中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 1990-2003 DOI: 10.7536/PC200403 Previous Articles   Next Articles

• Review •

Catalytic Reductive Degradation of Cr(Ⅵ)

Honghong Wang1, Wen Lei1, Xiaojian Li1, Zhong Huang1, Quanli Jia2, Haijun Zhang1,**()   

  1. 1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
    2 Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
  • Received: Revised: Online: Published:
  • Contact: Haijun Zhang
  • Supported by:
    the National Natural Science Foundation of China(No. 51872210); the National Natural Science Foundation of China(51672194); the Key Program of Natural Science Foundation of Hubei Province, China(No. 2017CFA004); and the Program for Innovative Teams of Outstanding Young and Middle-Aged Researchers in the Higher Education Institutions of Hubei Province(No. T201602)
Richhtml ( 47 ) PDF ( 815 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of industrialization, the discharge of wastewater containing hexavalent chromium(Cr(Ⅵ)) is increasing day by day. The toxicity and high mobility of Cr(Ⅵ) cause great environmental pollution. Reducing Cr(Ⅵ) to trivalent chromium(Cr(Ⅲ)) with low toxicity and low fluidity is one of the current effective treatment methods. Compared with the traditional methods, the catalytic reduction of Cr(Ⅵ) driven by sunlight, electricity and microwave, has the advantages of no catalyst consumption, less reductant consumption, no secondary pollution and limited resource loss, and has become an effective solution to deal with Cr(Ⅵ) pollution. Based on this, the present paper reviews the application of photocatalyst, electrocatalyst and microwave catalyst for Cr(Ⅵ) reduction. Based on the summary and analysis of previous research results, the research direction and key points of Cr(Ⅵ) catalytic reduction technology in the future are prospected.

Contents

1 Introduction

2 Photocatalyst

2.1 Morphology control

2.2 Surface modification

2.3 Ion doping

2.4 Introduction of defect

2.5 Composite material

3 Electrocatalyst

3.1 Electrochemical catalyst

3.2 Piezoelectric catalyst

4 Photo-electrocatalyst

5 Microwave catalyst

5.1 Microwave enhanced catalyst

5.2 Microwave induced catalyst

6 Conclusion and outlook

Fig.1 Schematic illustration of mechanism of a photocatalytic process[51]
Fig.2 TiO 2 nanostructures: (a) P25 nanoparticles[57];(b) nanosheets[58];(c) nanowires[53];(d) nanoflowers[60]
Fig.3 Photocatalytic reduction of Cr(Ⅵ) by TiO 2-Au/Pt[32]
Fig.4 The photocatalytic reduction mechanism of Cr(VI) by (a) Me xS y/MIL-125(Ti)[54] and(b) MIL-53(Fe)/CQDs[65]
Fig.5 The mechanism of photocatalytic reduction of Cr(Ⅵ) by (a) $TiO_{2}-HNO_{3}$[73] and (b) Fe-THWO3[74]
Fig.6 Preparation of RP 0.01TiO 2 and its mechanism of photocatalytic reduction of Cr(Ⅵ)[77]
Fig.7 The energy band diagram of the photocatalytic-system of g-C 3N 4/GO/BiFeO 3 heterostructures[52]
Fig.8 Preparation of C-SO 3H/CN-TiO 2 and its mechanism of photocatalytic reduction of Cr(Ⅵ)[80]
Fig.9 Mechanism of electrocatalytic reduction of Cr(Ⅵ) and oxidation of BPA by PGAs[21]
Fig.10 Mechanism of Cr(Ⅵ) reduction at FeS@rGO decorated cathode in MFC[18]
Fig.11 Mechanism of piezo-catalytic removal of Cr(Ⅵ) and 4-CP by Au/BiVO4[83]
Fig.12 The photoelectrocatalytic removal of Cr(Ⅵ) and acid red 1 by Ni foam@ZnO@ZnFe-LDH[89]
Fig.13 Mechanism of Cr(Ⅵ) reduction in MW/MoS 2-MnFe 2O 4 system[22]
Fig.14 Mechanism of Cr(Ⅵ) reduction in MW/Fe 3O 4@PANI system[19]
[1]
Tu B Y , Wen R T , Wang K Q , Cheng Y L , Deng Y Q , Cao W , Zhang K H , Tao H S . Journal of Colloid and Interface Science, 2020, 560: 649.
[2]
Chowdhury A , Kumari S , Khan A A , Hussain S . Journal of Hazardous Materials, 2020, 385: 121602.
[3]
Ou B , Wang J X , Wu Y , Zhao S , Wang Z . Chemical Engineering Journal, 2020, 380: 122600.
[4]
Saha B , Orvig C . Coordination Chemistry Reviews, 2010, 254( 23): 2959.
[5]
Chen L F , Zhang J , Zhu Y X , Zhang Y . Food Chemistry, 2018, 244: 378.
[6]
Zhitkovich A. Chemical Research in Toxicology, 2011, 24: 1617.
[7]
Alahmad W , Varanusupakul P , Kaneta T , Varanusupakul P . Analytica Chimica Acta, 2019, 1085: 98.
[8]
Zhang W F , Zhang P X , Liu F , Liu W Z , Zhang J , Lin Z . Chemical Engineering Journal, 2019, 371: 565.
[9]
Hausladen D , Fendorf S . Environmental Science & Technology, 2017, 51( 4): 2058.
[10]
穆毅( Mu Y ). 华中师范大学博士论文(Doctoral Dissertation of Central China Normal University), 2018.
[11]
Liu W , Jin L D , Xu J , Liu J , Li Y Y , Zhou P P , Wang C C , Dahlgren R A , Wang X D . Chemical Engineering Journal, 2019, 359: 564.
[12]
Chuang S M , Ya V , Feng C L , Lee S J , Choo K H , Li C W . Separation and Purification Technology, 2018, 191: 167.
[13]
Chi Z X , Hao L , Dong H , Yu H , Liu H K , Wang Z , Yu H B . Chemical Engineering Journal, 2020, 382: 122789.
[14]
Tan H , Wang C , Li H , Peng D H , Zeng C T , Xu H . Chemosphere, 2020, 242: 125251.
[15]
Wang Y X , Rao L , Wang P F , Shi Z Y , Zhang L X . Applied Catalysis B, 2020, 262: 118308.
[16]
Testa J J , Grela M A , Litter M I . Langmuir, 2001, 17( 12): 3515.
[17]
Gao D W , Wang L , Wang Q Y , Qi Z M , Jia Y , Wang C X . Spectrochimica Acta Part A, 2020, 229: 117936.
[18]
Ali J , Wang L , Waseem H , Djellabi R , Oladoja N A , Pan G . Chemical Engineering Journal, 2020, 384: 123335.
[19]
Zhu C Q , Liu F Q , Song L , Jiang H , Li A M . Environmental Science, 2018, 5: 487.
[20]
Kar P , Maji T K , Sarkar P K . Journal of Materials Chemistry A, 2018, 6( 8): 3674.
[21]
Zhang Y M , Zhang D D , Zhou L C , Zhao Y L , Chen J , Chen Z , Wang F . Chemical Engineering Journal, 2018, 336: 690.
[22]
Pang Y X , Kong L J , Chen D Y , Yuvaraja G . Applied Surface Science, 2019, 471: 408.
[23]
Bao C Z , Chen M X , Jin X , Hu D W , Huang Q . Journal of Molecular Liquids, 2019, 279: 133.
[24]
GB 8978- 1996, 中华人民共和国污水综合排放标准(Integrated wastewater discharge standard).
[25]
李金城( Li Jincheng ). 低碳世界( Low Carbon World), 2016, 7: 3.
[26]
Zare-Moghadam M , Shamsipur M , Molaabasi F , Hajipour-Verdom B . Talanta, 2020, 209: 120521.
[27]
Beni A , Nagy D , Kapitany S , Posta J . Microchemical Journal, 2019, 150: 104097.
[28]
Hu W L , Zheng F , Hu B . Journal of Hazardous Materials, 2018, 151( 1): 58.
[29]
Catalani S , Fostinelli J , Gilberti M E , Apostoli P . International Journal of Mass Spectrometry, 2015, 387: 31.
[30]
Ferreira T A , Rodríguez J A , Galán-Vidal C A , Castrillejo Y , Barrado E . Talanta, 2018, 183: 172.
[31]
Fujishima A , Honda K . Nature, 1972, 238( 5358): 37.
[32]
Wang W , Lai M , Fang J J , Lu C H . Applied Surface Science, 2018, 439: 430.
[33]
Wang X W , Cao Z Q , Du B , Zhang Y , Zhang R . Composites Part B, 2020, 183: 107685.
[34]
Byzynski G , Melo C A , Volanti D P , Ferrer M . Materials & Design, 2017, 120: 363.
[35]
Xu Z H , Yu Y Q , Fang D , Liang J R , Zhou L X . Materials Chemistry and Physics, 2016, 171: 386.
[36]
Doufar N , Benamira M , Lahmar H , Trari M , Avramova I , Caldes M T . Journal of Photochemistry & Photobiology A, 2020, 386: 112105.
[37]
Yang X Y , Zhang Y M , Wang Y L , Xin C L , Zhang P , Liu D , Mamba B B , Kefeni K K , Kuvarega A T , Gui J Z . Chemical Engineering Journal, 2020, 387: 124100.
[38]
Pan J W , Guan Z J , Yang J J , Li Q Y . Chinese Journal of Catalysis, 2020, 41: 200.
[39]
Mu F H , Cai Q , Hu H , Wang J , Wang Y , Zhou S J , Kong Y . Chemical Engineering Journal, 2020, 384: 123352.
[40]
Zhang Y H , Zhao Y Y , Xu Z L , Su H M , Bian X Y , Zhang S S , Dong X P , Zeng L X , Zeng T , Feng M B , Li L X Y , Sharma V K . Applied Catalysis B, 2020, 262: 118306.
[41]
Li Y X , Fu H F , Wang P , Zhao C , Liu W , Wang C C . Environmental Pollution, 2020, 256: 113417.
[42]
Zhang G P , Chen D Y , Li N J , Xu Q F , Li H , He J H , Lu J M . Applied Catalysis B, 2018, 232: 164.
[43]
Jia J , Sun W J , Zhang Q Q , Zhang X Z , Hu X Y , Liu E Z , Fan J . Applied Catalysis B, 2020, 261: 118249.
[44]
Liang Q W , Ploychompoo S , Chen J D , Zhou T T , Luo H J . Chemical Engineering Journal, 2020, 384: 123256.
[45]
Deng F , Luo Y B , Li H , Xia B H , Luo X B , Luo S L , Dionysioub D D . Journal of Hazardous Materials, 2020, 383: 121127.
[46]
Chahkandi M , Zargazi M . Journal of Hazardous Materials, 2019, 380: 120879.
[47]
Wang U S , Chen C H , Ichihara F , Oshikiri M , Liang J , Li L , Li Y X , Song H , Wang S Y , Zhang T , Huang Y B , Cao R , Ye J H . Applied Catalysis B, 2019, 253: 323.
[48]
Zhu L N , Meng L J , Shi J Q , Li J H , Zhang X S , Feng M B . Journal of Environmental Management, 2019, 232: 964.
[49]
He F , Lu Z Y , Song M S , Liu X L , Tang H , Huo P W , Fan W Q , Dong H J , Wu X Y , Xing G L . Applied Surface Science, 2019, 483: 453.
[50]
Xu J J , Liu C , Niu J F , Zhu Y L , Zang BY , Xie M J , Chen M D . Journal of Alloys and Compounds, 2020, 815: 152492.
[51]
Tong H , Ouyang S X , Bi Y P , Umezawa N , Oshikiri M , Ye J H . Advanced Materials, 2012, 24: 229.
[52]
Hu X J , Wang W X , Xie G Y , Wang H , Tan X F , Jin Q , Zhou D X , Zhao Y L . Chemosphere, 2019, 216: 733.
[53]
Rahma S T , Tan W K , Kawamura G , Matsuda A , Lockman Z . Journal of Alloys and Compounds, 2020, 812: 152904.
[54]
Wang H , Yuan X Z , Wu Y , Chen X H , Leng L J , Zeng G M . RSC Advances, 2015, 5( 410): 32531.
[55]
Yuan R , Yue C L , Qiu J L , Liu F Q , Li A M . Applied Catalysis B, 2019, 251: 229.
[56]
Kusior A , Banas J , Trenczek Z A , Zubrzycka P , Micek I A , Radecka M . Journal of Molecular Structure, 2018, 1157: 327.
[57]
Hidalgo M C , ColÓn G , Nav J A . Journal of Photochemistry and Photobiology A, 2002, 148: 341.
[58]
Lu D Z , Chai W Q , Yang M C , Fang P F , Wu W H , Zhao B , Xiong R Y , Wang H M . Applied Catalysis B, 2016, 190: 44.
[59]
Zulkifli M , Bashirom N , Kian T W , Kawamura G , Matsuda A , Lockman Z . IEEE Transactions on Nanotechnology, 2018, 17( 6): 1106.
[60]
Baloyi J , Seadira T , Raphulu M , Ochieng A . Materials Today, 2015, 2: 3973.
[61]
Li H X , Bian Z F , Zhu J , Huo Y N , Li H , Lu Y F . Journal of the American Chemical Society, 2007, 129( 15): 4538.
[62]
Giannakas A E , Antonopoulou M , Papavasiliou J , Deligiannakis Y , Konstantinou I . Journal of Photochemistry and Photobiology A, 2017, 349: 25.
[63]
Lei X F , Xue X X , Yang H . Applied Surface Science, 2014, 321: 396.
[64]
Geszkemoritz M , Moritz M . Materials Science and Engineering C, 2013, 33( 3): 1008.
[65]
Lin R B , Li S M , Wang J Y , Xu J P , Xu C H , Wang J , Li C X , Li Z Q . Inorganic Chemistry Frontiers, 2018, 5( 12): 3170.
[66]
Chen L X , Xu S F , Li J H . Chemical Society Reviews, 2011, 40( 5): 2922.
[67]
Bayramoglu G , Arica M Y . Journal of Hazardous Materials, 2011, 187( 1): 213.
[68]
Ren Z Q , Kong D L , Wang K Y , Zhang W D . Journal of Materials Chemistry, 2014, 2( 42): 17952.
[69]
Zheng Y M , Liu Y Y , Guo X L , Chen Z T , Zhang W J , Wang Y X , Tang X , Zhang Y , Zhao Y H . Journal of Materials Science & Technology, 2020, 41: 117.
[70]
Akika F Z , Benamira M , Lahmar H , Trari M , Avramova I , Suzer S . Surfaces and Interfaces, 2020, 18: 100406.
[71]
Coronado J M , Fresno F , Hernández-Alonso M D , Portela R . Green Energy and Technology, Springer London , 2013. 269. DOI: 10. 1007/978- 1-4471-5061-9.
[72]
Zhang J H , Fu D , Wang S Q , Hao R L , Xie Y X . Journal of Industrial and Engineering Chemistry, 2019, 80: 23.
[73]
Zhang Y C , Yang M , Zhang G S , Dionysiou D D . Applied Catalysis B, 2013, 142: 249.
[74]
Feng M C , Liu Y N , Zhao Z Y , Huang H W , Peng Z J . Materials Research Bulletin, 2019, 109: 168.
[75]
Bai S , Zhang N , Gao C , Xiong Y J . Nano Energy, 2018, 53: 296.
[76]
Qiang T T , Xia Y J . Journal of Alloys and Compounds, in press , 2020,

doi: DOI: 10.1016/j.jallcom.2020.156155
[77]
Bai X , Jia J , Du Y Y , Hu X Y , Li J L , Liu E Z , Fan J . Applied Surface Science, 2020, 503: 144298.
[78]
Jin Z , Zhang Y X , Meng F L , Jia Y , Luo T , Yu X Y , Wang J , Liu J H , Huang X J . Journal of Hazardous Materials, 2014, 276: 400.
[79]
Misra M , Chowdhury S R , Singh N . Journal of Alloys and Compounds, 2020, 824: 153861.
[80]
Huang Z A , Li K X , Yan L S , Guo H Q , Luo S L . Applied Catalysis A, 2019, 575: 142.
[81]
Sun M , Zhang G , Qin Y H , Cao M J , Liu Y , Li J H , Qu J H , Liu H J . Environmental Science & Technology, 2015, 49( 15): 9289.
[82]
Ali J , Sohail A , Wang L , Haider M R , Mulk S H , Pan G . Energies, 2018, 11( 17): 1822.
[83]
Wei Y , Zhang Y W , Geng W , Su H R , Long M C . Applied Catalysis B, 2019, 259: 118084.
[84]
Wang Y F , Zhao D , Ji H W , Liu G L , Chen C C . Journal of Physical Chemistry C, 2010, 114( 41): 17728.
[85]
Feng Y W , Ling L L , Wang Y X , Xu Z M , Cao F L , Li H X , Bian Z F . Nano Energy, 2017, 40: 481.
[86]
Lianos P. Applied Catalysis B, 2017, 210: 235.
[87]
Meng X C , Zhang Z S , Li X G . Journal of Photochemistry and Photobiology C, 2015, 24: 83.
[88]
Daghrir R , Drogui P , Robert D . Journal of Photochemistry and Photobiology A-Chemistry, 2012, 238: 41.
[89]
Fei W H , Song Y , Li N J , Chen D Y , Xu Q F , Li H , He J H , Lu J M . Solar Energy, 2019, 188: 593.
[90]
Wang P P , Dong F Q , Liu M X , He H C , Huo T T , Zhou L , Zhang W . Environmental Science and Pollution Research, 2018, 25( 21): 1.
[91]
Wang K K , He H Z , Li D W , Li Y M , Li J , Li W Z . Journal of Photochemistry & Photobiology A, 2018, 367: 438.
[92]
Wu S , Yu H T , Lu N , Quan X , Chen S . Separation and Purification Technology, 2017, 175: 454.
[93]
Zhang Y , Wang Q , Lu J N , Wang Q , Cong Y Q . Chemosphere, 2016, 162: 55.
[94]
Wei R , Wang P , Zhang G S , Wang N N , Zheng T . Chemical Engineering Journal, 2020, 382: 122781.
[95]
Mishra R R , Sharma A K . Composites Part A-Applied Science and Manufacturing, 2016, 81: 78.
[96]
Chen W M , Luo Y F , Ran G , Li Q B . Chemical Engineering Journal, 2020, 382: 122803.
[97]
Li S , Zhang G S , Zhang W , Zheng H S , Zhu W Y , Sun N , Zheng Y J , Wang P . Chemical Engineering Journal, 2017, 326: 756.
[98]
Chen J , Xue S , Song Y , Shen M , Zhang Z , Yuan T , Tian F , Dionysiou D D . Journal of Hazardous Materials, 2016, 310: 226.
[99]
Horikoshi S , Serpone N . Catalysis Today, 2014, 224: 225.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[3] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[6] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[7] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[8] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[9] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[10] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[11] Hong-lin Zhu, Wen-ying Li, Ting-ting Li, Michael Baitinger, Juri Grin, Yue-qing Zheng. N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction [J]. Progress in Chemistry, 2019, 31(7): 939-953.
[12] Di Liu, Qian Liu, Yonggang Wang, Yongfa Zhu. Bi2SiO5 Semiconductor Photocatalyst [J]. Progress in Chemistry, 2018, 30(6): 703-709.
[13] Zhang Xia, Fan Jing. Carbon Materials Modified Bismuth Based Photocatalysts and Their Applications [J]. Progress in Chemistry, 2016, 28(4): 438-449.
[14] Xie Lijuan, Shi Xiaoyan, Liu Fudong, Ruan Wenquan. Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite [J]. Progress in Chemistry, 2016, 28(12): 1860-1869.
[15] Zhang Xiaodong, Yang Yang, Li Hongxin, Zou Xuejun, Wang Yuxin. Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs [J]. Progress in Chemistry, 2016, 28(10): 1550-1559.
Viewed
Full text


Abstract

Catalytic Reductive Degradation of Cr(Ⅵ)