中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1582-1591 DOI: 10.7536/PC200211 Previous Articles   Next Articles

Preparation and Pseudocapacitor Properties of Self-Supported Nickel Sulfides Electrode Materials

Shaofei Zhao1, Peng Liu1, Gao Cheng1, Lin Yu1,**(), Huaqiang Zeng1,2,**()   

  1. 1. School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2. Nanobio laboratory, Singapore 138669, Singapore
  • Received: Revised: Online: Published:
  • Contact: Lin Yu, Huaqiang Zeng
  • About author:
    **e-mail:(Lin Yu)
  • Supported by:
    National Natural Science Foundation of China(No.21306026); National Natural Science Foundation of China(21576054); National Natural Science Foundation of China(51678160)
Richhtml ( 20 ) PDF ( 676 ) Cited
Export

EndNote

Ris

BibTeX

With the advantages of ultra-high power density, and super specific capacitance, nickel sulfides pseudocapacitors have been supposed as one of the ideal devices for energy storage. However, the application of those pseudocapacitors have been subjected to the poor cycle stability and low conductivity. Up to now, extensive efforts have been made to increase the conductivity and cycle stability. Among which, the self-supported electrode materials have been regarded as a effective solution to reduce internal resistance for high rate capacitance. This paper reviews the main methods to prepare self-supported nickel sulfides pseudocapacitor electrode materials, and summarize the relationship between morphology and capacitance property, which focus on the modification of conductive substrates, the compositing with graphene or others elements, the design of flexible materials, etc. Finally, the research directions of these materials are further proposed.

Contents

1 Introduction

2 Preparation of nickel sulfides materials

2.1 Solvothermal method

2.2 Electrodeposition method

2.3 Other preparation methods

3 Structural optimization of nickel sulfides materials

3.1 Modification of current collector

3.2 Doping with other ions

3.3 Preparation of composite materials

3.4 Design of flexible electrode

4 Conclusion and outlook

Fig.1 Schematic of different types of redox mechanisms of pseudocapacitances[16]
Fig.2 SEM micrographs of Ni3S2 with net structure prepared by one pot hydrothermal method[14, 22]
Fig.3 SEM images of the Ni3S2 films developed at different temperatures of (a) 140 ℃, (b) 160 ℃, and (c) 180 ℃. (d) Side view image of the NS-160 film on Ni foam[33]
Fig.4 Schematic diagram for preparation of Ni3S2 thin film with different pore size, and the contact relation between electrolyte ions and pores with different sizes in the electrochemical reaction process[35]
Fig.5 Characterization results of the urchin-like Ni3S2 grown on the Ni foam substrate (Ni3S2@Ni): scanning electron microscopy (SEM) images (A~D) at different magnifications[29]
Fig.6 SEM images with different magnifications for (a~c) G2, (d~f) G0, (g~i) G1[39]
Fig.7 Illustration of the two-step approach to prepare Ni3S2 nanosheets[41]
Fig.8 SEM images of (a,b) Ni(Cu) and the (c-e) Ni3S2/Ni 6 min electrode. Cross-sectional SEM images of (f) Ni(Cu), (g) Ni3S2/Ni 2 min electrode, and (h) Ni3S2/Ni 6 min electrode. (i) Schematic illustration of Ni3S2/Ni electrode preparation[42]
Fig.9 SEM images of the intermediates obtained at different time for Ni-Co precursor: (a) 480, (b) 540, (c) 600, and (d) 720 min; SEM images of Ni-Co precursor samples synthesized with different concentrations of NH4F: (e) 0, (f) 10, (g) 12, and (h) 15 mmol[65]
[1]
Zhao S F, Zeng L Z, Cheng G, Yu L, Zeng H Q. Chinese Chemical Letters, 2019,30(3):605.
[2]
Osman S, Senthil R A, Pan J, Li W. Journal of Power Sources, 2018,391:162.
[3]
Song X, Ma X, Yu Z, Ning G, Li Y, Sun Y. ChemElectroChem, 2018,5(11):1474.
[4]
Ramesh S, Khandelwal S, Rhee K Y, Hui D. Composites Part B: Engineering, 2018,138:45.
[5]
Wu M S, Wang M J. Chemical Communications, 2010,46(37):6968.
[6]
Wen Y X, Liu Y P, Dang S, Tian S H, Li H Q, Wang Z L, He D Y, Wu Z S, Cao G Z, Peng S L. Journal of Power Sources, 2019,423:106.
[7]
Wang N, Han G Y, Chang Y Z, Hou W J, Xiao Y M, Li H G. Electrochimica Acta, 2019,317:322.
[8]
Su W, Wu F, Fang L, Hu J, Liu L, Guan T, Long X, Luo H, Zhou M. Journal of Alloys and Compounds, 2019,799:15.
[9]
Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F. Small, 2015,11(11):1310.

pmid: 25384679
[10]
陈志远(Chen Z Y), 颜冬(YanD), 钱凡(QianF), 李文翠(LiW C). 化工学报 (CIESC Journal), 2019,70(12):4864.
[11]
Weng Y T, Wu N L. Journal of Power Sources, 2013,238:69.
[12]
Zhang J, Zhao X S. Journal of Physical Chemistry C, 2012,116(9):5420.
[13]
Cai D P, Wang D D, Wang C X, Liu B, Wang L, Liu Y, Li Q, Wang T. Electrochimica Acta, 2015,151:35.
[14]
Huo H H, Zhao Y Q, Xu C L. Journal of Materials Chemistry A, 2014,2(36):15111.
[15]
乔少明(Qiao S M), 黄乃宝(HuangN B), 高正远(GaoZ Y), 周仕贤(ZhouS X) , 孙银(Sun Y). 化学进展 (Progress in Chemistry), 2019,31(8):1177.
[16]
Augustyn V, Simon P, Dunn B. Energy & Environmental Science, 2014,7(5):1597.
[17]
Herrero E, Buller L J, Abruña H D. Chemical Reviews, 2001,101(7):1897. doi: 10.1021/cr9600363

pmid: 11710235
[18]
Palomar-Pardave M, Gonzalez I, Batina N. Journal of Physical Chemistry B, 2000,104(15):3545.
[19]
Simon P, Gogotsi Y. Nature Materials, 2008,7(11):845.
[20]
Jiang H, Guo Y, Wang T, Zhu P L, Yu S H, Yu Y, Fu X Z, Sun R, Wong C P. RSC Advances, 2015,5(17):12931.
[21]
Yu Z Y, Cheng Z X, Wang X L, Dou S X, Kong X Y. Journal of Materials Chemistry A, 2017,5(17):7968.
[22]
Krishnamoorthy K, Veerasubramani G K, Radhakrishnan S, Kim S J. Chemical Engineering Journal, 2014,251:116.
[23]
Tran V C, Sahoo S, Shim J J. Materials Letters, 2018,210:105.
[24]
Li S, Wen J, Chen T, Xiong L, Wang J, Fang G. Nanotechnology, 2016,27(14):145401.

pmid: 26905933
[25]
Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, Cao X, Lu Q, Zhang X, Zhang Z, Tan C, Zhang H. Journal of the American Chemical Society, 2016,138(22):6924.

pmid: 27197611
[26]
吴丹丹(Wu D D), 仇微微(QiuW W), 赵家琳(ZhaoJ L), 任素贞(RenS Z), 郝策(Hao C). 化工进展 (Chemical Industry and Engineering Progress), 2019,38(11):172.
[27]
Shi B B, Saravanakumar B, Wei W, Dong G P, Wu S J, Lu X B, Zeng M, Gao X S, Wang Q M, Zhou G F, Liu J M, Kempa K, Gao J W. Journal of Alloys and Compounds, 2019,790:693.
[28]
Kamali-Heidari E, Xu Z L, Sohi M H, Ataie A, Kim J K. Electrochimica Acta, 2018,271:507.
[29]
He Q, Wang Y, Liu X X, Blackwood D J, Chen J S. Journal of Materials Chemistry A, 2018,6(44):22115.
[30]
李丹(Li D), 刘玉荣(LiuY R), 林保平(LinB P), 孙莹(SunY), 杨洪(Yang H), 张雪勤(Zhang X Q). 化学进展 (Progress in Chemistry), 2015,27(4):404.
[31]
田晓冬(Tian X D), 李肖(LiX), 杨桃(YangT), 宋燕(SongY), 刘占军(Liu Z J), 郭全贵(Guo Q G). 无机材料学报 (Journal of Inorganic Materials), 2017,32(5):459.
[32]
Fu W, Zhao Y, Mei J, Wang F, Han W, Wang F, Xie E. Electrochimica Acta, 2018,283:737.
[33]
Ji F Z, Jiang D, Chen X M, Pan X X, Kuang L P, Zhang Y, Alameh K, Ding B F. Applied Surface Science, 2017,399:432.
[34]
Wang Y Q, Wang F W, Jin F M, Jing Z Z. Industrial & Engineering Chemistry Research, 2013,52(16):5616.
[35]
Li J, Wang S L, Xiao T, Tan X Y, Xiang P, Jiang L H, Deng C, Li W, Li M M. Applied Surface Science, 2017,420:919.
[36]
Shinde N M, Xia Q X, Shinde P V, Yun J M, Mane R S, Kim K H. ACS Appl. Mater. Interfaces, 2019,11(4):4551.

pmid: 30601660
[37]
Zhang Z, Huang Z, Ren L, Shen Y, Qi X, Zhong J. Electrochimica Acta, 2014,149:316.
[38]
Zhuo M, Zhang P, Chen Y, Li Q. RSC Advances, 2015,5(32):25446.
[39]
Chen L, Guan L X, Tao J G. Journal of Materials Science, 2019,54(19):12737.
[40]
Zhang Y, Xu J, Zhang Y, Hu X. Journal of Materials Science: Materials in Electronics, 2016,27(8):8599.
[41]
Chen J S, Guan C, Gui Y, Blackwood D J. ACS Appl. Mater. Interfaces, 2017,9(1):496.

pmid: 27976843
[42]
Kim D, Kannan P K, Mateti S, Chung C H. ACS Applied Energy Materials, 2018,1(12):6945.
[43]
Chou S W, Lin J Y. Journal of the Electrochemical Society, 2013,160(4):D178.
[44]
Chou S W, Lin J Y. Journal of the Electrochemical Society, 2015,162(14):A2762.
[45]
Xu J S, Sun Y D, Lu M J, Wang L, Zhang J, Liu X Y. Science China Materials, 2019,62(5):699.
[46]
赵少飞(Zhao S F), 刘鹏(LiuP), 李婉萍(LiW P), 曾小红(ZengX H), 钟远红(Zhong Y H), 余林(Yu L), 曾华强(Zeng H Q). 化工学报 (CIESC Journal), 2020,71(4):1836.
[47]
Dhaiveegan P, Hsu Y K, Tsai Y H, Hsieh C K, Lin J Y. Surface & Coatings Technology, 2018,350:1003.
[48]
Yao M Q, Sun B L, He L X, Wang N, Hu W, Komarneni S. ACS Sustainable Chemistry & Engineering, 2019,7(5):5430.
[49]
Yu L, Yang B, Liu Q, Liu J, Wang X, Song D, Wang J, Jing X. Journal of Electroanalytical Chemistry, 2015,739:156.
[50]
Rama Raju G S, Pavitra E, Nagaraju G, Sekhar S C, Ghoreishian S M, Kwak C H, Yu J S, Huh Y S, Han Y K. Journal of Materials Chemistry A, 2018,6(27):13178.
[51]
张勇(Zhang Y), 梅寒馨(MeiH X), 高海丽(GaoH L), 王诗文(WangS W), 闫继(Yan J). 电源技术 (Chinese Journal of Power Sources), 2019,43(9):1554.
[52]
Lv J L, Liang T X, Yang M, Suzuki K, Miura H. Journal of Electroanalytical Chemistry, 2017,786:8. doi: 10.1016/j.jelechem.2017.01.004
[53]
Ghosh D, Das C K. ACS Appl Mater Interfaces, 2015,7(2):1122.

pmid: 25539030
[54]
Huang X, Zhang Z G, Li H, Zhao Y Y, Wang H X, Ma T L. Journal of Alloys and Compounds, 2017,722:662.
[55]
Liu Y P, Li Z L, Yao L, Chen S M, Zhang P X, Deng L B. Chemical Engineering Journal, 2019,366:550. doi: 10.1016/j.cej.2019.02.125
[56]
Li Y J, Ye K, Cheng K, Yin J L, Cao D X, Wang G L. Journal of Power Sources, 2015,274:943.
[57]
Xing Z, Chu Q, Ren X, Tian J, Asiri A M, Alamry K A, Al-Youbi A O, Sun X. Electrochemistry Communications, 2013,32:9.
[58]
Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar S G, Srinivasan M, Ramakrishna S, Yan Q. Advanced Functional Materials, 2014,24(15):2155.
[59]
Zou Y N, Cui Y H, Zhou Z G, Zan P, Guo Z X, Zhao M, Ye L, Zhao L J. Journal of Solid State Chemistry, 2018,267:53.
[60]
Liu Y D, Liu G Q, Nie X, Pan A Q, Liang S Q, Zhu T. Journal of Materials Chemistry A, 2019,7(18):11044.
[61]
Wu C, Liu B, Wang J, Su Y, Yan H, Ng C, Li C, Wei J. Applied Surface Science, 2018,441:1024.
[62]
Chen H C, Jiang J J, Zhang L, Xia D D, Zhao Y D, Guo D Q, Qi T, Wan H Z. Journal of Power Sources, 2014,254:249.
[63]
Liu L, Chen T, Rong H, Wang Z H. Journal of Alloys and Compounds, 2018,766:149.
[64]
Zha D S, Fu Y S, Zhang L L, Zhu J W, Wang X. Journal of Power Sources, 2018,378:31.
[65]
Chen X J, Chen D, Guo X Y, Wang R M, Zhang H Z. ACS Appl Mater Interfaces, 2017,9(22):18774.

pmid: 28497684
[66]
Cai D, Yang T, Wang D, Duan X, Liu B, Wang L, Liu Y, Li Q, Wang T. Electrochimica Acta, 2015,159:46.
[67]
Fu D, Li H, Zhang X M, Han G, Zhou H, Chang Y. Materials Chemistry and Physics, 2016,179:166.
[68]
He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E. ACS Nano, 2013,7(1):174. doi: 10.1021/nn304833s

pmid: 23249211
[69]
Wen P, Gong P, Sun J, Wang J, Yang S. Journal of Materils Chemistry A, 2015,3(26):13874.
[70]
Liang M, Zhao M, Wang H, Shen J, Song X. Journal of Materils Chemistry A, 2018,6(6):2482.
[71]
Han T, Jiang L Y, Jiu H F, Chang J X. Journal of Physics and Chemistry of Solids, 2017,110:1.
[72]
Xing Z, Chu Q, Ren X, Ge C, Qusti A H, Asiri A M, Al-Youbi A O, Sun X. Journal of Power Sources, 2014,245:463.
[73]
Long L, Yao Y, Yan M, Wang H, Zhang G, Kong M, Yang L, Liao X, Yin G, Huang Z. Journal of Materials Science, 2017,52(7):3642.
[74]
Xiong X, Huo P, Xie H. Journal of Polymer Research, 2019,26(9):209.
[75]
Liu X, Qi X, Zhang Z, Ren L, Liu Y, Meng L, Huang K, Zhong J. Ceramics International, 2014,40(6):8189.
[76]
Han T, Guo G Z, Wei Y, Zhang Y H, Sun Y Y. International Journal of Electrochemical Science, 2018,13(11):10539.
[77]
Chen Y Z, Zhou T F, Liu Y N, Guo Z P. Journal of Materials Chemistry A, 2017,5(45):23476.
[1] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[2] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[3] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[4] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[5] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[6] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[7] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[8] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
[9] Di Xu, Hujiang Shen*, Huihui Yuan, Wei Wang, Junjie Xie. Poly(3, 4-Ethylenedioxythiophene) Based Electrode Materials: Preparation, Modification and Application in Electronic Devices [J]. Progress in Chemistry, 2018, 30(2/3): 252-271.
[10] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[11] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[12] Li Dan, Liu Yurong, Lin Baoping, Sun Ying, Yang Hong, Zhang Xueqin. Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2015, 27(4): 404-415.
[13] Kang Yiran, Cai Feng, Chen Hongyuan, Chen Minghai, Zhang Rui, Li Qingwen. Carbon Nanotube/Graphene Hybrid Nanostructures and Their Application in Supercapacitors [J]. Progress in Chemistry, 2014, 26(09): 1562-1569.
[14] Feng Xiaomiao, Li Ruimei, Yang Xiaoyan, Hou Wenhua. Application of Novel Carbon Nanomaterials to Electrochemistry [J]. Progress in Chemistry, 2012, 24(11): 2158-2166.
[15] Chen Renjie, Zhang Haiqin, Wu Feng. Applications of Ionic Liquids in Batteries [J]. Progress in Chemistry, 2011, 23(0203): 366-373.