中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 1952-1977 DOI: 10.7536/PC200319 Previous Articles   Next Articles

• Review •

Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System

Wei Kang1, Lu Li1, Qing Zhao2,**(), Cheng Wang2,3,**(), Jianlong Wang2,3, Yue Teng1   

  1. 1 Global Energy Internet Research Institute Co., Ltd, Beijing 102209, China
    2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
    3 Power Intelligent Manufacturing Joint Research Institute Between Tsinghua University and Weichai Company, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Contact: Qing Zhao, Cheng Wang
  • Supported by:
    the Headquarters of State Grid Corporation of China(No. 5419-201920213A-0-0-00)
Richhtml ( 65 ) PDF ( 1311 ) Cited
Export

EndNote

Ris

BibTeX

Solid polymer electrolyte(SPE) water electrolysis plays an important role in the utilization of renewable resources and the development of the hydrogen economy. Catalyst is the most significant influencial factor to attain a high energy conversion efficiency. Due to the serious corrosion effects and high operation potential in the SPE water electrolysis, commercial catalysts used for the SPE water electrolysis are typically Pt and Ir based materials. However, the limited resources and high price of precious metals lead to expensive catalysis costs and impose huge resitrictions to the development of SPE water electrolysis technology. Investigation of water electrolysis catalysts in the acidic electrolyte mainly focus upon cutting down the usage of precious metals, and improving and extending the ultilization and stability of noble metal catalysts. Moreover, persuing cost-effective alternative materials and developing non-precious hydrogen and oxygen evolution catalysts are the target of searching for efficient SPE water electrolysis catalysts. Combining the in-depth expoloration of catalysis principles and fast advances of simulation and calculation technologies, design and synthesis of the more active hydrogen and oxygen evolution catalysts are of significance influence for the application of SPE water electrolysis. This work makes a summary of current developments of mechamism for SPE water electrolysis, introduces the latest progress of catalyst preparation methods for SPE catalysts, does a simple summary on the development of multiple fuctional catalysts for the hydrogen and oxygen evolution process and provides some suggestions to the investigation of water electrolysis catalysts. We hope this work can play positive roles in the advances of SPE water electrolysis.

Contents

1 Introduction

2 Solid polymer electrolyte water electrolysis

2.1 Mechanism for water electrolysis

2.2 Membrane electrode assembly of solid polymer electrolyte water electrolysis

2.3 New developments of the hydrogen evolution catalysts

2.4 New developments of the oxygen evolution catalysts

2.5 Bifunctional catalysts for hydrogen and oxygen evolution catalysis

3 Conclusion and outlook

Fig.1 Schematic diagram of SPE water electrolysis, DC is direct current. Copyright 2019, Wiley[38]
Fig.2 HER mechanism on catalyst surface: Volmer-Tafel mechanism. Copyright 2019, Wiley
Fig.3 HER mechanism on catalyst surface: Volmer-Heyrovsky mechanism. Copyright 2019, Wiley
Fig.4 Elementary reaction of HER and OER and the transformation of adsorbed species(H*,HO*,O*和HOO*) on catalyst surface: the black spheres represent carbon atoms, white for hydrogen atoms, red for oxygen atoms and blue for transition metals. Copyright 2019,Elsevier
Fig.5 The volcano shape curve of catalyst activities: (a) The activities of hydrogen evolution catalyst;(b) The activities of oxygen evolution catalyst
Fig.6 (a) SEM and (b) TEM images of Pt/NPC.(c) Low-magnification and (d) high-magnification HAADF-STEM images and corresponding EDS maps for(e) C,(f) N,(g) P and (h) Pt of Pt/NPC.(i) HR-TEM image of a typical Pt NP on the NPC substrate.(j) Statistic histogram for the size distribution of the as-prepared Pt NPs on the NPC substrate.(k) Raman spectrum of Pt/NPC. Copyright 2017, Springer[113]
Fig.7 (a) Polarization curves of NPC, Pt/NC, Pt/NPC, and 20% Pt/C(Alfa);(b) comparison of the mass specific activity of Pt/NC, Pt/NPC, and 20% Pt/C(Alf a) at various potentials(vs RHE);(c) Polarization curves of Pt/NPC before and after CV between -0.13 and 0.22 V vs RHE at 100 mV·s -1 for 2000 cycles; (d) Time dependence of the current density for Pt/NPC at a static overpotential of -8 mV(vs RHE) for 35 h. Copyright 2017, Springer [113]
Fig.8 Synthetic procedure and physical characterization. (a) Synthetic procedure; (b) SEM image of the leached sample of bamboo-node-shaped GTs grown with the aid of the enclosed alloy NPs. (c) TEM images of a GT enclosing alloy NPs and HRTEM image of the alloy inside a GT. (d) TEM image of a cross-section of a GT enclosing an alloy NP. (e) The HRTEM image shows the presence of Fe 3Co 7and Cu inside the GT. (f) HAADF-STEM image and the cross-sectional compositional line profiles inside a GT of GT-1.(g) The HAADF image and individual element maps show a cross-section of the GT in the Pt-GT-1 catalyst.(h,i) TEM image of a Pt NP on a GT surface of Pt-GT-1(h) and an enlarged HRTEM image(i). (j) HRTEM images of GTs in Pt-GT-1. Copyright 2018, Springer Nature [114]
Fig.9 Catalytic free energies of single Pt atoms and Pt clusters/NPs on a GT surface along with the defect formation and second Pt adhesion energies. (a) Hydrogen-adsorption free energies(ΔGH+) of selected active sites on a GT surface. (b~d) ΔGH+ for the hollow site of a Pt(111) surface on GT-Cu/FeCo 2(b), the Pt site of Pt 10-GT-Cu/Fe 11Co 27(c) and the N site of a GT that encloses a Fe 11Co 27alloy(d). Copyright 2018, Springer Nature [114]
Fig.10 Rational design of the Pt/OLC catalyst via reducing the dimensions and introducing curvature. (a) The schematic illustrates the approach taken in this work, whereby catalytically active particles were reduced in size to a single-atom form and the dimensionality of the catalyst support was reduced by using quasi-0D OLCs.(b) The HAADF-STEM image of Pt/OLC clearly displays the Pt single atoms randomly dispersed on the OLC supports.(c) TEM image of Pt/OLC shows a multishell fullerene structure with a layer distance of 0.35 nm. Copyright 2019, Springer Nature [115]
Fig.11 (a) The mass activity of Pt 1/OLC is normalized to the Pt loading at an η of 38 mV with respect to the reference catalysts.(b) Tafel plots derived from the corresponding polarization curves. Copyright 2019, Springer Nature [115]
Fig.12 Schematic illustration of the formation mechanism of PtCu RDNFs. Copyright 2019, Elsevier
Fig.13 (a) TEM images and (b~d) HAADF-STEM-EDS elemental mappings of PtCu RDNFs. The (e) EDS spectrum and (f) line scanning profiles. Copyright 2019, Elsevier [116]
Fig.14 (a) The HER polarization curves of the catalysts in N 2-saturated 0.5 M H 2SO 4 at 5 mV·s -1.(b) Tafel plots. (c) Polarization curves of PtCu RDNFs before and after 1000 cycles.(d) The chronoamperometric curves at -0.07 V(vs RHE). Copyright 2019, Elsevier
Fig.15 Synthetic mechanism and electron microscopy characterization of the Ru/Pt/Pd@Co-SAs/N-C and Ru@Co-NC. (a) Synthesis schematic diagram of Ru/Pt/Pd@Co-SAs/N-C. TEM images of (b) ZnCo-ZIF,(c) Co-SAs/N-C, (d) HAADF-STEM image of Co-SAs/N-C, TEM images of (e) Ru@Co-SAs/N-C,(f) Pt@Co-SAs,(g) Pd@Co-SAs/N-C. Copyright 2019, Elsevier
Fig.16 Schematic illustration of the preparation of Cu 3P@NPPC catalyst. Copyright 2017, Wiley [168]
Fig.17 (a) LSV curves of various samples for HER in 0.5 M H 2SO 4and (b) the corresponding Tafel curves; (c) Nyquist plots @-0.2 V; (d) HER stability tests of the Cu 3P@NPPC-650 catalyst. Copyright 2017, Wiley [168]
Fig.18 Schematic illustration of the synthetic process for CoP-InNC and CoP-InNC@CNT composites. Copyright 2020,Wiley [169]
Fig.19 Illustration of the synthesis of P-Mo 2C@C NWs. Copyright 2017, Royal Society of Chemistry [170]
Fig.20 (a) SEM,(b) TEM, ( c) HR-TEM images of P-Mo 2C@C, and (d) the corresponding elemental mapping. Copyright 2017, Royal Society of Chemistry [170]
Fig.21 Schematic illustration of the formation mechanism of Cu@MoS 2. Copyright 2019, Elsevier [171]
Fig.22 Electrochemical activities of the catalyst toward HER. (a) Polarization curves of HER for Cu@MoS 2, Pt/C and MoS 2.(b) Tafel plots. Copyright 2019, Elsevier [171] (a) LSV;(b) Tafel [171]
Fig.23 (a) Low and (b) high-magnification SEM images of WN NW/CC and(c~e) the corresponding elemental mapping. Copyright 2017, Royal Society of Chemistry [44]
Fig.24 (a) Polarization curves and (b) corresponding Tafel plots of WN NW/CC in comparison with those of Pt, WO x/CC and CC and in 0.5 M H 2SO 4, with a scan rate of 2 mV·s -1. Copyright 2017, Royal Society of Chemistry [44]
Fig.25 HER activities of chemically doped graphene. (a) Hydrodynamic voltammograms of graphene samples in 0.5 M aqueous H 2SO 4 electrolyte.(b) Tafel plots of the various graphene samples.(c) Differences in current at 150 mV(V vs RHE) as functions of scan rate. d) Gibbs free energy profiles calculated by DFT. Copyright 2019,Wiley [174]
Fig.26 The optimized structures of (a) Co@N 1-GY and (b) Co@N 2-GY; the corresponding minimum energy pathway of the bound Co atom diffused from the stable adsorption site to the neighboring stable site:(c) Co@N 1-GY and (d) Co@N 2-GY. Copyright 2020, Elsevier [178] (a)(c) Co@N 1-GY;(b)(d) Co@N 2-GY [178]
Fig.27 Calculated free energy diagram for the OER over the Co site of Co@GY, Co@N 2-GY, and Co@N 1-GY systems at U=0 V. Copyright 2020, Elsevier [178]
Fig.28 (a) HAADF-STEM image,(b,c) TEM images,(d) HRTEM image, and (e) size distribution of IrNi NCs.(f) XRD pattern and (g) EDX spectrum of the IrNi NCs.(h) STEM-EDX mappings of IrNi NCs. Copyright 2017, Wiley [98]
Fig.29 The morphology and size statistics of as-prepared wavy Ir nanowires.(a~c) the TEM images and high-resolution TEM image of one-dimensional Ir WNWs.(d, e) the corresponding EDX spectrum and PXRD pattern of as-synthesized Ir WNWs.Copyright 2018, Royal Society of Chemistry [186]
Fig.30 Synthesis mechanism of the core-shell Au@Ni 2P catalyst. Copyright 2019, American Chemical Society [187]
Fig.31 (a) OER catalyst performance before and after heating at 350 ℃; (b) Tafel plot of different samples;(c) measured current density at 1.47 V vs RHE;(d) stability of Au@Ni 2P-350 ℃ at 1.48 V and 1.56 V vs RHE. Copyright 2019, American Chemical Society [187]
Fig.32 High resolution TEM image (a) and STEM image coupled with EDX mapping(b) for Ru 0.5Ir 0.5O 2NPs. Copyright 2020, Elsevier [190]
Fig.33 (a) TEM image and size distribution(inset),(b) SEM-EDS,(c) XRD pattern,(d, d 1, d 2)HRTEM images,(e) STEM line scans and (f) HAADF-STEM image and elemental mappings of the Ir 6Ag 9 NWs. Copyright 2019, Elsevier[191] (a) TEM;(b) SEM-EDS;(c) XRD;(d, d 1, d 2) HRTEM;(e) STEM;(f) HAADF-STEM[191]
Fig.34 (a)HAADF-STEM image of Co-RuIr nanocrystal.(b) An enlarged view of the rectangular region in (a).(c) STEM-EDX mappings of Co-RuIr nanocrystals. Copyright 2019, Wiley[192]
Fig.35 Characterization of AuCu@IrNi core@shell nanoparticles(ACIN-CS). (a,c)TEM images and (b,d) corresponding elemental mapping analysis. Copyright 2019, Royal Society of Chemistry[194]
Table 1 Summary of the current advances and implementation methods for SPE water electrolysis catalyst developments
Water electrolysis catalysts Advances Implementation methods
HER catalysts Precious catalysts Development of the precious HER catalysts are aimed at increasing the dispersion and utilization efficiency of precious metals,enhancing the catalytic activity and stability. Lowering the loading of precious metal is of greatest significance for the application of HER catalysis, remarkably cutting down the usage of precious metals and reducing the costs Implenentations of synthesizing the applicable high-performance HER catalysts are focusing on the alloying, doping and modification with economically heterogeneous elements, preparing the stable core-shell structures and applying the morphology control techniques in the synthesis processes. Atomically dispersive preparation method is the latest developed promising catalyst preparing approaches, increasing the catalytic activity and stability simultaneously.
Non-precious catalysts The metal-macrocyclic organic framework catalyst with different doping transitional metals are vigorous developed to catalyze HER process. These non-precious catalysts can significantly cut down the electrolysis costs, making significant contributions to the electrochemical energy storage and conversion. However, increasing the catalytic activity and improving the stability are still the main direction for the development of non-precious HER catalysts. High-performance non-precious HER catalysts are usually prepared through doping and modification approaches. Taking advantage of the functionalized nanomaterials and transitional metals can form catalytic active structures, and increase the density of active sites. Porous structures can also enhance the interaction between catalysts and the electrolyte. Meanwhile, the good conductivity, rich heterogeneous element dopants and evident stress effects significantly increase the electrochemical activity of non-precious HER catalysts.
OER catalysts Precious catalysts The study of precious OER catalysts aimed at reducing the consumption and improving the utilization efficiency of precious metals, so as to cutting down the catalysis cost. The invesitigations focus on increasing the catalyst stability, improving the conductivity and optimizing the catalyst structures to develop the more applicable OER catalysts Increasing the specific surface area and transforming the crystal structure through supporting, doping and modification processes can obviously improve the catalytic activity and stability of precious metal OER catalysts. With high specific surface carrier supported, the dispersion and stability of precious metals are increased, remarkably improving the catalytic activity and lowering the loading of precious metals for the synergetic facilitation of carriers.
Non-precious catalysts Non-noble OER catalysts with high catalytic activity and excellent stability are the most ideal OER catalytic materials, which have great effects on reducing the catalytic costs and extending the application of water electrolysis. Preparing non-precious OER catalysts is still of great challenge today. Further understanding of the catalytic principles and increasing active site density and catalyst stability are still the most important researches. In the acidic water electrolysis systems, the non-precious OER catalysts are very limited, and only a few amorphous nitrides, Co spinel oxides, Ti alloys, and N-doped carbides such as NbN x and ZrN x can be used. Non-precious OER catalysts can be synthesized through the heterogeneous element doping, monatomic dispersion, active site anchoring and protective coating methods.
Bi-functional electrocatalyst HER+OER The high-performance bi-functional hydrogen and oxygen evolution catalysts is of great significance to reduce the cost of acidic water electrolysis. However, improving the catalytic activity is challengeable but meaningful. Preparing the highly active bi-functional catalysts with transitional metal doping process is one of the most important research direction for acidic water electrolysis. For the bifunctional water electoysis catalyst, the transitional metal doping and morphology control methods are commonly used to elevate the catalytic activity through adjusting the molecular structures, active site forms and surface electronic states and changing the combination environment and chemical adsorption property.
[1]
Paidar M , Fateev V , Bouzek K . Electrochim. Acta, 2016, 209: 737.
[2]
Olivier P , Bourasseau C , Bouamama P B . Renewable & Sustainable Energy Reviews, 2017, 78: 280.
[3]
Yang G , Yu S , Kang Z , Dohrmann Y , Bender G , Pivovar B S , Green J B , Retterer S T , Cullen D A , Zhang F Y . Energy Convers. Manage., 2019, 182: 108.
[4]
Allidieres L , Brisse A , Millet P , Valentin S , Zeller M . Int. J. Hydrogen Energy, 2019, 44: 9690.
[5]
Zhang X , Huang L , Wang Q , Dong S . J. Mater. Chem. A, 2017, 5: 18839.
[6]
Brandon N P , Kurban Z . Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2017, 375.
[7]
Millet P , Andolfatto F , Durand R . Int. J. Hydrogen Energy, 1996, 21: 87.
[8]
Millet P , Alleau T , Mathonnet P , Pineri M , Durand R . Proceedings of the European Space Power Conference(ESA SP-294), 1989, 245.
[9]
Carmo M , Fritz D L , Merge J , Stolten D . Int. J. Hydrogen Energy, 2013, 38: 4901.
[10]
Sapountzi F M , Gracia J M , Weststrate C J , Fredriksson H O A , Niemantsverdriet J W . Prog. Energy Combust. Sci., 2017, 58: 1.
[11]
Hao C , Lv H , Zhao Q , Li B , Zhang C , Mi C , Song Y , Ma J . Int. J. Hydrogen Energy, 2017, 42: 9384.
[12]
Nouri-Khorasani A , Ojong E T , Smolinka T , Wilkinson D P . Int. J. Hydrogen Energy, 2017, 42: 28665.
[13]
Millet P , Pineri M , Durand R . J. Appl. Electrochem., 1989, 19: 162.
[14]
Valek L , Metikos-Hukovic M , Grubac Z . J. New Mater. Electrochem. Syst., 2006, 9: 145.
[15]
Lu P W T , Srinivasan S . J. Appl. Electrochem., 1979, 9: 269.
[16]
Davenport R J , Schubert F H , Grigger D J . J. Power Sources, 1991, 36: 235.
[17]
Barbir F. Solar Energy, 2005, 78: 661.
[18]
Andolfatto F , Durand R , Michas A , Millet P , Stevens P . Int. J. Hydrogen Energy, 1994, 19: 421.
[19]
Hijikata T. Int. J. Hydrogen Energy, 2002, 27: 115.
[20]
Tsukagoshi T , Mouri K , Hisamatsu T , Watanabe M , Research and Development of Hydrogen Combustion Turbine System in World Energy Network Project in Japan, 1998.
[21]
Mitsugi C , Harumi A , Kenzo F . Int. J. Hydrogen Energy, 1998, 23: 159.
[22]
Zhu Y P , Guo C , Zheng Y , Qiao S Z . Acc. Chem. Res., 2017, 50: 915.
[23]
Park J E , Kim S , Kim O H , Ahn C Y , Kim M J , Kang S Y , Jeon T I , Shim J G , Lee D W , Lee J H , Cho Y H , Sung Y E . Nano Energy, 2019, 58: 158.
[24]
Toghyani S , Fakhradini S , Afshari E , Baniasadi E , Jamalabadi M Y A , Shadloo M S . Int. J. Hydrogen Energy, 2019, 44: 6403.
[25]
Immerz C , Paidar M , Papakonstantinou G , Bensmann B , Bystron T , Vidakovic-Koch T , Bouzek K , Sundmacher K , Hanke-Rauschenbach R . Journal of Applied Electrochemistry, 2018, 48: 701.
[26]
Lafmejani S S , Mueller M , Olesen A C , Kaer S K . J. Power Sources, 2018, 397: 334.
[27]
Cui X , Ren P , Deng D , Deng J , Bao X . Energy & Environmental Science, 2016, 9: 123.
[28]
Zhu Y P , Xu X , Su H , Liu Y P , Chen T , Yuan Z Y . ACS Appl . Mater. Inter., 2015, 7: 28369.
[29]
Zhou W , Zhou J , Zhou Y , Lu J , Zhou K , Yang L , Tang Z , Li L , Chen S . Chem. Mater., 2015, 27: 2026.
[30]
Zeng M , Li Y . J. Mater. Chem. A, 2015, 3: 14942.
[31]
Xiao P , Chen W , Wang X . Advanced Energy Materials, 2015, 5.
[32]
Boshnakova I , Lefteratia E , Slaucheva E . Int. J. Hydrogen Energy, 2018, 43: 16897.
[33]
Carmo M , Keeley G P , Holtz D , Grube T , Robinius M , Mueller M , Stolten D . International Journal of Hydrogen Energy, 2019, 44: 3450.
[34]
Kadakia K , Datta M K , Velikokhatnyi O I , Jampani P , Park S K , Chung S J , Kumta P N . J. Power Sources, 2014, 245: 362.
[35]
Marshall A , Borresen B , Hagen G , Tsypkin M , Tunold R . Energy, 2007, 32: 431.
[36]
Yu H , Bonville L , Jankovic J , Maric R . Appl. Catal. B-Environ., 2020, 260.
[37]
Wang C , Lan F , He Z , Xie X , Zhao Y , Hou H , Guo L , Murugadoss V , Liu H , Shao Q , Gao Q , Ding T , Wei R , Guo Z . Chemsuschem, 2019, 12: 1576.
[38]
Sultan S , Tiwari J N , Singh A N , Zhumagali S , Ha M , Myung C W , Thangavel P , Kim K S . Advanced Energy Materials, 2019, 9.
[39]
Tijani A S , Kamarudin N A B , Mazlan F A B . International Journal of Hydrogen Energy, 2018, 43: 9119.
[40]
Strmcnik D , Lopes P P , Genorio B , Stamenkovic V R , Markovic N M . Nano Energy, 2016, 29: 29.
[41]
Sun H , Yan Z , Liu F , Xu W , Cheng F , Chen J . Adv. Mater., 2020, 32.
[42]
Chen W F , Muckerman J T , Fujita E . Chem. Commun., 2013, 49: 8896.
[43]
Li A , Sun Y , Yao T , Han H . Chemistry-A European Journal, 2018, 24: 18334.
[44]
Ren B , Li D , Jin Q , Cui H , Wang C . J. Mater. Chem. A, 2017, 5: 19072.
[45]
Yu P , Wang F , Shifa T A , Zhan X , Lou X , Xia F , He J . Nano Energy, 2019, 58: 244.
[46]
Devadas B , Imae T . Electrochem. Commun., 2016, 72: 135.
[47]
Conway B E , Tilak B V . Electrochim. Acta, 2002, 47: 3571.
[48]
Tan Y , Liu P , Chen L , Cong W , Ito Y , Han J , Guo X , Tang Z , Fujita T , Hirata A , Chen M . Adv. Mater., 2014, 26: 8023.
[49]
Morales-Guio C G , Stern L A , Hu X . Chem. Soc. Rev., 2014, 43: 6555.
[50]
Vesborg P C K , Seger B , Chorkendorff I . Journal of Physical Chemistry Letters, 2015, 6: 951.
[51]
Khalafallah D , Zhi M , Hong Z . Top. Curr. Chem., 2019, 377.
[52]
Li J , Yan M , Zhou X , Huang Z Q , Xia Z , Chang C R , Ma Y , Qu Y . Adv. Funct. Mater., 2016, 26: 6785.
[53]
Murthy A P , Madhavan J , Murugan K . J. Power Sources, 2018, 398: 9.
[54]
Shi Y , Zhang B . Chem. Soc. Rev., 2016, 45: 1529.
[55]
Bao T , Song L , Zhang S . Chem. Eng. J., 2018, 351: 189.
[56]
Choquette Y , Brossard L , Lasia A , Menard H . J. Electrochem. Soc., 1990, 137: 1723.
[57]
Elezovic N R , Jovic V D , Krstajic N V . Electrochim. Acta, 2005, 50: 5594.
[58]
Sheng W C , Gasteiger H A , Yang S H . J. Electrochem. Soc., 2010, 157: B1529.
[59]
Vilekar S A , Fishtik I , Datta R . J. Electrochem. Soc., 2010, 157: B1040.
[60]
Durst J , Simon C , Siebel A , Rheinlaender P , Schuler T , Hanzlik M , Herranz J , Hasche F , Gasteiger H A . in Polymer Electrolyte Fuel Cells 14, eds. Gasteiger H A, Uchida H, Buchi F N, SwiderLyons K, Jones D, Ramani V, Schmidt T J, Weber A, Fenton J M, Meas Y, Shinohara K, Edmundson M, Perry K A, Coutanceau C, Mitsushima S, Strasser P, Mantz R, Fuller T, Narayanan S R. 2014, vol. 64, pp. 1069.
[61]
Wang X , Vasileff A , Jiao Y , Zheng Y , Qiao S Z . Adv. Mater., 2019, 31.
[62]
Li J , Zheng G . Advanced Science, 2017, 4.
[63]
Zhu C , Fu S , Shi Q , Du D , Lin Y . Angew. Chem. Int. Ed., 2017, 56: 13944.
[64]
Gao X , Zhou Y , Tan Y , Liu S , Cheng Z , Shen Z . Appl. Surf. Sci., 2019, 492: 8.
[65]
Garcia-Navarro J C , Schulze M , Friedrich K A . J. Power Sources, 2019, 431: 189.
[66]
De S , Zhang J , Luque R , Yan N . Energy & Environmental Science, 2016, 9: 3314.
[67]
Grigoriev S A , Bessarabov D G , Fateev V N . Russ. J. Electrochem., 2017, 53: 318.
[68]
Sung C C , Liu C Y . Int. J. Hydrogen Energy, 2013, 38: 10063.
[69]
Millet P , Ngameni R , Grigoriev S A , Mbemba N , Brisset F , Ranjbari A , Etievant C . Int. J. Hydrogen Energy, 2010, 35: 5043.
[70]
TOYOTA MOTOR CORP. WO2017159820- A1, JP2019083085-A. 2017.
[71]
Zeng Y , Guo X , Shao Z , Yu H , Song W , Wang Z , Zhang H , Yi B . J. Power Sources, 2017, 342: 947.
[72]
Shi Y , Lu Z , Guo L , Yan C . Int. J. Hydrogen Energy, 2017, 42: 26183.
[73]
Mo J , Kang Z , Yang G , Li Y , Retterer S T , Cullen D A , Toops T J , Bender G , Pivovar B S , Green J B , Zhang F Y . J. Mater. Chem. A, 2017, 5: 18469.
[74]
Grigoriev S A , Bessarabov D G , Glukhov A S . Russ. J. Electrochem., 2017, 53: 808.
[75]
Baumann N , Cremers C , Pinkwart K , Tuebke J . Energy Technology, 2016, 4: 212.
[76]
Wang X , Shao Z G , Li G , Zhang L , Zhao Y , Lu W , Yi B . J. Power Sources, 2013, 240: 525.
[77]
Su H , Linkov V , Bladergroen B J . Int. J. Hydrogen Energy, 2013, 38: 9601.
[78]
Su H , Bladergroen B J , Linkov V , Pasupathi S , Ji S . Int. J. Hydrogen Energy, 2011, 36: 15081.
[79]
Song S , Zhang H , Ma X , Shao Z , Baker R T , Yi B . Int. J. Hydrogen Energy, 2008, 33: 4955.
[80]
Klingele M , Breitwieser M , Zengerle R , Thiele S . J. Mater. Chem. A, 2015, 3: 11239.
[81]
Klingele M , Britton B , Breitwieser M , Vierrath S , Zengerle R , Holdcroft S , Thiele S . Electrochem. Commun., 2016, 70: 65.
[82]
Schaefer H , Kuepper K , Schmidt M , Mueller-Buschbaum K , Stangl J , Daum D , Steinhart M , Schulz-Koelbel C , Han W , Wollschlaeger J , Krupp U , Hou P , Liu X . Catalysis Science & Technology, 2018, 8: 2104.
[83]
Lu H , Song Y , Hao C . Journal of Central South University(Science and Technology), 2015, 46: 4671.
[84]
Siracusano S , Baglio V , Stassi A , Ornelas R , Antonucci V , Arico A S . Int. J. Hydrogen Energy, 2011, 36: 7822.
[85]
Cruz J C , Baglio V , Siracusano S , Ornelas R , Ortiz-Frade L , Arriaga L G , Antonucci V , Arico A S . J. Nanopart. Res., 2011, 13: 1639.
[86]
Cruz J C , Baglio V , Siracusano S , Antonucci V , Arico A S , Ornelas R , Ortiz-Frade L , Osorio-Monreal G , Duron-Torres S M , Arriaga L G . International Journal of Electrochemical Science, 2011, 6: 6607.
[87]
Wei G , Wang Y , Huang C , Gao Q , Wang Z , Xu L . Int. J. Hydrogen Energy, 2010, 35: 3951.
[88]
Baglio V , Di Blasi A , Denaro T , Antonucci V , Arico A S , Ornelas R , Matteucci F , Alonso G , Morales L , Orozco G , Arriaga L G . J. New Mater. Electrochem. Syst., 2008, 11: 105.
[89]
Albert A , Barnett A O , Thomassen M S , Schmidt T J , Gubler L . ACS Appl . Mater. Inter., 2015, 7: 22203.
[90]
Grigoriev S A , Dzhus K A , Bessarabov D G , Millet P . Int. J. Hydrogen Energy, 2014, 39: 20440.
[91]
Ding X , Didari S , Fuller T F , Harris T A L . J. Electrochem. Soc., 2012, 159: B746.
[92]
Ding X , Liu J , Harris T A L . AlChE J., 2016, 62: 2508.
[93]
Burdzik A , Staehler M , Friedrich I , Carmo M , Stolten D . Journal of Coatings Technology and Research, 2018, 15: 1423.
[94]
Karimi F , Peppley B A . Int. J. Hydrogen Energy, 2017, 42: 5083.
[95]
Mayousse E , Maillard F , Fouda-Onana F , Sicardy O , Guillet N . Int. J. Hydrogen Energy, 2011, 36: 10474.
[96]
Wang J , Yue X , Yang Y , Sirisomboonchai S , Wang P , Ma X , Abudula A , Guan G . J. Alloys Compd., 2020, 819.
[97]
Siracusano S , Baglio V , D’Urso C , Antonucci V , Arico A S . Electrochim. Acta, 2009, 54: 6292.
[98]
Pi Y , Shao Q , Wang P , Guo J , Huang X . Adv. Funct. Mater., 2017, 27.
[99]
Saveleva V A , Wang L , Luo W , Zafeiratos S , Ulhaq-Bouille C , Gago A S , Friedrich K A , Savinova E R . Journal of Physical Chemistry Letters, 2016, 7: 3240.
[100]
Xu C , Ma L , Li J , Zhao W , Gan Z . Int. J. Hydrogen Energy, 2012, 37: 2985.
[101]
Felix C , Maiyalagan T , Pasupathi S , Bladergroen B , Linkov V . International Journal of Electrochemical Science, 2012, 7: 12064.
[102]
Cruz J C , Ramos Hernandez A, Guerra-Balcazar M , Chavez-Ramirez A U , Ledesma-Garcia J , Arriaga L G . International Journal of Electrochemical Science, 2012, 7: 7866.
[103]
Ye F , Li J , Wang X , Wang T , Li S , Wei H , Li Q , Christensen E . Int. J. Hydrogen Energy, 2010, 35: 8049.
[104]
Cheng J , Zhang H , Ma H , Zhong H , Zou Y . Electrochim. Acta, 2010, 55: 1855.
[105]
Zhang J , Xu X , Yang L , Cheng D , Cao D . Small Methods, 2019.
[106]
Wu C , Li D , Ding S , Rehman Z U , Liu Q , Chen S , Zhang B , Song L . Journal of Physical Chemistry Letters, 2019, 10: 6081.
[107]
Ramakrishnan S , Karuppannan M , Vinothkannan M , Ramachandran K , Kwon O J , Yoo D J . ACS Appl . Mater. Inter., 2019, 11: 12504.
[108]
Briguglio N , Siracusano S , Bonura G , Sebastian D , Arico A S . Appl. Catal. B-Environ., 2019, 246: 254.
[109]
Kumar S S , Himabindu V . Renewable Energy, 2020, 146: 2281.
[110]
Pu Z , Amiinu I S , Cheng R , Wang P , Zhang C , Mu S , Zhao W , Su F , Zhang G , Liao S , Sun S . Nano-Micro Letters, 2020, 12.
[111]
Yu F , Zhou H , Huang Y , Sun J , Qin F , Bao J , Goddardiii W A , Chen S , Ren Z . Nature Communications, 2018, 9.
[112]
Bao M , Amiinu I S , Peng T , Li W , Liu S , Wang Z , Pu Z , He D , Xiong Y , Mu S . ACS Energy Letters, 2018, 3: 940.
[113]
Wang C , Hu F , Yang H , Zhang Y , Lu H , Wang Q . Nano Research, 2017, 10: 238.
[114]
Tiwari J N , Sultan S , Myung C W , Yoon T , Li N , Ha M , Harzandi A M , Park H J , Kim D Y , Chandrasekaran S S , Lee W G , Vij V , Kang H , Shin T J , Shin H S , Lee G , Lee Z , Kim K S . Nature Energy, 2018, 3: 773.
[115]
Liu D , Li X , Chen S , Yan H , Wang C , Wu C , Haleem Y A , Duan S , Lu J , Ge B , Ajayan P M , Luo Y , Jiang J , Song L . Nature Energy, 2019, 4: 512.
[116]
Niu H J , Chen H Y , Wen G L , Feng J J , Zhang Q L , Wang A J . J. Colloid Interface Sci., 2019, 539: 525.
[117]
Xu J , Liu T , Li J , Li B , Liu Y , Zhang B , Xiong D , Amorim I , Li W , Liu L . Energy & Environmental Science, 2018, 11: 1819.
[118]
Gao H , Zang J , Liu X , Wang Y , Tian P , Zhou S , Song S , Chen P , Li W . Appl. Surf. Sci., 2019, 494: 101.
[119]
Yuan S , Pu Z , Zhou H , Yu J , Amiinu I S , Zhu J , Liang Q , Yang J , He D , Hu Z , van Tendeloo G, Mu S . Nano Energy, 2019, 59: 472.
[120]
Su J , Zhou J , Wang L , Liu C , Chen Y . Science Bulletin, 2017, 62: 633.
[121]
Zhao H , Yuan Z Y . Catalysis Science & Technology, 2017, 7: 330.
[122]
Kim H , Park H , Oh S , Kim S K . International Journal of Energy Research, 2019.
[123]
Dong Q , Meng Z , Ho C L , Guo H , Yang W , Manners I , Xu L , Wong W Y . Chem. Soc. Rev., 2018, 47: 4934.
[124]
Wang M Q , Ye C , Liu H , Xu M , Bao S J . Angew. Chem. Int. Ed., 2018, 57: 1963.
[125]
Zhang Z , Liu S , Xiao J , Wang S . J. Mater. Chem. A, 2016, 4: 9691.
[126]
Wang W , Lv F , Lei B , Wan S , Luo M , Guo S . Adv. Mater., 2016, 28: 10117.
[127]
Barrozo A , Orio M . ChemSusChem, 2019, 12: 4905.
[128]
Hu J , Zhang C , Meng X , Lin H , Hu C , Long X , Yang S . J. Mater. Chem. A, 2017, 5: 5995.
[129]
Yan Y , Xia B Y , Zhao B , Wang X . J. Mater. Chem. A, 2016, 4: 17587.
[130]
Callejas J F , Read C G , Popczun E J , McEnaney J M , Schaak R E . Chem. Mater., 2015, 27: 3769.
[131]
Shi Y , Zhang B . Chem. Soc. Rev., 2016, 45: 1781.
[132]
Henkes A E , Schaak R E . Chem. Mater., 2007, 19: 4234.
[133]
Read C G , Callejas J F , Holder C F , Schaak R E . ACS Appl . Mater. Inter., 2016, 8: 12798.
[134]
Prins R , Bussell M E . Catal. Lett., 2012, 142: 1413.
[135]
Zhou Y , Gao G , Kang J , Chu W , Wang L W . Nanoscale, 2019, 11: 18169.
[136]
Pu Z , Liu Q , Tang C , Asiri A M , Sun X . Nanoscale, 2014, 6: 11031.
[137]
Lin Y , Zhang J , Pan Y , Liu Y . Appl. Surf. Sci., 2017, 422: 828.
[138]
Liu P , Rodriguez J A . J. Am. Chem. Soc., 2005, 127: 14871.
[139]
Ma B , Yang Z , Chen Y , Yuan Z . Nano Research, 2019, 12: 375.
[140]
Liu Z , Ai J , Sun M , Han F , Li Z , Peng Q , Wang Q D , Liu J , Liu L . Adv. Funct. Mater., 2020.
[141]
Xu Y , Wu R , Zhang J , Shi Y , Zhang B . Chem. Commun., 2013, 49: 6656.
[142]
Anantharaj S , Ede S R , Sakthikumar K , Karthick K , Mishra S , Kundu S . ACS Catalysis, 2016, 6: 8069.
[143]
Wang C , Jiang J , Zhou X , Wang W , Zuo J , Yang Q . J. Power Sources, 2015, 286: 464.
[144]
Xiao J , Lv Q , Zhang Y , Zhang Z , Wang S . RSC Advances, 2016, 6: 107859.
[145]
Yu X Y , Feng Y , Guan B , Lou X W , Paik U . Energy & Environmental Science, 2016, 9: 1246.
[146]
Xu Y , Kraft M , Xu R . Chem. Soc. Rev., 2016, 45: 3039.
[147]
Jin Z , Li P , Xiao D . Green Chemistry, 2016, 18: 1459.
[148]
Han L , Wang P , Liu H , Tan Q , Yang J . J. Mater. Chem. A, 2016, 4: 18354.
[149]
Pan Y , Chen Y , Lin Y , Cui P , Sun K , Liu Y , Liu C . J. Mater. Chem. A, 2016, 4: 14675.
[150]
Dresp S , Luo F , Schmack R , Kuehl S , Gliech M , Strasser P . Energy & Environmental Science, 2016, 9: 2020.
[151]
Jia Y , Zhang L , Du A , Gao G , Chen J , Yan X , Brown C L , Yao X . Adv. Mater., 2016, 28: 9532.
[152]
Guterman V E , Belenov S V , Pakharev A Y , Min M , Tabachkova N Y , Mikheykina E B , Vysochina L L , Lastovina T A . Int. J. Hydrogen Energy, 2016, 41: 1609.
[153]
Wang J , Johnston-Peck A C , Tracy J B . Chem. Mater., 2009, 21: 4462.
[154]
Ledendecker M , Calderon S K , Papp C , Steinrueck H P , Antonietti M , Shalom M . Angew. Chem. Int. Ed., 2015, 54: 12361.
[155]
Wang W , An T , Li G , Xia D , Zhao H , Yu J C , Wong P K . Appl. Catal. B-Environ., 2017, 217: 570.
[156]
Zeng D , Xu W , Ong W J , Xu J , Ren H , Chen Y , Zheng H , Peng D L . Appl. Catal. B-Environ., 2018, 221: 47.
[157]
Sun Z , Zhu M , Fujitsuka M , Wang A , Shi C , Majima T . ACS Appl . Mater. Inter., 2017, 9: 30583.
[158]
Chiang R K , Chiang R T . Inorg. Chem., 2007, 46: 369.
[159]
Pan Y , Liu Y , Zhao J , Yang K , Liang J , Liu D , Hu W , Liu D , Liu Y , Liu C . J. Mater. Chem. A, 2015, 3: 1656.
[160]
Kucernak A R J , Sundaram V N N . J. Mater. Chem. A, 2014, 2: 17435.
[161]
Pan Y , Yang N , Chen Y , Lin Y , Li Y , Liu Y , Liu C . J. Power Sources, 2015, 297: 45.
[162]
Wang S , Zhang L , Li X , Li C , Zhang R , Zhang Y , Zhu H . Nano Research, 2017, 10: 415.
[163]
Liang Q , Zhong L , Du C , Zheng Y , Luo Y , Xu J , Li S , Yan Q . Adv. Funct. Mater., 2018, 28.
[164]
Mu J , Li J , Yang E C , Zhao X J . ACS Applied Energy Materials, 2018, 1: 3742.
[165]
Mo Q , Zhang W , He L , Yu X , Gao Q . Appl. Catal. B-Environ., 2019, 244: 620.
[166]
Cao M , Xue Z , Niu J , Qin J , Sawangphruk M , Zhang X , Liu R . ACS Appl . Mater. Inter., 2018, 10: 35224.
[167]
Jiang D , Ma W , Yang R , Quan B , Li D , Meng S , Chen M . Electrochim. Acta, 2020, 329.
[168]
Wang R , Dong X Y , Du J , Zhao J Y , Zang S Q . Adv. Mater., 2018, 30.
[169]
Chai L , Hu Z , Wang X , Xu Y , Zhang L , Li T T , Hu Y , Qian J , Huang S . Advanced Science, 2020.
[170]
Shi Z , Nie K , Shao Z J , Gao B , Lin H , Zhang H , Liu B , Wang Y , Zhang Y , Sun X , Cao X M , Hu P , Gao Q , Tang Y . Energy & Environmental Science, 2017, 10: 1262.
[171]
Ji L , Yan P , Zhu C , Ma C , Wu W , Wei C , Shen Y , Chu S , Wang J , Du Y , Chen J , Yang X , Xu Q . Appl. Catal. B-Environ., 2019, 251: 87.
[172]
Ji Y , Dong H , Liu C , Li Y . Nanoscale, 2019, 11: 454.
[173]
Gao X , Zhou Y , Tan Y , Yang B , Cheng Z , Shen Z , Jia J . Appl. Surf. Sci., 2019, 473: 770.
[174]
Kumatani A , Miura C , Kuramochi H , Ohto T , Wakisaka M , Nagata Y , Ida H , Takahashi Y , Hu K , Jeong S , Fujita J I , Matsue T , Ito Y . Advanced Science, 2019, 6.
[175]
Han X , Ling X , Yu D , Xie D , Li L , Peng S , Zhong C , Zhao N , Deng Y , Hu W . Adv. Mater., 2019, 31.
[176]
Zhang G R , Woellner S . Appl. Catal. B-Environ., 2018, 222: 26.
[177]
Anantharaj S , Noda S . Small, 2020, 16.
[178]
Gao X , Zhou Y , Liu S , Cheng Z , Tan Y , Shen Z . Appl. Surf. Sci., 2020, 502.
[179]
Wang L , Duan X , Liu X , Gu J , Si R , Qiu Y , Qiu Y , Shi D , Chen F , Sun X , Lin J , Sun J . Advanced Energy Materials, 2019.
[180]
Han S , Yun Q , Tu S , Zhu L , Cao W , Lu Q . J. Mater. Chem. A, 2019, 7: 24691.
[181]
Arminio-Ravelo J A , Quinson J , Pedersen M A , Kirkensgaard J J K , Arenz M , Escudero-Escribano M . CheMcatChem, 2020, 125: 1282.
[182]
Han S B , Mo Y H , Lee Y S , Lee S G , Park D H , Park K W . Int. J. Hydrogen Energy, 2020, 45: 1409.
[183]
Nong H N , Oh H S , Reier T , Willinger E , Willinger M G , Petkov V , Teschner D , Strasser P . Angew. Chem. Int. Ed., 2015, 54: 2975.
[184]
Sugita Y , Tamaki T , Kuroki H , Yamaguchi T . Nanoscale Advances, 2020, 2: 171.
[185]
Sun X , Liu F , Chen X , Li C , Yu J , Pan M . Electrochim. Acta, 2019, 307: 206.
[186]
Fu L , Yang F , Cheng G , Luo W . Nanoscale, 2018, 10: 1892.
[187]
Cai C , Han S , Wang Q , Gu M . ACS Nano, 2019, 13: 8865.
[188]
Cao L , Luo Q , Chen J , Wang L , Lin Y , Wang H , Liu X , Shen X , Zhang W , Liu W , Qi Z , Jiang Z , Yang J , Yao T . Nature Communications, 2019, 10.
[189]
Zhu B , Qu C , Gao S , Liang Z , Zhang H , Zou R . Chemcatchem, 2018, 10: 1113.
[190]
Nguyen T D , Nguyen H H , Dai C , Wang J , Scherer G G . Int. J. Hydrogen Energy, 2020, 45: 46.
[191]
Zhu M , Shao Q , Qian Y , Huang X . Nano Energy, 2019, 56: 330.
[192]
Shan J , Ling T , Davey K , Zheng Y , Qiao S Z . Adv. Mater., 2019, 31.
[193]
Fan Z , Jiang J , Ai L , Shao Z , Liu S . ACS Appl . Mater. Inter., 2019, 11: 47894.
[194]
Park J , Choi S , Oh A , Jin H , Joo J , Baik H , Lee K . Nanoscale Horizons, 2019, 4: 727.
[195]
Tang S , Zhou X , Liu T , Zhang S , Yang T , Luo Y , Sharman E , Jiang J . J. Mater. Chem. A, 2019, 7: 26261.
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[3] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[4] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[5] Zhao Qian, Ge Yunli, Ji Na, Song Chunfeng, Ma Degang, Liu Qingling. Removal of Volatile Organic Compounds by Catalytic Oxidation Technology [J]. Progress in Chemistry, 2016, 28(12): 1847-1859.
[6] Jianwei Wang,Zhentao Mi,Xiangwen Zhang*. Noble Metal Aromatic Saturation Catalysts [J]. Progress in Chemistry, 2006, 18(0708): 854-860.