中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1564-1581 DOI: 10.7536/PC200202 Previous Articles   Next Articles

Structure Control of Covalent Organic Frameworks(COFs) and Their Applications in Environmental Chemistry

Anrui Zhang1, Yuejie Ai1,**()   

  1. 1. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
  • Received: Revised: Online: Published:
  • Contact: Yuejie Ai
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21777039); National Key Research and Development Program of China(2017YFA020700); Fundamental Research Funds for the Central Universities(2017YQ001)
Richhtml ( 70 ) PDF ( 6110 ) Cited
Export

EndNote

Ris

BibTeX

Recently, covalent organic frameworks(COFs) materials have received considerable attention by scholars for their superior characteristics of stable and modifiable structure, high specific surface area, large porosity, and easy functionalization. By controlling the pore size, shape and linkage of COFs materials, as well as the post-synthetic modification, the functional COFs materials have excellent performance in broad areas of gas storage and separations, sensors, drug delivery, etc. Especially in the fields of environmental chemistry, the COFs materials are posing noteworthy concerns in their environmental application. This article reviews the structure control, classification of COFs materials and their application in detecting and removing pollutants, including adsorption and catalysis of heavy metal ions, radionuclides, organic and gaseous pollutants. By changing the size and shape of building units, as well as introducing special functional groups and active sites, the interaction between pollutants and COFs materials have been strengthened via hydrogen bonds, π-π interaction, Van der Waals forces, etc. Consequently, the COFs materials have excellent performance in environmental applications. Eventually, the application prospects and future research directions of COFs materials in the field of environmental remediation are prospected, which may be helpful for future related research.

Contents

1 Introduction

2 The structure control and classification of COFs

2.1 Building units

2.2 Linkages

3 Applications of COFs for removing environmental pollutants

3.1 Ionic pollutants

3.2 Organic pollutants

3.3 Gaseous pollutants

4 Conclusion and outlook

Scheme 1 Condensation reaction of COF-1[7]
Scheme 2 Common reversible reactions and diversity of linkages for the construction of COFs. The linkages are highlighted in red
Fig.1 Topology diagrams and polygon shapes for COFs
Scheme 3 Building blocks and structure of ILCOF-1[40]
Fig.2 (a)Building units and structure of TFPT-COF; (b)Spatial structure of TFPT-COF with almost overlapping(AA) original hexagonal lattice(gray: carbon; blue: nitrogen; red; oxygen)[43]
Fig.3 Synthesis of Py-Azine COF via Azine linkage[18]
Fig.4 Synthesis processes of PI-COF 201 and PI-COF 202[51]
Fig.5 The application of QG-COFs in detection and removal of Cu2+ ions. The COFs are synthesized through the covalent polymerization reaction among phenol(Phen), paraformaldehyde(PA), and melamine(MA). The metal-free QG-scaffolded COFs can be quenched by Cu2+ ions and used for the detection and removal of Cu2+ ions[5]
Table 1 Applications of COFs materials in removing ionic pollutants
Fig.6 The hydrogenation of nitrobenzene catalyzed by NC catalyst in N2H4·H2O[82]
Table 2 Applications of diverse COFs in removing organic pollutants
Table 3 Applications of diverse COFs in removing gaseous pollutants
[1]
Nagai A, Guo Z, Feng X, Jin S, Chen X, Ding X, Jiang D. Nat. Commun., 2011,2(48):536.
[2]
Zhang Q P, Sun Y L, Cheng G, Wang Z, Ma H, Ding S Y, Tan B, Bu J H, Zhang C. Chem. Eng. J, 2020,391:123471.
[3]
Tilford R W, Rd M S, Pellechia P J, Lavigne J J. Adv. Mater., 2010,20(14):2741. doi: 10.1002/adma.200800030

pmid: 25213899
[4]
Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012,134(48):19524. doi: 10.1021/ja308278w

pmid: 23153356
[5]
Cai Y, Jiang Y, Feng L, Hua Y, Liu H, Fan C, Yin M, Li S, Lv X, Wang H. Anal Chim Acta, 2019,1057:88.
[6]
O'keeffe M, Yaghi O M. Chem. Rev., 2012,112(2):675. doi: 10.1021/cr200205j

pmid: 21916513
[7]
Côté A P, Benin A I, Ockwig N W, O'keeffe M, Matzger A J, Yaghi O M. Science, 2005,310(5751):1166. doi: 10.1126/science.1120411

pmid: 16293756
[8]
Elkaderi H M, Hunt J R, Mendozacortés J L, Côté A P, Taylor R E, O'keeffe M, Yaghi O M. Science, 2007,316(5822):268.

pmid: 17431178
[9]
Diercks C S, Yaghi O M. Science, 2017,355:6328.
[10]
Spitler E L, Dichtel W R. Nat. Chem, 2010,2(8):672.

pmid: 20651731
[11]
Ding S Y, Wang W. Chem. Soc. Rev, 2013,42(2):548.

pmid: 23060270
[12]
Huang N, Wang P, Jiang D. Nat. Rev. Mater., 2016,1:10.
[13]
Cote A P, El-Kaderi H M, Hiroyasu F, Hunt J R, Yaghi O M. J. Am. Chem. Soc., 2007,129(43):12914.

pmid: 17918943
[14]
Qian C, Xu S Q, Jiang G F, Zhan T G, Zhao X. Chem. - Eur. J., 2016,22(49):17784.

pmid: 27778380
[15]
Zhu Y, Wan S, Jin Y, Zhang W. J. Am. Chem. Soc., 2015,137(43):13772.
[16]
Feng X, Chen L, Dong Y, Jiang D. Chem. Commun., 2011,47(7):1979.
[17]
Chen X, Huang N, Gao J, Xu H, Xu F, Jiang D. Chem. Commun., 2014,50(46):6161.
[18]
Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. J. Am. Chem. Soc., 2017,135(46):17310. doi: 10.1021/ja4103293

pmid: 24182194
[19]
Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J. Am. Chem. Soc., 2016,138(18):5797.
[20]
Alahakoon S B, Thompson C M, Nguyen A X, Occhialini G, McCandless G T, Smaldone R A. Chem. Commun., 2016,52(13):2843.
[21]
Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014,136(45):15885.

pmid: 25360771
[22]
Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016,138(14):4710.
[23]
Xu S Q, Zhan T G, Wen Q, Pang Z F, Zhao X. ACS Macro Lett., 2016,5(1):99.
[24]
Dalapati S, Addicoat M, Jin S, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D. Nat. Commun., 2015,6:7786.
[25]
Liang R R, Zhao X. Org. Chem. Front, 2018,5(22):3341.
[26]
Kahveci Z, Islamoglu T, Shar G A, Ding R, El-Kaderi H M. CrystEngComm, 2013,15(8):1524.
[27]
Feng X, Dong Y, Jiang D. CrystEngComm, 2013,15(8):1508.
[28]
Kandambeth S, Shinde D B, Panda M K, Lukose B, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2013,52(49):13052.
[29]
Kandambeth S, Venkatesh V, Shinde D B, Kumari S, Halder A, Verma S, Banerjee R. Nat. Commun., 2015,6:6786.

pmid: 25858416
[30]
Chen X, Addicoat M, Irle S, Nagai A, Jiang D. J. Am. Chem. Soc., 2013,135(2):546. doi: 10.1021/ja3100319

pmid: 23270524
[31]
Xu H, Gao J, Jiang D. Nat. Chem., 2015,7(11):905.

pmid: 26492011
[32]
Song J R, Sun J, Liu J, Huang Z T, Zheng Q Y. Chem. Commun. (Camb), 2014,50(7):788.
[33]
Lanni L M, Tilford R W, Bharathy M, Lavigne J J. J. Am. Chem. Soc., 2011,133(35):13975.

pmid: 21806023
[34]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011,133(49):19816. doi: 10.1021/ja206846p

pmid: 22026454
[35]
Meng Z, Stolz R M, Mirica K A. J. Am. Chem. Soc., 2019,141(30):11929.

pmid: 31241936
[36]
Uriberomo F J, Hunt J R, Furukawa H, Klöck C, O’keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009,131(13):4570.

pmid: 19281246
[37]
Zhang Y B, Su J, Furukawa H, Yun Y, Gándara F, Duong A, Zou X, Yaghi O M. J. Am. Chem. Soc., 2013,135(44):16336.

pmid: 24143961
[38]
Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. Angew. Chem., Int. Ed., 2014,53(11):2878.
[39]
Liu Y, Ma Y, Zhao Y, Sun X, Gándara F, Furukawa H, Liu Z, Zhu H, Zhu C, Suenaga K, Oleynikov P, Alshammari A S, Zhang X, Terascki O, Yaghi O M. Science, 2016,351(6271):365. doi: 10.1126/science.aad4011

pmid: 26798010
[40]
Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R, El-Kaderi H M. Chem. -Eur. J., 2013,19(10):3324.

pmid: 23386421
[41]
Uriberomo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011,133(30):11478. doi: 10.1021/ja204728y

pmid: 21721558
[42]
Bunck D N, Dichtel W R. J. Am. Chem. Soc., 2013,135(40):14952. doi: 10.1021/ja408243n

pmid: 24053107
[43]
Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci, 2014,5(7):2789.
[44]
Zhongping L, Yongfeng Z, Xiao F, Xuesong D, Yongcun Z, Xiaoming L, Ying M. Chem. - Eur. J., 2015,21(34):12079.

pmid: 26177594
[45]
Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun, 2015,6:8508.
[46]
Li Z J, Ding S Y, Xue H D, Cao W, Wang W. Chem. Commun. (Camb), 2016,52(45):7217.
[47]
Pachfule P, Kandmabeth S, Mallick A, Banerjee R. Chem. Commun., 2015,51(58):11717.
[48]
Fang Q, Wang J, Gu S, Kaspar R B, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. J. Am. Chem. Soc., 2015,137(26):8352.

pmid: 26099722
[49]
Bell V L, Stump B L, Gager H. J. Polym. Sci., Part A:. Polym. Chem., 2010,14:9.
[50]
Fang Q, Zhuang Z, Shuang G, Kaspar R B, Jie Z, Wang J, Qiu S, Yan Y. Nat. Commun., 2014,5:4503.

pmid: 25054211
[51]
Wang T, Xue R, Chen H, Shi P, Lei X, Wei Y, Guo H, Yang W. New J. Chem. 2017, 41, 23:14272.
[52]
Guo J, Xu Y, Jin S, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D. Nat. Commun., 2013,4(1):2736.
[53]
Daugherty M C, Vitaku E, Li R L, Evans A M, Chavez A D, Dichtel W R. Chem. Commun, 2019,55(18):2680.
[54]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008,47(18):3450.
[55]
Wang K, Yang L M, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Angew. Chem. Int. Ed., 2017,56(45):14149.
[56]
Bai C, Zhang M, Li B, Tian Y, Zhang S, Zhao X, Li Y, Wang L, Ma L, Li S. J. Hazard. Mater., 2015,300:368.
[57]
Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S. J. Hazard. Mater., 2016,314:95.
[58]
Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L. ACS Appl. Mater. Interfaces, 2018,10(34):28936.

pmid: 30068077
[59]
Zhuang X, Zhao W, Zhang F, Cao Y, Liu F, Bi S, Feng X. Polym. Chem., 2016,7(25):4176.
[60]
Huang N, Zhai L, Xu H, Jiang D. J. Am. Chem. Soc., 2017,139(6):2428.
[61]
Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 2016,138(9):3031. doi: 10.1021/jacs.5b10754

pmid: 26878337
[62]
Leus K, Folens K, Nicomel N R, Perez J P H, Filippousi M, Meledina M, Dîrtu M M, Turner S, van Tendeloo G, Garcia Y, Du Laing G, van Der Voort P. J. Hazard. Mater., 2018,353:312. doi: 10.1016/j.jhazmat.2018.04.027

pmid: 29679891
[63]
Sun Q, Aguila B, Perman J, Earl L D, Abney C W, Cheng Y, Wei H, Nguyen N, Wojtas L, Ma S. J. Am. Chem. Soc., 2017,139(7):2786. doi: 10.1021/jacs.6b12885

pmid: 28222608
[64]
Li G, Ye J, Fang Q, Liu F. Chem. Eng. J, 2019,370:822.
[65]
Chen W, Yang Z, Xie Z, Li Y, Yu X, Lu F, Chen L. J. Mater. Chem. A, 2019,7(3):998. doi: 10.1039/C8TA10046B
[66]
Lu Q, Ma Y, Li H, Guan X, Yusran Y, Xue M, Fang Q, Yan Y, Qiu S, Valtchev V. Angew. Chem., Int. Ed., 2018,57(21):6042.
[67]
Geng T, Zhang C, Chen G, Ma L, Zhang W, Xia H. Micropor. Mesopor. Mater., 2019,284:468.
[68]
Guo X, Tian Y, Zhang M, Li Y, Wen R, Li X, Li X, Xue Y, Ma L, Xia C, Li S. Chem. Mat., 2018,30(7):2299.
[69]
He L, Liu S, Chen L, Dai X, Li J, Zhang M, Ma F, Zhang C, Yang Z, Zhou R, Chai Z, Wang S. Chem. Sci., 2019,10(15):4293.

pmid: 31057756
[70]
Da H J, Yang C X, Yan X P. Environ. Sci. Technol, 2019,53(9):5212. doi: 10.1021/acs.est.8b06244

pmid: 30933484
[71]
Sun Q, Zhu L, Aguila B, Thallapally P K, Xu C, Chen J, Wang S, Rogers D, Ma S. Nat. Comm., 2019,10(1):1646.
[72]
Li J, Yang X, Bai C, Tian Y, Li B, Zhang S, Yang X, Ding S, Xia C, Tan X, Ma L, Li S. J. Colloid Interface Sci., 2015,437:211.

pmid: 25313486
[73]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S. Adv. Mater., 2018,30(20):1705479.
[74]
Li B, Sun Q, Zhang Y, Abney C W, Aguila B, Lin W, Ma S. ACS Appl. Mater. Interfaces, 2017,9(14):12511. doi: 10.1021/acsami.7b01711

pmid: 28350432
[75]
Xiong X H, Yu Z W, Gong L L, Tao Y, Gao Z, Wang L, Yin W H, Yang L X, Luo F. Adv. Sci., 2019,6(16):1900547.
[76]
Wen R, Li Y, Zhang M, Guo X, Li X, Li X, Han J, Hu S, Tan W, Ma L, Li S. J. Hazard. Mater., 2018,358:273. doi: 10.1016/j.jhazmat.2018.06.059

pmid: 29990815
[77]
Yuan Y, Yang Y, Ma X, Meng Q, Wang L, Zhao S, Zhu G. Adv. Mater., 2018,30(12):1706507.
[78]
Chu S, Majumdar A. Nature, 2012,488(7411):294. doi: 10.1038/nature11475

pmid: 22895334
[79]
Fan S, You S, Wang Y, Lang X, Yu C, Wang S, Li Z, Li W, Liu Y, Zhou Z. J. Chem. Eng. Data, 2019,64(12):5929.
[80]
Comyns A E. Appl. Organomet. Chem 2001,15:12.
[81]
Yan T, Lan Y, Tong M, Zhong C. ACS Sustain. Chem. Eng, 2019,7(1):1220.
[82]
Hu X, Long Y, Fan M, Yuan M, Zhao H, Ma J, Dong Z. Appl. Catal. B-Environ., 2019,244:25.
[83]
Pan F, Guo W, Su Y, Khan N A, Yang H, Jiang Z. Sep. Purif. Technol, 2019,215:582.
[84]
Zhu X, An S, Liu Y, Hu J, Liu H, Tian C, Dai S, Yang X, Wang H, Abney C W, Dai S. AICHE J., 2017,63(8):3470.
[85]
Zhang Y, Hu Y, Zhao J, Park E, Jin Y, Liu Q, Zhang W. J. Mater. Chem. A, 2019,7(27):16364.
[86]
Wang R L, Li D P, Wang L J, Zhang X, Zhou Z Y, Mu J L, Su Z M. Dalton Trans, 2019,48(3):1051. doi: 10.1039/c8dt04458a

pmid: 30601501
[87]
Yao Y, Hu Y, Hu H, Chen L, Yu M, Gao M, Wang S. J. Colloid Interface Sci., 2019,554:376. doi: 10.1016/j.jcis.2019.07.002

pmid: 31306948
[88]
Wang W, Deng S, Ren L, Li D, Wang W, Vakili M, Wang B, Huang J, Wang Y, Yu G. ACS Appl. Mater. Interfaces, 2018, 10, 36:30265.
[89]
Doonan C J, Tranchemontagne D J, Glover T G, Hunt J R, Yaghi O M. Nat. Chem, 2010,2(3):235. doi: 10.1038/nchem.548

pmid: 21124483
[90]
Yang Y, Zhao Z, Yan Y, Li G, Hao C. New J. Chem., 2019,43(23):9274.
[91]
Wang J, Wang J, Zhuang W, Shi X, Du X. J. Chem., 2018,2018:9321347.
[92]
Lee G Y, Lee J, Vo H T, Kim S, Lee H, Park T. Sci Rep, 2017,7(1):557. doi: 10.1038/s41598-017-00738-z

pmid: 28373706
[93]
Liu M, Jiang K, Ding X, Wang S, Zhang C, Liu J, Zhan Z, Cheng G, Li B, Chen H, Jin S, Tan B. Adv. Mater., 2019,31(19):1807865.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[13] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.