中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1651-1664 DOI: 10.7536/PC200333 Previous Articles   Next Articles

Molecular Binding and Assembly of Sulfonated Crown Ethers

Hui-Juan Wang1, Yu Liu1,*()   

  1. 1. State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Contact: Yu Liu
  • Supported by:
    the National Natural Science Foundation of China(21772100); the National Natural Science Foundation of China(21432004); the National Natural Science Foundation of China(29672021)
Richhtml ( 44 ) PDF ( 834 ) Cited
Export

EndNote

Ris

BibTeX

Crown ethers, as the first generation macrocycle, with flexible cavity, are widely used to construct supramolecular assemblies, due to their complexation of metal ions and organic cations. Sulfonated crown ether is a kind of anionic crown ether derivative with good water solubility, compared with crown ether, it possess more binding sites, stronger binding ability and better guest selectivity with metal ions and organic cations. This review introduces the research progress of sulfonated crown ether from the synthesis of sulfonated crown ethers, the complexation of alkali metal ions, lanthanide metals, and the assembly of organic cationic guests. Then we comprehensively analyse the binding modes and driving forces of sulfonated crown ethers from the perspectives of thermodynamics and crystal structures. Finally, we discuss the opportunities and challenges of the development of molecular binding and assembly of sulfonated crown ethers, and prospected the application of sulfonated crown ethers.

Contents

1 Introduction

2 The sulfonation method of crown ether

3 The binding and assembly of sulfonated crown ether to metal ions

4 The binding and assembly of sulfonated crown ether to organic cations

4.1 The binding and assembly of bis-sulfonated crown ether to organic cations

4.2 The binding and assembly of tetra-sulfonated bis(m-phenylene) crown ether to organic cations

4.2.1 The binding and assembly of tetra-sulfonated dibenzo crown ether to organic cations

4.2.2 The binding and assembly of tetra-sulfonated dinaphtho crown ether to organic cations

5 Conclusion

Fig.1 Chemical structures of sulfonated crown ethers[11,12,13]
Fig.2 Chemical structures of DS16C5, DS16C5-Me and DS16C5-Butyl [14]
Fig.3 Chemical structures of sulfonated crown ethers and diagrams of ion binding pattern [17, 18, 23]
Fig.4 Chemical structures of SNIB15C5 and SNIB18C6[26]
Fig.5 Chemical structures of sulfonate-crown ether surfactants[27]
Fig.6 Chemical structures of bis-sulfonated crown ethers and pyridine cations[15, 32]
Table 1 A comparison of association constants Ka/103 M-1[a] for the formation of [2]pseudorotaxanes in various solvents at 298 K[32]
Fig.7 Ball-and-stick representations of the X-ray structures of [4-BPE2+?DSDB24C8](bottom) and [3-BPE2+?DSDB24C8](top). S yellow, O red, N blue, C black, axle=gold bonds, wheel=silver bonds; hydrogen atoms omitted for clarity[32]
Fig.8 X-ray crystal structure of [2] pseudorotaxane salt(EV2+?DSDB34C10)[15]
Fig.9 Chemical structures of tetra-sulfonated crown ethers[19]
Fig.10 Chemical structures of pyridine cations[19]
Fig.11 (a) Crystal structure and(b) the packing representation of [2]pseudorotaxane MV2+?TSBMP26C8,(c) Crystal structure and(d) the packing representation of [2]pseudorotaxane BPE2+?TSBMP26C8[16]
Fig.12 Chemical structures of cationic guests[19, 46, 48, 49]
Table 2 Complex associate constants(Ka/M-1), enthalpy(ΔH/kJ·mol-1) and entropy changes(TΔS/kJ·mol-1) for 1∶1 inclusion complexation of TSBMP26C8 or TSBMP32C10 with organic cationic guests in water at 25 ℃[16, 19]
Fig.13 Crystal structures and packing representation for the complexation of(a) MV2+?TSDN32C8,(b) MV2+?TSDN38C10 and(c) EV2+?TSDN38C10[37]
Fig.14 Crystal structures and packing representation of [2]pseudorotaxane(a) PMDI2+?TSDN38C10 and(b) NDI2+?TSDN38C10. Left: single unit; right: packing structure. Solvent molecules and partial hydrogen atoms are omitted for clarity[43]
Table 3 Complex associate constants(Ka/M-1), enthalpy(ΔH/kJ·mol-1) and entropy changes(TΔS/kJ·mol-1) for 1∶1 inclusion complexation of TSDN32C8 or TSDN38C10 with organic cationic guests in Water at 25 ℃ [19, 37, 43, 44, 46]
Host Guest Ka(M-1) DG° - ΔH°(kJ/mol) TΔS°(kJ/mol)
TSDN32C8 MV2+ (4.04 ± 0.35) × 107 43.40 ± 0.22 38.93 ± 0.27 4.47 ± 0.05
EV2+ (5.25 ± 0.58) × 107 44.04 ± 0.28 41.54 ± 0.54 2.50 ± 0.26
BuV2+ (4.66 ± 0.48) × 107 43.75 ± 0.26 43.92 ± 1.05 -0.17 ± 0.79
MP2+ (1.13 ± 0.06) × 105 28.84 ± 0.04 29.23 ± 0.23 -0.39 ± 0.35
PMDI2+ (5.82 ± 0.05) × 105 32.90 ± 0.02 24.85 ± 0.01 8.05 ± 0.03
NDI2+ (9.81 ± 0.08) × 105 34.18 ± 0.02 23.17 ± 0.03 11.01 ± 0.08
G1 (2.82 ± 0.21) × 106 36.81 ± 0.18 35.47 ± 0.05 1.34 ± 0.23
G2 (4.94 ± 0.29) × 106 38.20 ± 0.14 33.38 ± 0.04 4.82 ± 0.18
G3 4.32 × 106 37.85 41.39 -3.54
G4 (8.09 ± 0.09) × 105 33.72 ± 0.03 39.37 ± 0.37 -5.65 ± 0.39
G5 (1.64 ± 0.08) × 106 35.47± 0.12 40.54 ± 0.07 -5.08 ± 0.20
G6 (1.82 ± 0.13) × 106 35.52 ± 0.02 41.42 ± 0.42 -5.89 ± 0.40
TSDN38C10 MV2+ (3.25 ± 0.04) × 105 31.46 ± 0.03 30.13 ± 0.24 1.33 ± 0.21
EV2+ (1.85 ± 0.04) × 105 30.06 ± 0.05 27.20 ± 0.01 2.86 ± 0.07
BuV2+ (1.88 ± 0.02) × 105 30.10 ± 0.03 27.27 ± 0.01 2.83 ± 0.02
MP2+ (4.42 ± 0.26) × 102 15.03 ± 0.69 14.71 ± 1.29 0.38 ± 1.43
PMDI2+ (8.08 ± 0.30) × 104 27.99 ± 0.09 20.59 ± 0.15 7.40 ± 0.24
NDI2+ (2.33 ± 0.03) × 106 36.32 ± 0.03 36.31 ± 0.04 0.01 ± 0.01
BV2+ (7.12 ± 0.01) × 105 33.37 ± 0.00 30.99 ± 0.07 2.54 ± 0.07
DP2+ (2.49 ± 0.00) × 106 36.47 ± 0.00 29.80 ± 0.06 6.84 ± 0.06
DMDAP2+ (1.12 ± 0.03) × 108 45.89 ± 0.06 47.84 ± 0.12 -1.96 ± 0.18
DBDAP2+ (2.25 ± 0.03) × 107 41.93 ± 0.04 40.06 ± 0.06 1.87 ± 0.10
Table 4 Parameters of fluorescence spectra of five silk tricyclic fluorescent dyes binded to tetrasulfonated dinaphtho-32-crown-8[19]
Fig.15 Crystal structures of(a) DP2+?TSDN38C10 and(b) DMDAP2+?TSDN38C10, and packing representation of(c) DP2+?TSDN38C10 and(d) DMDAP2+?TSDN38C10. Please note that the solvent molecules and partial hydrogen atoms are omitted for clarity[44]
Fig.16 Self-assembly/disassembly based on the photoresponsive interconversion of pseudorotaxanes[48]
Fig.17 The SEM(a), TEM(b) images and diagram(c) of the complex MV-FF?TSDN32C8 [49]
[1]
Pedersen C J . Am. Chem. Soc., 1967,89(26):7017.
[2]
Huang S L , Hor T S A, Jin G X, Coord. Chem. Rev., 2017,333:1.
[3]
Wang H J, Zhang H Y, Wu H, Dai X Y, Li P Y, Liu Y. . Chem. Commun., 2019,55:4499.
[4]
Fu H G, Zhang H Y, Zhang H Y, Liu Y. . Chem. Commun., 2019,55:13462.
[5]
Li X, Deng Y, Lai J, Zhao G, Dong S . Am. Chem. Soc., 2020,142:5371.
[6]
Wang L, Cheng L, Li G, Liu K, Zhang Z, Li P, Dong S, Yu W, Huang F, Yan X . Am. Chem. Soc., 2020,142:2051.
[7]
Fu H G, Chen Y , Liu Y. ACS Appl. Mater Interfaces., 2019,11:16117.
[8]
Chen Y, Huang F, Li Z T , Liu Y. Sci China Chem., 2018,61:979.
[9]
刘育 ( Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学—合成受体的分子识别与组装(Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors). 天津:南开大学出版社( Tianjin: Nankai University Press), 2001. 624.
[10]
王慧娟 ( Wang H J). 南开大学硕士论文( Master’s Dissertation of Nankai University), 2019.
[11]
Pederson C J . US3687978, 1972.
[12]
Cram D J, Helgeson R C, Peacock S C, Kaplan L J, Domeier L A, Moreau P, Koga K, Mayer J M, Chao Y, Siegel M G, Hoffman D H, Sogah G D . Org. Chem., 1978,43:1930.
[13]
Shinkai S, Minami T, Araragi Y, Manabe O . Chem. Soc. Perkin. Trans., 1985,2:503.
[14]
Pugia M J, Desai D H, Bartsch R A . Org. Chem., 1987,52:4389.
[15]
Lestini E, Nikitin K, Muller-Bunz H , Fitzmaurice D. Chem. Eur. J., 2008,14:1095.
[16]
Chen L, Zhang Y M, Liu Y . J. Phys. Chem. B, 2012,116:9500.
[17]
Sasaki T, Umetani S , Le Q T H, Matsui M, Tsurubou S. Analyst., 1996,121:1051.
[18]
Sasaki T, Umetani S, Matsui M, Tsurubou S, Kimura T , Yoshida Z. Bull. Chem. Soc. Jpn., 1998,71:371.
[19]
陈岭 ( Chen L). 南开大学博士论文( Doctoral Dissertation of Nankai University), 2019.
[20]
Morzherin Y, Rudkevich D M, Verboom W, Reinhoudt D N . Org. Chem., 1993,58:7602.
[21]
Jenkins H D B, Thakur K P . Chem. Educ., 1979,56:576.
[22]
Shannon R D. Acta Crystallogr., 1976,32:751.
[23]
Umetani S, Sasaki T , Le Q T H, Matsui M, Tsurubou S, Kimura T, Yoshida Z. Analytical Sciences., 1997,13:123.
[24]
Minta A, Tsien R Y . Biol. Chem., 1989,264:19449.
[25]
He H, Mortellaro A M , Leiner P J M, Fraatz J R, Tusa K. J. Am. Chem. Soc., 2003,125:1468.
[26]
Nandhikonda P, Begaye M P, Heagy M D . Tetrahedron Letters, 2009,50:2459.
[27]
Zhou J, Liang H L, Chen Q D, Shen X H . Chinese Chemical Letters, 2013,24(12):1137.
[28]
Oshovsky G V, Reinhoudt D N , Verboom W. Angew. Chem. Int. Ed., 2007,46:2366.
[29]
Florea M , Nau W M. Org. Biomol. Chem., 2010,8:1033.
[30]
Badjic J D, Balzani V, Credi A, Silvi S, Stoddart J F . Science, 2004,303:1845.
[31]
Badjic J D, Ronconi C M, Stoddart J F, Balzani V, Silvi S, Credi A . Am. Chem. Soc., 2006,128:1489.
[32]
Hoffart D J, Tiburcio J, Torre A, Knight L K , Loeb S J. Angew. Chem. Int. Ed., 2008,47:97.
[33]
Altobello S, Nikitin K, Stolarczyk J, Lestini E , Fitzmaurice D. Chem. Eur. J., 2007,14:1107.
[34]
Ashton P R, Ballardini R, Balzani V , Bělohradsk y M, Gandolfi M T, Philp D, Rrodi L, Raymo F M, Reddington M V, Spencer N, Stoddart J F, Venturi M, Williams D J. J. Am. Chem. Soc., 1996,118:4931.
[35]
Huang F, Gibson H W, Bryant W S, Nagvekar D S, Froncze F R . Am. Chem. Soc., 2003,125:9367.
[36]
Zhang M, Luo Y, Zheng B, Xia B, Huang F . Org. Chem., 2010: 5543.
[37]
Chen L, Zhang H Y, Liu Y . Org. Chem., 2012,77:9766.
[38]
Vignon S A, Jarrosson T, Iijima T, Tseng H R , Sander J K M, Stoddart J F. J. Am. Chem. Soc., 2004,126:9884.
[39]
Han T, Chen C F . Org. Chem., 2007,72:7287.
[40]
Bhosale S V, Jani C H , Langford S J. Chem. Soc. Rev., 2008,37:331.
[41]
Mullen K M, Davis J D , Beer P D. New J. Chem., 2009,33:769.
[42]
Jacquot de R, H P, Iehl J, Bruns C J, McGrier P L, Frasconi M, Sarjeant A A, Stoddart J F . Org. Lett., 2012,14:5188.
[43]
Chen L, Zhang Y M, Wang L H, Liu Y . Org. Chem., 2013,78:5357.
[44]
Zhang Y M, Wang Z, Chen L, Song H B, Liu Y . J. Phys. Chem. B, 2014,118:2433.
[45]
张旭杰 ( Wang H J). 南开大学硕士论文( Master’s Dissertation of Nankai University), 2016.
[46]
Zhang Y M, Zhang X J, Xu X F, Fu X N, Hou H B, Liu Y . J. Phys. Chem. B, 2016,120:3932.
[47]
Houk K N, Leach A G, Kim S P , Zhang X. Angew. Chem. Int. Ed., 2003,42:4872.
[48]
Wang J, Zhang H Y, Zhang X J, Song Z H, Zhao X J, Liu Y. . Chem. Commun., 2015,51:7329.
[49]
Zhang W, Zhang Y M, Li S H, Cui Y L, Yu J , Liu Y. Angew. Chem. Int. Ed., 2016,55:11452.
[1] Kongjiang Wang*,Liang Xin,Jie Ren. Polymerization of CDI-Activated Charged Acidic and Basic Amino Acids Efficiently Enhanced by Na+ and Cl- [J]. Progress in Chemistry, 2006, 18(10): 1391-1396.
[2] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.