中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1316-1333 DOI: 10.7536/PC200219 Previous Articles   Next Articles

• Review •

Extraction and Separation of Uranium via Solid Phase Extraction

Bo Li1,2(), Lijian Ma3,**, Ning Luo1,2, Shoujian Li3, Yunming Chen1,2, Jinsong Zhang1,2,**   

  1. 1. Nuclear Power Institute of China, Chengdu 610213, China
    2. Radioisotope Engineering Technology Research Center of Sichuan, Chengdu 610213, China
    3. College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received: Revised: Online: Published:
  • Contact: Lijian Ma, Jinsong Zhang
  • Supported by:
    the National Natural Science Foundation of China(21771128, 21976125); the Nuclear Technology Application Foundaion of Nuclear Power Institute of China(16JS1807, 18JS1808)
Richhtml ( 34 ) PDF ( 1378 ) Cited
Export

EndNote

Ris

BibTeX

Uranium is an important raw material in the nuclear industry. Besides, uranium is a heavy metal with higher chemical and biological toxicity. Therefore, it is of great scientific and practical significance to efficiently separate and recover uranium from various uranium-containing aqueous systems for alleviating the shortage of uranium resources, and protecting human health and ecological environment safety. In the review, all kinds of representative solid phase extractants developed in the recent 15 years for uranium separation and recovery are briefly summarized, and the prospect and potential research directions of the solid phase extractants are also introduced.

Contents

1 Introduction

2 Solid phase extractants for uranium separation

2.1 Inorganic materials

2.2 Polymer materials

2.3 Carbonaceous materials

2.4 Metal-organic frameworks materials

2.5 Other solid phase extractants

2.6 Evaluation of the separation performance of various materials toward uranium

3 Conclusion and outlook

Fig.1 Numbers of annually published articles on the solid phase extraction of uranium in the recent 15 years(source:web of science, 2020-01 )
Fig.2 STEM-XEDS mappings of uranium reactions with hematite(Fe2O3) and nZVI at different times[5]
Fig.3 (a) Competitive adsorption of uranium on POMN in simulated seawater,(b)Water dispersion of POMN and magnetic separation[16]
Table 1 Comparison of adsorption capacity of uranium on various inorganic materials(T = 298 K)
Fig.4 (a) SEM images of KMS-1(left) and UO22+-exchanged KMS-1(right),(b) Mechanism of capture of UO22+ ions by KMS-1 through exchange of its interlayer potassium cations[7]
Fig.5 (a) The schematic for synthesis of MoS2-g-PDMA,(b) Possible sorption mechanism of MoS2-g-PDMA towards uranium[53]
Table 2 Comparison of adsorption capacity of uranium on various double hydroxides
Fig.6 Hydrated intercalation strategy synthesis of Ti3C2Tx MXene for efficient uranium separation[65]
Fig.7 Preparation of surface ion-imprinted polypropylene nonwoven fabric[87]
Fig.8 Possible sorption mechanism of CPT-T towards uranium[99]
Fig.9 (a)Synthetic procedures for COF-IHEP1,(b)experiment(black)and predicted(red)PXRD patterns of CPT-IHEP1[102]
Table 3 Comparison of adsorption capacity of uranium on various polymer materials (T = 298 K)
Table 4 Comparison of adsorption capacity of uranium on various carbon materials (T = 298 K)
Fig.10 Preparation of amidoxime-anchored AO-HTC-DAMN[115]
Fig.11 Proposed ligand exchange mechanism of uranyl extraction based on DFT calculation[135]
Fig.12 Preparation of ND-AO and the possible adsorption mechanism[159]
Fig.13 Synthetic route of UiO-66-AO[165]
Table 5 Comparison of adsorption capacity of uranium on various COFs (T = 298 K)
Fig.14 (a)and(b)Color change after MA-TMA adsorption of uranium , (c)and(d)possible coordination mechanism[180]
Fig.15 Morphology and coordination mechanism of HSOF adsorbed uranium[181]
[1]
Shou S, Zhang X L. Energy, 2010, 35: 4282.
[2]
Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S.J. Hazard. Mater., 2012, 229: 321.
[3]
Zhang X F, Ding C L, Liu H, Liu L H, Zhao C Q.Toxicol., 2011, 286: 75.
[4]
Gu B, Liang L, Dickey M J, Yin X, Dai S. Environ. Sci. Technol., 1998, 32: 3366.
[5]
Ling L, Zhang W X.J. Am. Chem. Soc., 2015, 137: 2788.
[6]
Li X F, Li Y, Wu Q X, Zhang M C, Guo X H, Li X, Ma L J, Li S J. Chem. Eng J., 2019, 365: 70.
[7]
Manos M J, Kanatzidis M G.J. Am. Chem. Soc., 2012, 134: 16441.
[8]
John S A, Cattrall R W, Kolev S D.J. Membr. Sci., 2012, 409: 242.
[9]
John S M, Cattrall R W, Kolev S D.J. Membr. Sci., 2010, 364: 354.
[10]
Liu M X, Dong F Q, Yan X Y, Zeng W M, Hou L Y, Pang X F. Bioresour. Technol., 2010, 101: 8573.
[11]
Yang H, Tan N, Wu F, Liu H, Sun M, She Z, Lin Y J. Radioanal. Nucl. Chem., 2012, 292: 1011.http://link.springer.com/10.1007/s10967-011-1552-6

doi: 10.1007/s10967-011-1552-6
[12]
Aytas S, Turkozu D A, Gok C. Desalination, 2011, 280: 354.
[13]
Hellé G, Mariet C, Cote G. Talanta, 2015, 139: 123.
[14]
Kong F, Liao J L, Ding S D, Yang Y Y, Huang H, Yang J J, Tang J, Liu N. J. Radioanal. Nucl. Chem., 2013, 298: 651.
[15]
Krea M, Khalaf H. Hydrometallurgy, 2000, 58: 215.
[16]
Xu M Y, Han X L, Hua D B.J. Mater. Chem., 2017, 5: 12278.
[17]
Zhang M C, Li Y, Bai C Y, Guo X H, Han J, Hu S X, Jiang H Q, Tan W, Li S J, Ma L J. ACS Appl. Mater. Interfaces, 2018, 10: 28936.
[18]
Zhang W, Ye G, Chen J.J. Mater. Chem., 2013, 1: 12706.
[19]
Hidayah N N, Abidin S Z. Miner. Eng., 2018, 121: 146.
[20]
Mathur J, Murali M, Natarajan P, Badheka L, Banerji A, Ramanujam A, Dhami G V, Dhumwad R, Rao M. Waste Manage.(Oxford)., 1993, 13: 317.
[21]
Rao T P, Metilda P, Gladis J M. Talanta, 2006, 68: 1047.
[22]
Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S.J. Colloid Interface Sci., 2012, 386: 291.
[23]
W Hu W, Lu S, Song W, Chen T, Hayat T, Alsaedi N S, Chen C, Liu H. Appl. Clay Sci., 2018, 157: 121.
[24]
Schlegel M L, Descostes M. Environ. Sci. Technol., 2009, 43: 8593.
[25]
Chegrouche S, Mellah A, Barkat M, Aknoun A. Am. J. Chem. Mater. Sci., 2016, 3: 6.
[26]
Ohnuki T, Yoshida T, Ozaki T, Samadfam M, Kozai N, Yubuta K, Mitsugashira T, Kasama T, Francis A. , Chem. Geol. 2005, 220: 237.
[27]
Wang G, Wang X, Chai X, Liu J, Deng N. Appl. Clay Sci., 2010, 47: 448.
[28]
Yu H W, Yang S S, Ruan H M, Shen J N, Gao C J, van Der Bruggen B. Appl. Clay Sci., 2015, 111: 67.
[29]
Sprynskyy M, Kovalchuk I, Buszewski B J. Hazard. Mater., 2010, 181: 700.
[30]
Lee S S, Li W, Kim C, Cho M, Catalano J G, Lafferty B J, Decuzzi P, Fortner J D. Environ. Sci. Nano., 2015, 2: 500.
[31]
Lee S S, Li W, Kim C, Cho M, Lafferty B J, Fortner J D J. Mater. Chem., 2015, 3: 21930.
[32]
Mortada W, Moustafa A, Ismail A, Hassanien M, Aboud A. , RSC Adv. 2015, 5: 62414.
[33]
Wei J, Zhang X, Liu Q, Li Z, Liu L, Wang J. Chem. Eng. J., 2014, 241: 228.
[34]
Sun Y, Ding C, Cheng W, Wang X.J. Hazard. Mater., 2014, 280: 399.
[35]
Calì E, Qi J, Preedy O, Chen S, Boldrin D, Branford W, Vandeperre L, Ryan M.J. Mater. Chem., 2018, 6: 3063.
[36]
Evans C J, Nicholson G P, Faith D A, Kan J. , Green Chem. 2004, 6: 196.
[37]
Paririe M R. Env. Sci. Technol., 1993, 27: 1776.
[38]
张丽华(Zhang L H). 南华大学硕士论文(Master’s Dissertation of Univerisity of South China). 2013.
[39]
Li W, Mayo J T, Benoit D N, Troyer L D, Lewicka Z, Fortner J D J. Mater. Chem., 2016, 4: 15022.
[40]
Cran A R, Dickinson M, Popescu I C, Scott T. Water Res., 2011, 45: 2931.
[41]
Tan L, Wang J, Liu Q, Sun Y, Zhang H, Wang Y, Jing X, Liu J. Colloids Surf. A, 2015, 466: 85.
[42]
Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X. Chem. Eng J., 2014, 235: 275.
[43]
Sadeghi S, Azhdari H, Arabi H, Moghaddam A Z.J. Hazard. Mater., 2012, 215: 208.
[44]
Zhao D, Zhang Q, Xuan H, Chen Y, Zhang K, Feng S, Alsaedi A, Hayat T, Chen C.J. Colloid Interface Sci., 2017, 506: 300.
[45]
Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M. In. Eng. Chem. Res., 2013, 52: 10152.
[46]
Li Z J, Huang Z W, Guo W L, Wang L, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2017, 51: 5666.
[47]
Tan L, Zhang X, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J. Colloids Surf. A, 2015, 469: 279.
[48]
Zong P, Wang S, Zhao Y, Wang H, Pan H, He C. Chem. Eng J., 2013, 220: 45.
[49]
Jiang X H, Xing Q J, Luo X B, Li F, Zou J P, Liu S S, Li X, Wang X K. Appl. Catal. B, 2018, 228: 29.
[50]
Manos M J, Kanatzidis M G.J. Am. Chem. Soc., 2009, 131: 6599.
[51]
Manos M J, Kanatzidis M G. Chem. Sci., 2016, 7: 4804.
[52]
Shen L, Han X, Qian J, Hua D. RSC Adv., 2017, 7: 10791.
[53]
Yang S, Hua M, Shen L, Han X, Xu M, Kuang L, Hua D.J. Hazard. Mater., 2018, 354: 191.
[54]
Asiabi H, Yamini Y, Shamsayei M. Chem. Eng J., 2018, 337: 609.
[55]
Ma S, Huang L, Ma L, Shim Y, Islam S M, Wang P, Zhao L D, Wang S, Sun G, Yang X, Kanatzidis M.J. Am. Chem. Soc., 2015, 137: 3670.
[56]
Wang P, Yin L, Wang X, Zhao G, Yu S, Song G, Xie J, Alsaedi A, Hayat T, Wang X.J. Environ. Manage., 2018, 217: 468.
[57]
Zou Y, Liu Y, Wang X, Sheng G, Wang S, Ai Y, Ji Y, Liu Y, Hayat T, Wang X. ACS Sustainable Chem. Eng., 2017, 5: 3583.
[58]
Zhu K, Chen C, Wang H, Xie Y, Wakeel M, Wahid A, Zhang X.J. Colloid Interface Sci., 2019, 535: 265.
[59]
Yu S, Wang X, Liu Y, Chen Z, Wu Y, Liu Y, Pang H, Song G, Chen J, Wang X. Chem. Eng J., 2019, 365: 51.
[60]
Yao W, Wang X, Liang Y, Yu S, Gu P, Sun Y, Xu C, Chen J, Hayat T, Alsaedi A. Chem. Eng J., 2018, 332: 775.
[61]
Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D. Chem. Eng J., 2015, 259: 752.
[62]
Zou Y, Wang X, Wu F, Yu S, Hu Y, Song W, Liu Y, Wang H, Hayat T, Wang X. ACS Sustainable Chem. Eng., 2016, 5: 1173.
[63]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23: 4207.
[64]
Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S, Huang Q, Zheng L, Zhang J, Chai Z. ACS Appl. Mater. Interfaces, 2016, 8: 16396.
[65]
Wang L, Tao W, Yuan L, Liu Z, Huang Q, Chai Z, Gibson J K, Shi W. , Chem. Commun. 2017, 53: 12084.
[66]
Zhang Y J, Zhou Z J, Lan J H, Ge C C, Chai Z F, Zhang P, Shi W Q. Appl. Surf. Sci., 2017, 426: 572.
[67]
Wang L, Song H, Yuan L Y, Li Z J, Zhang Y J, Gibson J K, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2018, 52: 10748.
[68]
Psareva T S, Zakutevskyy O I, Chubar N I, Strelko V V, Shaposhnikova T O, Carvalho J R, Correia M J. Colloids Surf. A, 2005, 252: 231.
[69]
Bhat S V, Melo J S, Chaugule B B, D’souza S F.J. Hazard. Mater., 2008, 158: 628.
[70]
Zou W, Zhao L, Zhu L.J. Radioanal. Nucl. Chem., 2012, 292: 1303.
[71]
Aly Z, Luca V.J. Radioanal. Nucl. Chem., 2013, 295: 889.
[72]
Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M. , Bioresour. Technol. 2005, 96: 1241.
[73]
Khani M, Keshtkar A, Ghannadi M, Pahlavanzadeh H.J. Hazard. Mater., 2008, 150: 612.
[74]
Gok C, Aytas S.J. Hazard. Mater., 2009, 168: 369.
[75]
Yang J, Volesky B. Water Res., 1999, 33: 3357.
[76]
Hu M Z C, Norman J M, Faison B D, Reeves M E. Biotechnol. Bioeng., 1996, 51: 237.
[77]
Yi Z J, Yao J.J. Radioanal. Nucl. Chem., 2012, 293: 907.
[78]
Parker B, Zhang Z, Rao L, Arnold J. , Dalton Trans. 2018, 47: 639.
[79]
Abney C W, Mayes R T, Saito T, Dai S. , Chem. Rev. 2017, 117: 13935.
[80]
Gill G A, Kuo L J, Janke C J, Park J, Jeters R T, Bonheyo G T, Pan H B, Wai C, Khangaonkar T, Bianucci L. In. Eng. Chem. Res. 2016, 55: 4264.
[81]
Yue Y, Mayes R T, Kim J, Fulvio P F, Sun X G, Tsouris C, Chen J, Brown S, Dai S. Angew. Chem. Int. Ed., 2013, 52: 13458.
[82]
Sabarudin A, Oshima M, Takayanagi T, Hakim L, Oshita K, Gao Y H, Motomizu S. Anal. Chim. Acta, 2007, 581: 214.
[83]
Cao Q, Liu Y, Wang C, Cheng J.J. Hazard. Mater., 2013, 263: 311.
[84]
Liu J, Li J, Yang X, Song Q, Bai C, Shi Y, Zhang L, Liu C, Li S, Ma L. , Mater. Lett. 2013, 97: 177.
[85]
Anirudhan T S, Nima J, Divya P L.J. Environ. Chem. Eng., 2015, 3: 1267.
[86]
Metilda P, Gladis J M, Rao T P. Anal. Chim. Acta, 2004, 512: 63.
[87]
Zhang L, Yang S, Qian J, Hua D. In. Eng. Chem. Res., 2017, 56: 1860.
[88]
Singh D K, Mishra S. Anal. Chim. Acta, 2009, 644: 42.
[89]
Pakade V, Cukrowska E, Darkwa J, Darko G, Torto N, Chimuka L. Water Sci. Technol., 2012, 65: 728.
[90]
Ahmadi S J, Noori K O, Shirvani A S.J. Hazard. Mater., 2010, 175: 193.
[91]
Preetha C R, Gladis J M, Rao T P, Venkateswaran G. Environ. Sci. Technol., 2006, 40: 3070.
[92]
Say R, Ersöz A, Denizli A. Sep. Sci. Technol., 2003, 38: 3431.
[93]
Cote A P, Benin A I, Ockwig N W, O’keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.
[94]
Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.
[95]
Li J, Yang X, Bai C, Tian Y, Li B, Zhang S, Yang X, Ding S, Xia C, Tan X.J. Colloid Interface Sci., 2015, 437: 211.
[96]
Bai C, Zhang M, Li B, Tian Y, Zhang S, Zhao X, Li Y, Wang L, Ma L, Li S.J. Hazard. Mater., 2015, 300: 368.
[97]
Bai C, Zhang M, Li B, Zhao X, Zhang S, Wang L, Li Y, Zhang J, Ma L, Li S. RSC Adv., 2016, 6: 39150.
[98]
Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S.J. Hazard. Mater., 2016, 314: 95.
[99]
Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L. ACS Appl. Mater.Interfaces, 2018, 10: 28936.
[100]
Li Y, Guo X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L. Angew. Chem. Int. Ed., 2019.
[101]
Sun Q, Aguila B, Perman J, Ivanov A S, Bryantsev V S, Earl L D, Abney C W, Wojtas L, Ma S. , Nat. Commun. 2018, 9: 1644.
[102]
Yu J P, Yuan L Y, Wang S A, Lan J H, Zheng L R, Xu C, Chen J, Wang L, Huang Z W, Shi W Q. CCS Chemistry, 2019, 1: 286.
[103]
Han X, Xu M, Yang S, Qian J, Hua D.J. Mater. Chem., 2017, 5: 5123.
[104]
Xu M, Han X, Wang T, Li S, Hua D.J. Mater. Chem., 2018, 6: 13894.
[105]
Wang T, Xu M, Han X, Yang S, Hua D.J. Hazard. Mater., 2019, 368: 214.
[106]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.
[107]
Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S. Appl. Surf. Sci., 2016, 360: 1016.
[108]
Ke L, Li P, Wu X, Jiang S, Luo M, Liu Y, Le Z, Sun C, Song S. Appl. Catal. B., 2017, 205: 319.
[109]
Wu X, Jiang S, Song S, Sun C. Appl. Surf. Sci., 2018, 430: 371.
[110]
Chen T, Zhang J, Ge H, Li M, Li Y, Duan T, He R, Zhu W.J. Hazard. Mater., 2020, 384: 121383.
[111]
Akshay J, Balasubramanian R, Srinivasan M P. Chem. Eng. J. 2016, 283: 789.
[112]
Xu F, Tang Z W, Huang S Q, Chen L Y, Liang Y, Mai W C, Zhong H, Fu R W, Wu D C. Nat. Commun., 2015, 6: 1.
[113]
Chen Z, Ma L, Li S, Geng J, Song Q, Liu J, Wang C, Wang H, Li J, Qin Z. Appl. Surf. Sci., 2011, 257: 8686.
[114]
Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S.J. Colloid Interface Sci., 2012, 386: 291.
[115]
Geng J, Ma L, Wang H, Liu J, Bai C, Song Q, Li J, Hou M, Li S.J. Nanosci. Nanotechnol., 2012, 12: 7354.
[116]
Li B, Ma L, Tian Y, Yang X, Li J, Bai C, Yang X, Zhang S, Li S, Jin Y.J. Hazard. Mater., 2014, 271: 41.
[117]
Yang X, Li J, Liu J, Tian Y, Li B, Cao K, Liu S, Hou M, Li S, Ma L.J. Mater. Chem., 2014, 2: 1550.
[118]
Zhang Z B, Zhou Z W, Cao X H, Liu Y H, Xiong G X, Liang P.J. Radioanal. Nucl. Chem., 2014, 299: 1479.
[119]
Zhang Z, Dong Z, Dai Y, Xiao S, Cao X, Liu Y, Guo W, Luo M, Le Z. RSC Adv., 2016, 6: 102462.
[120]
Zhang Z B, Nie W B, Li Q, Xiong G X, Cao X H, Liu Y H.J. Radioanal. Nucl. Chem., 2013, 298: 361.
[121]
Zhang W L, Zhang Z B, Cao X H, Ma R C, Liu Y H. J. Radioanal. Nucl. Chem., 2014, 301: 197.
[122]
Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W. Chem. Eng. J. 2012, 210: 539.
[123]
Song W, Shao D, Lu S, Wang X. Science China Chemistry, 2014, 57: 1291.
[124]
Liu X, Li J, Wang X, Chen C, Wang X.J. Nucl. Mater., 2015, 466: 56.
[125]
Hu R, Shao D, Wang X. , Polym. Chem. 2014, 5: 6207.
[126]
Sun Y, Shao D, Chen C, Yang S, Wang X. Environ. Sci. Technol., 2013, 47: 9904.
[127]
Shao D, Li J, Wang X. Science China Chemistry, 2014, 57: 1449.
[128]
Li Z J, Wang L, Yuan L Y, Xiao C L, Mei L, Zheng L R, Zhang J, Yang J H, Zhao Y L, Zhu Z T.J. Hazard. Mater., 2015, 290: 26.
[129]
Zhao Y, Li J, Zhang S, Chen H, Shao D. , RSC Adv.2013, 3: 18952.
[130]
Wang F, Li H, Liu Q, Li Z, Li R, Zhang H, Liu L, Emelchenko G, Wang J. , Sci. Rep. 2016, 6: 19367.
[131]
Chen L, Zhao D, Chen S, Wang X, Chen C.J. Colloid Interface Sci., 2016, 472: 99.
[132]
Qian Y, Yuan Y, Wang H, Liu H, Zhang J, Shi S, Guo Z, Wang N.J. Mater. Chem., 2018, 6: 24676.
[133]
Shao L, Wang X, Ren Y, Wang S, Zhong J, Chu M, Tang H, Luo L, Xie D. Chem. Eng. J., 2016, 286: 311.
[134]
Maghrabi H H, Abdelmaged S M, Nada A A, Zahran F, ElWahab S A, Yahea D, Hussein G, Atrees M. J. Hazard. Mater., 2017, 322: 370.
[135]
Tian Y, Fu J, Zhang Y, Cao K, Bai C, Wang D, Li S, Xue Y, Ma L, Zheng C. Phys. Chem. Chem. Phys., 2015, 17: 7214.
[136]
Wu Q Y, Lan J H, Wang C Z, Xiao C L, Zhao Y L, Wei Y Z, Chai Z F, Shi W Q.J. Phys. Chem. A, 2014, 118: 2149.
[137]
Nie B W, Zhang Z B, Cao X H, Liu Y H, Liang P.J. Radioanal. Nucl. Chem., 2013, 295: 663.
[138]
Liu Y, Li Q, Cao X, Wang Y, Jiang X, Li M, Hua M, Zhang Z. Appl. Surf. Sci., 2013, 285: 258.
[139]
Zhang Z B, Yu X F, Cao X H, Hua R, Li M, Liu Y H.J. Radioanal. Nucl. Chem., 2014, 301: 821.
[140]
Zou Y D, Cao X H, Luo X P, Liu Y, Hua R, Liu Y H, Zhang Z B.J. Radioanal. Nucl. Chem., 2015, 306: 515.
[141]
Cheng Z P, Liu Y H, Xiong G X, Luo X P, Cao X H, Li M, Zhang Z B.J. Radioanal. Nucl. Chem., 2015, 306: 365.
[142]
Górka J, Mayes R T, Baggetto L, Veith G M, Dai S.J. Mater. Chem., 2013, 1: 3016.
[143]
Carboni M L, Abney C W, Taylor-Pashow K M, Vivero-Escoto J L, Lin W. In. Eng. Chem. Res., 2013, 52: 15187.
[144]
Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S.J. Hazard. Mater., 2011, 190: 442.
[145]
Husnain S M, Kim H J, Um W, Chang Y Y, Chang Y S. In. Eng. Chem. Res., 2017, 56: 9821.
[146]
Sun Y, Yang S, Sheng G, Guo Z, Wang X.J. Environ. Radioact., 2012, 105: 40.
[147]
Shao D, Hu J, Wang X. Plasma Processes Polym., 2010, 7: 977.
[148]
Shao D, Jiang Z, Wang X, Li J, Meng Y.J. Phys. Chem. B.,2009, 113: 860.
[149]
Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J. Appl. Surf. Sci., 2014, 320: 10.
[150]
刘淑娟 (Liu S J), 李金英(Li J Y), 罗明标 (Luo M B). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2011, 33: 285.
[151]
刘淑娟 (Liu S J), 李金英 (Li J Y), 罗明标(LuoM B), 花榕(Hua R), 林海禄(Lin H L), 马建国 (Ma J G). 原子能科学技术(Atomic Energy Science and Technology), 2013, 47: 7.
[152]
刘淑娟(Liu S J), 马建国(Ma J G), 花榕(Hua R), 林海禄(Lin H L), 李芳清(Li F Q). 东华理工大学学报: 自然科学版(Journal of Donghua University of Technology: Natural Science). 2013, 35: 388.
[153]
Fasfous I I, Dawoud J N. Appl. Surf. Sci., 2012, 259: 433.
[154]
Tian K, Wu J, Wang J. Radiochim. Acta, 2018, 106: 719.
[155]
Gu Z, Wang Y, Tang J, Yang J, Liao J, Yang Y, Liu N.J. Radioanal. Nucl. Chem., 2015, 303: 1835.
[156]
Tan L, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J. Chem. Eng. J., 2015, 273: 307.
[157]
Abdeen Z, Akl Z. , RSC Adv. 2015, 5: 74220.
[158]
Zhao X, Zhang S, Bai C, Li B, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S.J. Colloid Interface Sci., 2016, 469: 109.
[159]
Li Y, Wang L, Li B, Zhang M, Wen R, Guo X, Li X, Zhang J, Li S, Ma L. ACS Appl. Mater.Interfaces, 2016, 8: 28853.
[160]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A, Snurr R Q, O’keeffe M, Kim J. Science, 2010, 329: 424.
[161]
Kuppler R J, Timmons D J, Fang Q R, Li Jian R, Makal T A. Coord. Chem. Rev., 2009, 253: 3042.
[162]
Carboni M, Abney C W, Liu S, Lin W. Chem. Sci., 2013, 4: 2396.
[163]
Yang W, Bai Z Q, Shi W Q, Yuan L Y, Tian T, Chai Z F, Wang H, Sun Z M. Chem. Commun., 2013, 49: 10415.
[164]
Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L. , Nat. Commun. 2017, 8: 15369.
[165]
Chen L, Bai Z, Zhu L, Zhang L, Cai Y, Li Y, Liu W, Wang Y, Chen L, Diwu J. ACS Appl. Mater.Interfaces, 2017, 9: 32446.
[166]
Bai Z Q, Yuan L Y, Zhu L, Liu Z R, Chu S Q, Zheng L R, Zhang J, Chai Z F, Shi W Q.J. Mater. Chem., 2015, 3: 525.
[167]
Zhang J Y, Zhang N, Zhang L, Fang Y, Deng W, Yu M, Wang Z, Li L, Liu X, Li J. Sci. Rep., 2015, 5: 13514.
[168]
Wang L L, Luo F, Dang L L, Li J Q, Wu X L, Liu S J, Luo M B.J. Mater. Chem., 2015, 3: 13724.
[169]
Li L, Ma W, Shen S, Huang H, Bai Y, Liu H. ACS Appl. Mater. Interfaces, 2016, 8: 31032.
[170]
Zhang L, Wang L L, Le Gong L, Feng X F, Luo M B, Luo F.J. Hazard. Mater., 2016, 311: 30.
[171]
Liu S, Luo M, Li J, Luo F, Ke L, Ma J.J. Radioanal. Nucl. Chem., 2016, 310: 353.
[172]
Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J.J. Mater. Chem., 2017, 5: 17933.
[173]
Min X, Yang W, Hui Y F, Gao C Y, Dang S, Sun Z M. Chem. Commun., 2017, 53: 4199.
[174]
Xiao C, Silver M A, Wang S. Dalton Trans., 2017, 46: 16381.
[175]
Li J, Wang X X, Zhao G X, Chen C L, Chai Z F, Alsaedi A, Hayat T, Wang X K. Chem. Soc. Rev., 2018, 47: 2322.
[176]
Feng M, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209: 783.
[177]
Yuan L Y, Liu YL, Shi W Q, Li Z J, Lan J H, Feng Y X, Zhao Y L, Yuan Y L, Chai Z F.J. Mater. Chem., 2012, 22: 17019.
[178]
Tripathi S, Bose R, Roy A, Nair S, Ravishankar N. ACS Appl. Mater. Interfaces, 2015, 7: 26430.
[179]
Lebed P J, Savoie J D, Florek J, Bilodeau F O, LarivièRe D, Kleitz F. Chem. Mater., 2012, 24: 4166.
[180]
Li B, Bai C, Zhang S, Zhao X, Li Y, Wang L, Ding K, Shu X, Li S, Ma L.J. Mater. Chem., 2015, 3: 23788.
[181]
Li B, Wang L, Li Y, Wang D, Wen R, Guo X, Li S, Ma L, Tian Y. RSC Adv., 2017, 7: 8985.
[182]
Pan N, Jin Y, Wang X, Hu X, Chi F, Zou H, Xia C. ACS Sustainable Chem. Eng., 2018, 7: 950.
[183]
Li H, Li Y, Zhou Y, Li B, Liu D, Liao H.J. Colloid Interface Sci., 2019, 544: 14.
[184]
Wegner S V, Boyaci H, Chen H, Jensen M P, He C. Angew. Chem. Int. Ed., 2009, 48: 2339.
[185]
Zhou L, Bosscher M, Zhang C, zçubukçu S, Zhang L, Zhang W, Li C J, Liu J, Jensen M P, Lai L. Nat. Chem., 2014, 6: 236.
[186]
Odoh S O, Bondarevsky G D, Karpus J, Cui Q, He C, Spezia R, Gagliardi L.J. Am. Chem. Soc., 2014, 136: 17484.
[187]
Carugo O.J. Inorg. Biochem., 2018, 189: 1.
[188]
ZäNker H, Heine K, Weiss S, Brendler V, Husar R, Bernhard G, Gloe K, Henle T, Barkleit A. Inorg. Chem., 2019, 58: 4173.
[189]
Barkleit A, Hennig C, Ikeda-Ohno A. Chem. Res. Toxicol., 2018, 31: 1032.
[190]
Kou S, Yang Z, Sun F. ACS Appl. Mater. Interfaces., 2017, 9: 2035.
[1] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[2] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[5] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[6] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[7] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[10] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[11] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[14] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[15] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.