中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 2004-2012 DOI: 10.7536/PC200317 Previous Articles   Next Articles

• Review •

Application of Ionic Liquids in Aluminum and Alloy Electrodeposition

Fengguo Liu1, Bo Wang1, Lianyu Zhang1, Aimin Liu1, Zhaowen Wang1, Zhongning Shi1,2,**()   

  1. 1 Key Laboratory for Ecological Metallurgy of Multimetallic Mineral(Ministry of Education), Northeastern University, Shenyang 110819, China
    2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
  • Received: Revised: Online: Published:
  • Contact: Zhongning Shi
  • Supported by:
    the National Natural Science Foundation of China(No. 51804070); the Fundamental Research Funds for the Central Universities(No. N182503033); the Fundamental Research Funds for the Central Universities(N172502003)
Richhtml ( 48 ) PDF ( 1295 ) Cited
Export

EndNote

Ris

BibTeX

Ionic liquids have been considered as the solvent media to meet the needs of sustainable and green chemistry because of the characteristics of non-volatilization, non-combustion, high thermal stability, wide electrochemical window and so on. As a variety of active metals and alloys can be electrodeposited in ionic liquids at room temperature, ionic liquids have attracted much attention. In this review, we present the application progress of ionic liquids in electrodeposition of aluminum and aluminum alloy in recent years systematically. The types of ionic liquids used in electrodeposition of aluminum and aluminum alloy are classified. The mechanism of metal electrodeposition is summarized. The electrodeposition technology of aluminum with different morphologies as well as binary and ternary aluminum alloy is described in detail. Furthermore, the existing theoretical and technical problems on aluminum and alloy electrodeposition in ionic liquids are discussed, and the potential development direction is also prospected.

Contents

1 Introduction

2 Types of Ionic Liquids

3 Mechanism of Metal Electrodeposition in Ionic Liquids

4 Aluminum Electrodeposition in Ionic Liquids

5 Aluminum Alloy Electrodeposition in Ionic Liquids

6 Conclusion and outlook

Fig.1 Publications on ionic liquids indexed by ISI Web of Knowledge from 1990 to 2019(2020-03)
Table 1 Types of AlCl3 containing ionic liquids and metals/alloys eletrodepostion
Types Ionic Liquids Names Abbreviation Names Metals/Alloys Deposits
AlCl3-imidazole 1-ethyl-3-methylimidazolium chloride [Emim]Cl Al[15 ?~17]
Al-Mg[18]
Al-Cu[19]
Al-Zn[20]
Al-La[21]
Al-Zr[22]
Al-Mn[23]
Al-Mn-Zr[24]
Al-In-Sb[25]
Al-Mo-Mn[26]
Al-Mo-Ni[27]
Al-W-Mn[28]
Al-Cr-Ni[29]
1-butyl-3-methylimidazolium chloride [Bmim]Cl Al[30 ? ?~33]
Al-Co[34]
Al-Ce[35]
Al-Ti[37]
Al-Ni[38]
AlCl 3-pyridine 1-Allyl-3-methylimidazolium chloride [Amim]Cl Al[39]
1-(2-methoxyethyl)-3-methylimidazolium chloride [MoeMim]Cl Al[40]
l,3-dibenzyl-imidazolium chloride [DBzmim]Cl Al[41]
l-benzyl-3-methyl-imidazolium chloride [Bzmim]Cl Al[41]
1-methyl-3-ethylimidazolium bromide [Emim]Br Al[42]
1-methyl-3-ethylimidazolium fluoride [Emim]F Al[43]
N, N’-dimethyl imidazolium perfluoro-3-oxa-4,5-dichloro-pentan-sulphonate $[IMI] [CF_{2}ClCFClOCF_{2}CF_{2}SO_{3}^{-}]$ Al[44]
1-butyl-3methylpyridinium chloride [BMPyri]Cl Al[45]
1,2,4,6-tetramethyl pyridinium perfluoro-3-oxa-4,5-dichloro-pentan-sulphonate $[PYR] [CF_{2}ClCFClOCF_{2}CF_{2}O_{3}^{-}]$ Al[44]
4-propylpyridine 4-Pr-Py Al[46]
N-( n-butyl) pyridinium chloride BPC Al[47]
Al-Cr[48]
Al-Ti[49]
Al-Ni[50]
Al-Co[51]
AlCl 3-hyamine trimethylphenylammonium chloride TMPAC Al[53]
trimethylamine hydrochloride TMHC Al[55]
Al-Fe[56]
triethylammine hydrochloride Et 3NHCl Al-Cu[57]
Al-Ni[58]
Al-Zr-Cu[59]
AlCl 3-pyrrole benzyltrimethylammonium chloride BTMAC Al-Pt[60]
1-butyl-1-methylpyrrolidinium chloride [Py 1,4]Cl Al[45]
1-butylpyrrolidine - Al[61]
1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate [Py 1,4]TfO Al-Fe[62]
Al-Cu[63]
AlCl 3-Others 1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide [Py 1,4]Tf2N Al[65]
tetramethyl guanidinium perfluoro-3-oxa-4,5-dichloro-pentan-sulphonate $[GUA] [CF_{2}ClCFClOCF_{2}O_{3}^{-}]$ Al[66]
γ-butyrolactone GBL Al[67]
ethylene carbonate EC Al-Li[68]
Al-Nd[69]
urea - Al[70]
amide(acetamide/propionamide/butyramide) - Al[71]
poly(ethylene glycol)-KCl PEG-KCl Al[72]
choline chloride-ethylene glycol Ethaline Al[73]
dimethylsulfone DMSO 2 Al[74]
Fig.2 Structural formulae of several cations
Fig.3 Schematic representation of growth of Al electrodeposited from the [Emim]Cl-AlCl3(0.5 mol%) bath using the galvanostatic polarization(GP), monopolar current pulse polarization(MCP) and bipolar current pulse polarization(BCP) methods[15]
Fig.4 Different morphologies of aluminum deposits obtained in ionic liquids: (a) nanocrystalline[40],(b) sphericity[85],(c) wires[55],(d) nanorods[86],(e) nanopillars[87]
Fig.5 Alloy elements electrodeposited in AlCl3containing ionic liquids
Fig.6 (a~f)SEM images of Al-Ti alloy coatings electrodeposited in [Bmim]Cl-AlCl3ionic liquids[36]: (a) 0.22 mol·L-1 TiCl4, 1 mA·cm-2, Al91.9Ti8.1;(b) 0.22 mol·L-1 TiCl4, 3 mA·cm-2, Al90.2Ti9.8;(c) 0.22 mol·L-1 TiCl4, 5 mA·cm-2, Al88.6Ti11.4;(d) 0.22 mol·L-1 TiCl4, 10 mA·cm-2, Al89.8Ti10.2;(e) 0.05 mol·L-1 TiCl4, 1 mA·cm-2, Al64.2Ti35.8;(f) 0.05 mol·L-1 TiCl4, 10 mA·cm-2, Al94.1Ti5.9,(g~j)SEM images of Al-Ti alloy electrodeposited in NaCl-AlCl3low temperature molten salts[88]: mole ratio of F/Ti in electrolyte(g) 0.5,(h) 1.0,(i) 2.0,(j) 4.0
Fig.7 (a~d)SEM images of Al-Mg alloy on Cu substrate electrodeposited in [Emim]Cl-AlCl3ionic liquids[83]: (a) deposition potential: -0.3 V;(b) deposition potential: -0.5 V;(c) cathode current density: -33.3 A·m-2;(d) cathode current density: -42.0 A·m-2;(e,f)SEM images of Al-Mg alloy electrodeposited in Na[AlEt4]-Na[Et3Al-H-AlEt3]-AlEt3-toluene[90]:(e) deposition potential: -4 V, featherlike morphology;(f) deposition potential: -5 V, globular morphology
[1]
Abbott A P , McKenzie K J . Phys. Chem. Chem. Phys., 2006, 8: 4265.
[2]
Huang P , Latham J A , MacFarlane D R , Howlett P C , Forsyth M . Electrochim. Acta, 2013, 110: 501.
[3]
Liu B , Jin N . Curr. Org. Chem., 2016, 20: 2109.
[4]
孟艳山( Meng Y S ), 陈玉焕( Chen Y H ), 邓雨晨( Deng Y C ), 张姝明( Zhang S M ), 王桂香( Wang G X ). 化学进展( Progress in Chemistry), 2015, 27: 1324.
[5]
Walden P. Bull. Acad. Imper. Sci. St Petersbourg, 1914, 1800: 400.
[6]
Hurley F H , Wier T P . J. Electrochem. Soc., 1951, 98.
[7]
Vaughan J , Tu J , Dreisinger D . Min. Proc. Ext. Met., 2013, 117: 113.
[8]
Zhang Q , Wang Q , Zhang S , Lu X , Zhang X . Chemphyschem, 2016, 17: 335.
[9]
Liu F , Deng Y , Han X , Hu W , Zhong C . J. Alloys Compd., 2016, 654: 163.
[10]
张丽鹏( Zhang L P ), 王晓铭( Wang X M ), 于先进( Yu X J ), 张德超( Zhang D C ). 湿法冶金( Hydrometallurgy), 2010, 29: 220.
[11]
钟熊伟( Zhong X W ), 熊婷( Xiong T ), 陆俊( Lu J ), 石忠宁( Shi Z N ), 胡宪伟( Hu X W ), 高炳亮( Gao B L ), 王兆文( Wang Z W ). 有色金属科学与工程( Nonferrous Metals Science and Engineering), 2014, 5: 44.
[12]
张锁江( Zhang S J ), 孙宁( Sun N ), 吕兴梅( Lv X M ), 张香平( Zhang X P ). 中国科学B辑:化学( Science in China Series B, Chemistry), 2006, 36: 23.
[13]
Bakkar A , Neubert V . Electrochim. Acta, 2013, 103: 211.
[14]
Tang J , Azumi K . Surf. Coat. Technol., 2012, 208: 1.
[15]
Tang J , Azumi K . Electrochim. Acta, 2011, 56: 1130.
[16]
Bakkar A , Neubert V . Electrochem. Commun., 2015, 51: 113.
[17]
Jiang Y , Ding J , Luo L , Shi P , Wang X . Surf. Coat. Technol., 2017, 309: 980.
[18]
Morimitsu M , Tanaka N , Matsunaga M . Chem. Lett., 2000, 29: 1028.
[19]
Tierney B J , Pitner W R , Mitchell J A , Husse C L . J. Electrochem. Soc., 1998, 145: 3110.
[20]
Pan S J , Tsai W T , Chang J K , Sun I W . Electrochim. Acta, 2010, 55: 2158.
[21]
Tsuda T , Nohira T , Ito Y . Electrochim. Acta, 2002, 47: 2817.
[22]
Hilty R D , Masur L J . JOM, 2017, 69: 2621.
[23]
Huang T Y , Marvel C J , Cantwell P R , Harmer M P , Schuh C A . J. Mater. Sci., 2015, 51: 438.
[24]
Yang J , Chang L , Jiang L , Wang K , Huang L , He Z , Shao H , Wang J , Cao C . Surf. Coat. Technol., 2017, 321: 45.
[25]
Tsuda T , Hussey C L . Thin Solid Films, 2008, 516: 6220.
[26]
Tsuda T , Hussey C L , Stafford G R . J. Electrochem. Soc., 2005, 152: C620.
[27]
Tsuda T. ECS Proceedings, 2004, 24: 866.
[28]
Tsuda T , Ikeda Y , Kuwabata S , Stafford G R , Hussey C L . ECS Transactions, 2014, 64: 563.
[29]
Ueda M , Ebe H , Ohtsuka T . Electrochemistry, 2005, 73: 739.
[30]
Wang Q , Chen B , Zhang Q , Lu X , Zhang S . ChemElectroChem, 2015, 2: 1794.
[31]
Zhang D , Mu Y , Li H , Yang Z , Yang Y . RSC Adv., 2018, 8: 39170.
[32]
Tu X , Zhang J , Zhang M , Cai Y , Lang H , Tian G , Wang Y , RSC Adv., 2017, 7: 14790.
[33]
Caporali S , Fossati A , Lavacchi A , Perissi I , Tolstogouzov A , Bardi U . Corros. Sci., 2008, 50: 534.
[34]
Zell C A , Freyland W . Langmuir, 2003, 19: 7445.
[35]
Lisenkov A , Zheludkevich M L , Ferreira M G S . Electrochem. Commun., 2010, 12: 729.
[36]
Xu C , Hua Y , Zhang Q , Li J , Lei Z , Lu D . J. Solid State Electrochem., 2017, 21: 1349.
[37]
Shinde P S , Peng Y , Reddy R G . TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals &Materials Series, 2020, 1659.
[38]
Zell C A , Freyland W . Chem. Phys. Lett., 2001, 337: 293.
[39]
Zheng Y , Zhang S , LÜ X , Wang Q , Zuo Y , Liu L . Chin. J. Chem. Eng., 2012, 20: 130.
[40]
Abedin Z E S , Giridhar P , Schwab P , Endres F . Electrochem. Commun., 2010, 12: 1084.
[41]
Ismail A S , Egypt. J. Petrol., 2016, 25: 525.
[42]
Zhang L P , Yu X J , Dong Y H , Li D G , Zhang Y L , Li Z F . Trans. Nonferrous Met. Soc. China, 2010, 20: 245.
[43]
Wang D , Zhong X , Liu F , Shi Z . Int. J. Electrochem. Sci., 2019, 9482.
[44]
Galindo M , Sebastián P , Cojocaru P , Gómez E . J. Electroanal. Chem., 2018, 820: 41.
[45]
Wang Q , Zhang Q , Lu X , Zhang S . Ionics, 2017, 23: 2449.
[46]
Fang Y , Yoshii K , Jiang X , Sun X G , Tsuda T , Mehio N , Dai S . Electrochim. Acta, 2015, 160: 82.
[47]
Yang C C. Mater. Chem. Phys., 1994, 37: 355.
[48]
Muhammad R A , Nishikata A , Tsuru T . Electrochim. Acta, 1997, 42: 2347.
[49]
Ali M R , Nishikata A , Tsuru T . Indian J . Chem. Technol., 2003, 10: 14.
[50]
Ali M R , Nishikata A , Tsuru T . J. Electroanal. Chem., 2001, 513: 111.
[51]
Ali M R , Nishikata A , Tsuru T . Electrochem. Acta, 1997, 42: 1819.
[52]
Jiang T , Chollier B M J , Dubé G , Lasia A , Brisard G M . Surf. Coat. Technol., 2006, 201: 10.
[53]
Liu K , Liu Q , Han Q , Tu G . Trans. Nonferrous Met. Soc. China, 2011, 21: 2104.
[54]
Hou Y , Li R , Liang J . Appl. Surf. Sci., 2018, 434: 918.
[55]
Su C J , Hsieh Y T , Chen C C , Sun I W . Electrochem. Commun., 2013, 34: 170.
[56]
Chen G , Chen Y , Guo Q , Wang H , Li B . Faraday Discuss., 2016, 190: 97.
[57]
Suneesh P V , Satheesh Babu T G, Ramachandran T . Int. J. Miner. Metall. Mater., 2013, 20: 909.
[58]
Gao L X , Wang L N , Qi T , Yu J . Acta Phys . Chim. Sin., 2012, 28: 111.
[59]
Suneesh P V , Ramachandran T , Satheesh Babu T G. Materials Today: Proceedings, 2018, 5: 16640.
[60]
Abbott A P , Eardley C A , Farley N R , Griffith G A , Pratt A . J. Appl. Electrochem., 2001, 31: 1345.
[61]
Pulletikurthi G , Bödecker B , Borodin A , Weidenfeller B , Endres F . Prog. Nat. Sci. Mater., 2015, 25: 603.
[62]
Giridhar P , Weidenfeller B , El Abedin S Z, Endres F . Phys. Chem. Chem. Phys., 2014, 16: 9317.
[63]
Giridhar P , Zein El Abedin S, Endres F , J. Solid State Electrochem., 2012, 16: 3487.
[64]
El Abedin S Z, Moustafa E M , Hempelmann R , Natter H , Endres F. Electrochem. Commun., 2005, 7: 1111.
[65]
Abedin Z E S. Transactions of the IMF, 2013, 86: 220.
[66]
Oriani A V , Cojocaru P , Monzani C , Vallés E , Gómez E . J. Electroanal. Chem., 2017, 793: 85.
[67]
Wen X , Liu Y , Xu D , Zhao Y , Lake R K , Guo J . J. Phys. Chem. Lett., 2020, 11: 1589.
[68]
Zhang B , Shi Z , Shen L , Liu A , Xu J , Hu X . J. Electrochem. Soc., 2018, 165: D321.
[69]
Zhang B , Shi Z , Shen L , Liu X , Xu J , Wang Z . J. Solid State Electrochem., 2019, 23: 1903.
[70]
Prabu S , Wang H . Chin. J. Chem. Eng., 2020, 28: 854.
[71]
Li M , Gao B , Liu C , Chen W , Wang Z , Shi Z , Hu X . J. Solid State Electrochem., 2016, 21: 469.
[72]
Jiang J , Zhao W , Xue Z , Li Q , Yan C , Mu T . ACS Sustain . Chem. Eng., 2016, 4: 5814.
[73]
Kityk A A , Protsenko V S , Danilov F I , Kun O V , Korniy S A . Surf. Coat. Technol., 2019, 375: 143.
[74]
Miyake M , Motonami H , Shiomi S , Hirato T . Surf. Coat. Technol., 2012, 206: 4225.
[75]
王军( Wang J ). 离子液体的性能及应用(Properties and Application of Ionic Liquids),北京:中国纺织出版社(Beijing:China Textile Press), 2007, 253.
[76]
Jiang Y , Fang L , Luo L , Wang S , Wang X . J. Appl. Electrochem., 2018, 48: 827.
[77]
Debabrata P , Reddy R G . Metall. Mater. Trans. B, 2012, 43B: 519.
[78]
Chen L , Wang G , He Y , Wang Y , Zhang M . Mater. Lett., 2020, 258: 126814.
[79]
Guinea E , Salicio-Paz A , Iriarte A , Grande H J , Medina E , Garcia-Lecina E . Chemistry Open, 2019, 8: 1094.
[80]
Wang Q , Zhang Q , Chen B , Lu X , Zhang S . J. Electrochem. Soc., 2015, 162: D320.
[81]
Zhang Q , Wang Q , Zhang S , Lu X . J. Solid State Electrochem., 2014, 18: 257.
[82]
Ueda M , Hariyama S , Ohtsuka T . J. Solid State Electrochem., 2012, 16: 3423.
[83]
Uehara K , Yamazaki K , Gunji T , Kaneko S , Tanabe T , Ohsaka T , Matsumoto F . Electrochim. Acta, 2016, 215: 556.
[84]
Giridhar P , El Abedin S Z, Endres F . Electrochim. Acta, 2012, 70: 210.
[85]
Lang H , Wang Q , Tu X , Chen S . Ionics, 2017, 24: 1781.
[86]
Pomfret M B , Brown D J , Epshteyn A , Purdy A P , Owrutsky J C . Chem. Mater, 2008, 20: 5945.
[87]
Perre E , Nyholm L , Gustafsson T , Taberna P L , Simon P , Edström K . Electrochem. Commun., 2008, 10: 1467.
[88]
Song J , Mukherjee A . RSC Adv., 2016, 6: 82049.
[89]
Ali M R , Abbott A P , Ryder K S . J. Electrochem., 2015, 21: 172.
[90]
Tatiparti S S V , Ebrahimi F . J. Solid State Electrochem., 2012, 16: 1255.
[91]
Nie Z R , Jin T N , Zou J X , Fu J B , Zuo T Y . Trans. Nonferrous Met. Soc. China, 2003, 13: 509.
[1] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[2] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[3] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[4] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[5] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[6] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.
[7] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[8] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[9] Lai Qingxue, Zhang Xiaogang, Liang Yanyu. Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors [J]. Progress in Chemistry, 2013, 25(10): 1703-1712.
[10] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[11] Liu Shuo, Ying Anguo, Ni Yuxiang, Yang Jianguo, Xu Songlin. Application of Task-Specific Ionic Liquids to Michael Additions [J]. Progress in Chemistry, 2013, 25(08): 1313-1324.
[12] Zhang Yingying, Lu Xiaohua*, Feng Xin, Shi Yijun, Ji Xiaoyan. Properties and Applications of Choline-Based Deep Eutectic Solvents [J]. Progress in Chemistry, 2013, 25(06): 881-892.
[13] Li Man, Yang Lei, Han Feng, Chen Jing*, Xia Chungu. Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions [J]. Progress in Chemistry, 2013, 25(06): 940-960.
[14] Chen Xuwei, Mao Quanxing, Wang Jianhua*. Ionic Liquids in Extraction/Separation of Proteins [J]. Progress in Chemistry, 2013, 25(05): 661-668.
[15] Zhang Heng, Zhou Zhibin, Nie jin*. Recent Advances of Polymeric Ionic Liquids [J]. Progress in Chemistry, 2013, 25(05): 761-774.