中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1219-1230 DOI: 10.7536/PC200210 Previous Articles   Next Articles

• Review •

Local Structure Determination Based on Total Scattering and Condensed Matter

Qiang Li1, Kun Lin1, Xianran Xing1,**()   

  1. 1. Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Contact: Xianran Xing
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21590793); National Natural Science Foundation of China(21731001)
Richhtml ( 31 ) PDF ( 716 ) Cited
Export

EndNote

Ris

BibTeX

The packing form of atoms or molecules in the structure and elemental spatial distribution are the core problems of condensed matter. Precise revelation of local structure is one of the most important methods to address such kind of issues. The acquisition of local structural information, which is directly correlated to chemical bonding, provides the deep insight of chemical reaction and understanding for the intrinsic structure-function relationship of design for functional materials. The atomic pair distribution function(PDF) based on the total scattering method, considering the spatial distribution regularities of atomic pair distance in radial direction, demonstrates the full-range structural information of condensed matter systems with different crystallinity and agglomeration. This review starts from the theoretical basis of total scattering and PDF. Refer to the differences of aggregation morphology and structural chemistry features, the representative examples with local structural novelty are shown. The specific introduction for the recent results about structural evolution demonstrate the distinct characteristics from short to long range during the application of the atomic pair distribution function combining in-situ temperature field and reverse monte carlo method. The new viewpoint from the local structure to the chemical reaction, optimization of functional properties and responses to external fields is proposed.

Contents

1 Introduction

2 The superiority of PDF in the study of short-range coordination structure in disordered solid and liquid

3 Local structural information of ordered solids from total scattering

4 Short-range ordering in nano materials and interfaces

5 PDF in chemical reaction

6 Conclusion and outlook

Fig.1 (a) The total scattering pattern of AgBr. The inset shows the magnified shaded region with the red dashed line as the diffuse scattering part[13];(b) PDF of Pt nanoparticles, neighbouring coordination and the corresponding physical meanings of each part in the atomic pair distribution function.
Table 1 Comparison of method for local structure and others[17]
Fig.2 Partial PDF of glassy GeSe2 from Gaussian fits[24]
Fig.3 (a) The compressive stress-strain curve of Cu64.5Zr35.5 bulk metallic glass. Inset is the 2D diffraction pattern without applied stress and loading direction.(b) The isotropic(ρ0)and anisotropic(ρ2) components of pair distribution function for Cu64.5Zr35.5 bulk metallic glass under the compressive stress[25]
Fig.4 (a,b) The total structure factor and PDF of liquid Zn as the function of temperature;(c,d) The total structure factor and PDF of liquid In as the function of temperature. The inset shows the amplified region with dashed box[26]
Fig.5 The partial PDF of H2O from neutron total scattering and isotopic substitution[27]
Fig.6 The PDF of Ga1-xInxAs under 10 K[31]
Fig.7 Temperature dependence of nearest and next-nearest Zn-C/N bond length in Zn(CN)2[33]
Fig.8 (a) The linkage between ZrO6 octahedron and WO4 tetrahedron and the rotating mode;(b) Temperature dependence of the short-range region in the PDF of ZrW2O8[35]
Fig.9 (a,b) PDF fit of(Sc0.85Ga0.05Fe0.1)F3 with cubic(a) and rhombohedral(b) models[36];(c) The short-range region of PDF fit for antiperovskite Mn3Cu1-xGexN with T4 model[37]
Fig.10 (a) RMC for the PDF of UO2.07 under high temperature[38];(b) Fitting result for the PDF of r-WS2[39]
Fig.11 (a) PDF and RMC of Pt41Ni59 nanoparticles[43];(b) Local phases and PDF fitting based on L10 phase for ordered PtFe nanoparticles[44]
Fig.12 (a) PDF of CeO2 nanoparticles and the local coordination;(b) PDF fitting based on tetragonal phase for CeO2 nanoparticles[45];(c,d) HRTEM image of SnO2 twin crystal nanowires and PDF fitting[46]
Fig.13 (a) Honeycomb representation of the transition metal layer in Li(NiMn)0.5O2 and(b) the RMC of PDF[47];(c) Ex-situ PDF of silicon negative electrodes during first discharge[48]
Fig.14 (a)PDF of 4 nm SnO2 with adsorbed water or ethanol under 200 ℃ and 300 ℃[52];(b)Differential PDF of γ-Al2O3 with arsenate adsorbing[53]
[1]
Xu R. Natl. Sci. Rev., 2018,5:1.
[2]
马礼敦(M L D). 物理学进展(Progress in Physics), 2014,2:4.
[3]
冯端(F D). 物理学报(Acta Physica Sinica), 1979,2:141.
[4]
Farrow C L, Juhas P, Liu J W, Bryndin D, Božin E S, Bloch J, Proffen Th, Billinge S J L. J. Phys.: Condens. Matter, 2007,19(33):335219.
[5]
Billinge S J L. Z. Kristallogr, 2004,219:117.
[6]
Egami T, Billinge S J L. Underneath the Bragg peaks: Structural Analysis of Complex Materials. Amsterdam:Elsevier, 2003. 25.
[7]
Dove M T, Tucker M G, Keen D A. Eur. J. Mineral., 2002,14(2):331. http://www.schweizerbart.de/papers/ejm/detail/14/54167/Neutron_total_scattering_method_simultaneous_deter?af=crossref

doi: 10.1127/0935-1221/2002/0014-0331
[8]
Sears V F. Neutron News, 1992,3(3):26. http://www.tandfonline.com/doi/abs/10.1080/10448639208218770

doi: 10.1080/10448639208218770
[9]
Gibson J M, Treacy M M J. Phys. Rev. Lett., 1997,78(6):1074.
[10]
Di Cicco A, Trapananti A, Faggioni S. Phys. Rev. Lett., 2003,91(13):135505. https://www.ncbi.nlm.nih.gov/pubmed/14525317

doi: 10.1103/PhysRevLett.91.135505 pmid: 14525317
[11]
Keen, David A, Goodwin, Andrew L. Nature, 521(7552):303. https://www.ncbi.nlm.nih.gov/pubmed/25993960

doi: 10.1038/nature14453 pmid: 25993960
[12]
Fornasini P, Ahmed S I, Sanson A, Vaccari M, Phys. Status Solidi, 2008,245(11):2497.
[13]
Young C A, Goodwin A L. J. Mater. Chem., 2011,21(18):6464.
[14]
Koningsberger D C, Mojet B L, Van Dorssen G E, Ramaker D E, Topics in Catalysis, 2000,10(3/4):143.
[15]
Indris S, Scheuermann M, Becker S M, Šepelák V, Kruk R, Suffner J, Gyger F, Feldmann C, Ulrich A S, Hahn H. J. Phys. Chem. C, 2011,115(14):6433.
[16]
Hammel P C, Reyes A P, Cheong S W, Fisk Z, Schirber J E. Phys. Rev. Lett., 1993,71(3):440. https://www.ncbi.nlm.nih.gov/pubmed/10055271

doi: 10.1103/PhysRevLett.71.440 pmid: 10055271
[17]
Billinge S J L, Levin I. Science, 2007,316(5824):561. https://www.ncbi.nlm.nih.gov/pubmed/17463280

doi: 10.1126/science.1135080 pmid: 17463280
[18]
李树棠(Li S T). 晶体X射线衍射学基础(Fundamentals of Crystal X-ray Diffraction). 北京: 冶金工业出版社 (Beijing: Metallurgical Industry Press), 1990. 208.
[19]
Billinge S J L, Thorpe M F. Local Structure from Diffraction. New York: Kluwer, 2006. 11.
[20]
Ma D, Stoica A D, Wang X L. Nature Mater., 2009,8(1):30. https://doi.org/10.1038/nmat2340

doi: 10.1038/nmat2340
[21]
Basak S, Clarke R, Nagel S R. Phys. Rev. B, 1979,20(8):3388. https://link.aps.org/doi/10.1103/PhysRevB.20.3388

doi: 10.1103/PhysRevB.20.3388
[22]
Billinge S J L, Dykhne T, Juhás P, Božin E, Taylor R, Flor-encec A J, Shankland K. CrystEngComm., 2010,12(5):1366.
[23]
Svab E, Kroo N, Ishmaev S N. Solid State Commun., 1982,44(8):1151.
[24]
Petri I, Salmon P S, Fischer H E. Phys. Rev. Lett., 2000,84(11):2413. https://www.ncbi.nlm.nih.gov/pubmed/11018898

doi: 10.1103/PhysRevLett.84.2413 pmid: 11018898
[25]
Wang G, Mattern N, Pauly S, Pauly S, Bednarčik J, Eckert J, Appl. Phys. Lett., 2009,95(25):251906.
[26]
Zhang W, Wang X, Cao Q P, Zhang D, Jiang J Z. J. Phys. Chem. B, 2019,123(32):7055. https://www.ncbi.nlm.nih.gov/pubmed/31365259

doi: 10.1021/acs.jpcb.9b05258 pmid: 31365259
[27]
Narten A H, Thiessen W E, Blum L. Science, 1982,217(4564):1033. https://www.ncbi.nlm.nih.gov/pubmed/17839340

doi: 10.1126/science.217.4564.1033 pmid: 17839340
[28]
Soper A K. J. Chem. Phys., 1994,101(8):6888.
[29]
Kan D, Anbusathaiah V, Takeuchi I. Adv. Mater., 2011,23(15):1765. https://www.ncbi.nlm.nih.gov/pubmed/21438031

doi: 10.1002/adma.201004503 pmid: 21438031
[30]
Dias A, Khalam L A, Sebastian M T, William A P C, Moreira R L. Chem. Mater., 2006,18(1):214.
[31]
Petkov V, Jeong I K, Chung J S, Thorpe M F, Kycia S, Billinge S J L. Phys. Rev. Lett., 1999,83(20):4089.
[32]
Tucker M G, Dove M T, Keen D A. J. Phys.: Condens. Matter, 2000,12(26):L425.
[33]
Chapman K W, Chupas P J, Kepert C J. J. Am. Chem. Soc., 2005,127(44):15630. https://www.ncbi.nlm.nih.gov/pubmed/16262430

doi: 10.1021/ja055197f pmid: 16262430
[34]
Tucker M G, Goodwin A L, Dove M T, Keen D A, Wells S A, Evans J S O. Phys. Rev. Lett., 2005,95(25):255501. https://www.ncbi.nlm.nih.gov/pubmed/16384466

pmid: 16384466
[35]
Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J, Kowach G R. Phys. Rev. Lett., 2014,112(4):045505. https://www.ncbi.nlm.nih.gov/pubmed/24580469

doi: 10.1103/PhysRevLett.112.045505 pmid: 24580469
[36]
Hu L, Chen J, Fan L, Ren Y, Rong Y, Pan Z, Deng J, Yu R, Xing X. J. Am. Chem. Soc., 2014,136(39):13566. daa9b63b-1f41-4455-b160-c3a80f51b6c8http://dx.doi.org/10.1021/ja5077487

doi: 10.1021/ja5077487
[37]
Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S. Phys. Rev. Lett., 2008,101(20):205901. https://www.ncbi.nlm.nih.gov/pubmed/19113356

doi: 10.1103/PhysRevLett.101.205901 pmid: 19113356
[38]
Palomares R I, McDonnell M T, Yang L, Yao T, Szymanowski J E S, Neuefeind J, Sigmon G E, Lian Jie, Tucker M G, Wirth B D, and Lang M. Phys. Rev. Mater., 2019,3(5):053611.
[39]
Petkov V, Billinge S J L, Heising J, Kanatzidis M G. J. Am. Chem. Soc., 2000,122(47):11571. https://pubs.acs.org/doi/10.1021/ja002048i

doi: 10.1021/ja002048i
[40]
Gilbert B, Huang F, Zhang H, Waychunas G A, Banfield J F. Science, 2004,305(5684):651. https://www.ncbi.nlm.nih.gov/pubmed/15232073

doi: 10.1126/science.1098454 pmid: 15232073
[41]
Billinge S J L, Levin I. Science, 2007,316(5824):561. https://www.ncbi.nlm.nih.gov/pubmed/17463280

doi: 10.1126/science.1135080 pmid: 17463280
[42]
Juhás P, Cherba D M, Duxbury P M, Punch W F, Billinge S J L. Nature, 2006,440(7084):655. https://www.ncbi.nlm.nih.gov/pubmed/16572167

doi: 10.1038/nature04556 pmid: 16572167
[43]
Li Q, Zhu H, Zheng L, Fan L, Wang N, Rong Y, Ren Y, Chen J, Deng J, Xing X. Nano Lett., 2017,17(12):7892. https://www.ncbi.nlm.nih.gov/pubmed/29161048

doi: 10.1021/acs.nanolett.7b04219 pmid: 29161048
[44]
Li Q, Zhu H, Zheng L, Liu H, Ren Y, Wang N, Chen J, Deng J, Xing X. Inorg. Chem., 2018,57(17):10494. https://www.ncbi.nlm.nih.gov/pubmed/30132659

doi: 10.1021/acs.inorgchem.8b01845 pmid: 30132659
[45]
Zhu H, Yang C, Li Q, Ren Y, Neuefeind J C, Gu L, Liu H, Fan L, Chen J, Deng J, Xing X. Nat. Commun., 2018,9(1):1. https://www.ncbi.nlm.nih.gov/pubmed/29317637

doi: 10.1038/s41467-017-02088-w pmid: 29317637
[46]
Zhu H, Li Q, Yang C, Zhang Q, Ren Y, Gao Q, Wang N, Lin K, Deng J, Chen J, Gu L, Hong J, Xing X. J. Am. Chem. Soc., 2018,140(24):7403. https://www.ncbi.nlm.nih.gov/pubmed/29865794

doi: 10.1021/jacs.8b03232 pmid: 29865794
[47]
Bréger J, Dupré N, Chupas P J, Lee P L, Proffen T, Parise J B, Grey C P. J. Am. Chem. Soc., 2005,127(20):7529. https://www.ncbi.nlm.nih.gov/pubmed/15898804

doi: 10.1021/ja050697u pmid: 15898804
[48]
Key B, Morcrette M, Tarascon J M, Grey C P. J. Am. Chem. Soc., 2011,133(3):503. https://www.ncbi.nlm.nih.gov/pubmed/21171582

doi: 10.1021/ja108085d pmid: 21171582
[49]
Allan P K, Griffin J M, Darwiche A, Borkiewicz O J, Wiaderek K M, Chapman K W, Morris A J, Chupas P J, Monconduit L, Grey C P. J. Am. Chem. Soc., 2016,138(7):2352. https://www.ncbi.nlm.nih.gov/pubmed/26824406

doi: 10.1021/jacs.5b13273 pmid: 26824406
[50]
Stratford J M, Mayo M, Allan P K, Pecher O, Borkiewicz O J, Wiaderek K M, Chapman K W, Pickard C J, Morris A J, Grey C P. J. Am. Chem. Soc., 2017,139(21):7273. https://www.ncbi.nlm.nih.gov/pubmed/28471174

doi: 10.1021/jacs.7b01398 pmid: 28471174
[51]
Saha D, Bøjesen E D, Jensen K M Ø, Dippel A C, Iversen B B. J. Phys. Chem. C, 2015,119(23):13357.
[52]
Zhu H, Li Q, Ren Y, Gao Q, Chen J, Wang N, Deng J, Xing X. Small, 2018,14(13):1703974.
[53]
Li W, Harrington R, Tang Y, Kubicki J D, Aryanpour M, Reeder R J, Parise J B, Phillips B L. Environ. Sci. Technol., 2011,45(22):9687. https://www.ncbi.nlm.nih.gov/pubmed/21988151

pmid: 21988151
[1] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[2] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[3] Bao Li, Lixin Wu. Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid [J]. Progress in Chemistry, 2022, 34(7): 1600-1609.
[4] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[5] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[6] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[7] Xiping Jing. From Solid State Chemistry to Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1049-1059.
[8] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[9] Zhu Yudan, Lu Linghong, Lu Xiaohua**. Reverse Monte Carlo Method for Amorphous Carbon Modeling* [J]. Progress in Chemistry, 2007, 19(11): 1646-1652.