi H. Chinese Journal of Catalysis,2014,35(9):1529.
[16] Yang F,Yuan Z L,Liu B,Chen S H,Zhang Z. Journal of Industrial and Engineering Chemistry,2016,38:181.
[17] Mishra D K,Cho J K,Kim Y J. Journal of industrial and engineering chemistry,2018,60:513.
[18] Mishra D K,Lee H J,Kim J,Lee H,Cho J K,Suh Y,Kim Y J. Green J Chemistry,2017,19(7):1619.
[19] Ait Rass H,Essayem N,Besson M. ChemSusChem,2015,8(7):1206.
[20] Chen H,Shen J,Chen K,Qin Y,Lu X,Ouyang P,Fu J. Applied Catalysis A:General,2018,555:98.
[21] Zhou C M,Shi W R,Wan X Y,Meng Y,Yao Y,Guo Z,Dai Y H,Wang C,Yang Y H. Catalysis Today,2019,330:92.
[22] Rathod P V,Jadhav V H. ACS Sustainable Chemistry & Engineering,2018,6(5):5766.
[23] Zhang Z H,Zhen J D,Liu B,Lv K L,Deng K J. Green Chemistry,2015,17(2):1308.
[24] Antonyraj C A,Huynh N T T,Park S K,Shin S,Kim Y J,Kim S Y,Lee K Y,Cho J K. Applied Catalysis A:General,2017,547:230.
[25] Kim M,Su Y Q,Fukuoka A,Hensen E J M,Nakajima K. Angewandte Chemie International Edition,2018,57(27):8235.
[26] Yuan Z L,Liu B,Zhou P,Zhang Z H,Chi Q. Catalysis Science & Technology,2018,8(17):4430.
[27] Tong X L,Yu L H,Chen H,Zhuang X L,Liao S Y,Gui H G. Catalysis Communications,2017,90:91.
[28] Ke Q P,Jin Y X,Ruan F,Ha M N,Li D D,Cui P X,Cao Y L,Wang H,Wang T T,Nguyen V N,Han X Y,Wang X,Cui P. Green Chemistry,2019,21(16):4313.
[29] Hayashi E,Yamaguchi Y,Kamata K,Tsunoda N,Kumagai Y,Oba F,Hara M. Journal of the American Chemical Society,2019,141(2):890.
[30] Liao X,Hou J,Wang Y,Zhang H,Sun Y,Li X,Tang S. Green Chemistry,2019,21(15):4194.
[31] Liu H,Cao X,Wei J,Jia W,Li M,Tang X,Zeng X,Sun Y,Lei T Z,Liu S J,Lin L. ACS Sustainable Chemistry & Engineering,2019,7(8):7812.
[32] Gui Z Y,Saravanamurugan S.Cao W R,Schill L,Chen L F,Qi Z W,Riisager A. ChemistrySelect,2017,2(23):6632.
[33] Ding L,Yang W Y,Chen L F,Cheng H Y,Qi Z W. Catalysis Today,2020,347:39.
[34] Rao K T V,Rogers J L,Souzanchi S,Dessbesell L,Ray M B,Xu C. ChemSusChem,2018,11(18):3323.
[35] Gao T Y,Yin Y X,Zhu G H,Gao Q,Fang W H. Catalysis Today,2019. (10.1016/j.cattod.2019.03.065)
[36] Gawade A B,Nakhate A V,Yadav G D. Catalysis Today,2018,309:119.
[37] Ventura M,Lobefaro F,De Giglio E,Distaso M,Nocito F,Dibenedetto A. ChemSusChem,2018,11(8):1305.
[38] Ventura M,Aresta M,Dibenedetto A. ChemSusChem,2016,9(10):1096.
[39] Han X W,Li C Q,Liu X H,Xia Q N,Wang Y Q. Green Chemistry,2017,19(4):996.
[40] Hayashi E,Komanoya T,Kamata K,Hara M. ChemSusChem,2017,10(4):654.
[41] Nocito F,Ventura M,Aresta M,Dibenedetto A. ACS omega,2018,3(12):18724.
[42] Ventura M,Nocito F,Giglio E,Cometa S,Altomare A,Dibenedetto A. Green chemistry,2018,20(17):3921.
[43] Zhao J,Chen X P,Du Y H,Yang Y H,Lee J M. Applied Catalysis A:General,2018,568:16.
[44] Lai J,Liu K,Zhou S,Zhang D,Liu X,Xu Q,Yin D. RSC Advances,2019,9(25):14242.
[45] Yan Y B,Li K X,Zhao J,Cai W Z,Yang Y H,Lee J M. Applied Catalysis B:Environmental,2017,207:358.
[46] Liu L J,Wang Z M,Lyu Y J,Zhang J,Huang Z,Qi T,Si Z,Yang H,Hu C. Catalysis Science & Technology,2020,10(1):278.
[47] Gupta D,Pant K K,Saha B. Molecular Catalysis,2017,435:182.
[48] Wei Z,Xiao S,Chen M,Lu M,Liu Y. New Journal of Chemistry,2019,43(20):7600.
[49] Wu Q,He Y M,Zhang H L,Feng Z Y,Wu Y,Wu T H. Molecular Catalysis,2017,436:10.
[50] Zhang H L,Feng Z Y,Zhu Y K,Wu Y,Wu T Y. Journal of Photochemistry and Photobiology A:Chemistry,2019,371:1.
[51] Zhu Y K,Zhang Y,Cheng L L,Ismael M,Feng Z Y,Wu Y. Advanced Powder Technology,2020,31(3):1148.
[52] Xu S,Zhou P,Zhang Z,Yang C,Zhang B G,Deng K,Bottle S. Journal of the American Chemical Society,2017,139(41):14775.
[53] Xue J J,Huang C J,Zong Y Q,Gu J D,Wang M X,Ma S S. Applied Organometallic Chemistry,2019,33(11):e5187.
[54] Zhang H L,Wu Q,Guo C,Wu Y,Wu T H. ACS Sustain. Chem. & Eng,2017,5(4):3517.
[55] Ma B,Wang Y Y,Guo X N,Tong X L,Liu C,Wang Y W,Guo X Y. Applied Catalysis A:General,2018,552:70.
[56] Giannakoudakis D A,Nair V,Khan A,Deliyanni E A,Colmenares J C,Triantafyllidis K S. Applied Catalysis B:Environmental,2019,256:117803.
[57] Meng S,Wu H,Cui Y,Zheng X,Wang H,Chen S,Wang Y,Fu X. Applied Catalysis B:Environmental,2020,266:118617.
[58] Ye H F,Shi R,Yang X. Appl. Catal. B:Environ,2018,233:70.
[59] Battula V,Jaryal A,Kailasam K,Mater J. Chem. A,2019,7:5643.
[60] Zhao H,Holladay J E,Brown H,Zhang Z C. Science,2007,316(5831):1597.
[61] Antonetti C,Melloni M,Licursi D,Fulignati S,Ribechini E,Rivas S,Parajo J C,Cavani F,Galletti A M R. Applied Catalysis B:Environmental,2017,206:364.
[62] Songo M M,Moutloali R,Ray S S. Catalysts,2019,9(2):126.
[63] Wang J,Qu T,Liang M S,Zhao Z B. RSC Advances,2015,5(128):106053.
[64] Raveendra G,Surendar M,Prasad P S S. New Journal of Chemistry,2017,41(16):8520.
[65] Yu X,Chu Y Y,Zhang L,Shi H,Xie M J,Peng L M,Guo X F,Li W,Xue N H,Ding W P. Journal of Energy Chemistry,2020,47:112.
[66] Dibenedetto A,Aresta M,Pastore C,Bitonto L D,Angelini A,Quaranta E. RSC Advances,2015,5(34):26941.
[67] Zhang Q,Liu X,Yang T,Pu Q,Yue C,Zhang S,Zhang Y. International Journal of Chemical Engineering,2019,2019:1.
[68] Zhang M L,Su K M,Song H M,Li Z H,Cheng B. Catalysis Communications,2015,69:76.
[69] Cao J J,Ma M W,Liu J C,Yang Y Q,Liu H,Xu X L,Yue H J,Tian G,Feng S H. Applied Catalysis A:General,2019,571:96.
[70] Candu N,El Fergani M,Verziu M,Cojocaru B,Jurca B,Apostol N,Teodorescu C,Parvulescu V I. Catalysis Today,2019,325:109.
[71] Guo Q,Ren L M,Alhassan S M,Tsapatsis M. Chemical Communications,2019,55(99):14942.
[72] Feng Y C,Zuo M,Wang T,Jia W L,Zhao X Y,Zeng X H,Sun Y,Tang X,Lei T Z,Lin L. Journal of the Taiwan Institute of Chemical Engineers,2019,96:431.
[73] Zhang Y L,Li B,Wei Y N,Yan C H,Meng M J,Yan Y S. Journal of the Taiwan Institute of Chemical Engineers,2019,96:93.
[74] Takagaki A. Catalysts,2019,9(10):818.
[75] Wang X,Lv T,Wu M H,Sui J W,Liu Q,Liu H,Huang J J,Jia L S. Applied Catalysis A:General,2019,574:87.
[76] Zhang Y,Wang J G,Wang J H,Wang Y,Wang M,Cui H Y,Song F,Sun X Y,Xie Y J,Yi W M. ChemistrySelect,2019,4(19):5724.
[77] Li K,Du M,Ji P. ACS Sustainable Chemistry & Engineering,2018,6(4):5636.
[78] Yue C,Li G,Pidko E A,Wiesfeld J J,Rigutto M S,Hensen E J M. ChemSusChem,2016,9(17):2421.
[79] Wen Z,Yu L,Mai F,Ma Z,Chen H,Li Y. Industrial & Engineering Chemistry Research,2019,58(38):17675.
[80] Li X,Peng K,Xia Q,Liu X,Wang Y. Chemical Engineering Journal,2018,332:528.
[81] Fang J,Zheng W W,Liu K,Li H,Li C. Chemical Engineering Journal,2020,385:123796.
[82] Zhou C M,Zhao J,Sun H L. ACS Sustainable Chemistry & Engineering,2018,7(1):315.
[83] Zhao J,Jayakumar A,Lee J M. ACS Sustainable Chemistry & Engineering,2018,6(3):2976.
[84] Yang Z Z,Qi W,Su R,He Z M. ACS Sustainable Chemistry & Engineering,2017,5(5):4179.
[85] Zhao J,Jayakumar A,Hu Z T. ACS Sustainable Chemistry & Engineering,2018,6(1):284.
[86] Zhao J,Anjali J,Yan Y B,Yang Y H,Lee J M. ChemCatChem,2017,9(7):1187.
[87] Liu Y,Zhu L F,Tang J Q,Liu M Y,Hu C W. ChemSusChem,2014,7(12):3541.
[88] Mittal N,Nisola G M,Malihan L B. RSC advances,2016,6(31):25678.
[89] Fang R Q,Luque R,Li Y W. Green Chemistry,2017,19(3):647.
[90] Chen Z,Liao S,Ge L. Chemical Engineering Journal,2020,379:122284.
[91] Lv G Q,Wang H L,Yang Y X,Deng T S,Hou X L. Green Chemistry,2016,18(8):2302.
[92] Zhang W,Meng T,Tang J. ACS Sustainable Chemistry & Engineering,2017,5(11):10029.
[93] Hou W,Wang Q,Guo Z,Li J,Zhou Y,Wang J. Catalysis Science & Technology,2017,7(4):1006.
[94] Xu F H,Zhang Z H. ChemCatChem,2015,7(9):1470.
[95] Yan D X,Wang G,Gao K,Xin X,Zhang J X. Industrial & Engineering Chemistry Research,2018,57(6):1851.
[96] Motagamwala A H,Won W Y,Sener C,Alonso D M,Maravelias C T,Dumesic J A. Science advances,2018,4(1):eaap9722.
[97] Raut A B,Bhanage B M. ChemistrySelect,2018,3(41):11388.
[98] Chen G Y,Wu L,Fan H,Li B G. Industrial & Engineering Chemistry Research,2018,57(48):16172.
[99] De S,Dutta S,Saha B. Green Chemistry,2011,13(10):2859.
[100] Despax S,Estrine B,Hoffmann N,Bras J L,Marinkovic S. Catalysis Communications,2013,39:35.
[101] Dijkmans J,Gabriëls D,Dusselier M,Clippel F D,Sels B F. Green Chemistry,2013,15(10):2777.
[102] Zhang S,Li W,Zeng X,Sun Y,Lin L. Bioresources,2014,9(3):4568.
[103] Xiang X,He L,Yang Y, Guo B,Tong D M,Hu C W. Catalysis Letters,2011,141(5):735.
[104] Takagaki A,Takahashi M,Nishimura S,Ebitani K. ACS Catalysis,2011,1(11):1562.
[1] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[2] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[3] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[4] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[5] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[6] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[7] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[8] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.
[9] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[10] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[11] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[12] Ying Qiao, Na Teng, Chengkai Zhai, Haining Na, Jin Zhu. High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method [J]. Progress in Chemistry, 2018, 30(9): 1415-1423.
[13] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[14] Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*. Preparation of 5-Hydroxymethylfurfural from Glucose [J]. Progress in Chemistry, 2018, 30(2/3): 314-324.
[15] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.