中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 978-988 DOI: 10.7536/PC200201 Previous Articles   Next Articles

• Review •

Heterogeneous Fenton Catalytic Oxidation for Water Treatment

Lida Jia1, Qingrui Zhang1,2,**()   

  1. 1. Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
    2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
  • Received: Online: Published:
  • Contact: Qingrui Zhang
  • About author:
    * ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21876145); National Natural Science Foundation of China(51578476)
Richhtml ( 61 ) PDF ( 1430 ) Cited
Export

EndNote

Ris

BibTeX

Advanced oxidation technology(AOPs) is a hot issue in current water treatment research, such as the representative Heterogeneous Fenton catalytic oxidation. It can generate active oxygen species such as hydroxyl radicals(·OH) during the reaction, which attack organic pollutants unselectively and gradually decompose organic macromolecules into small molecules, achieving the efficient removing of toxic and harmful pollutants. Compared with homogeneous Fenton reactions, heterogeneous Fenton reactions have various advantages, such as wide pH response, recyclability of catalysts, and no generation of iron mud. However, considering their intrinsic characteristics and limits of solid-phase catalysts, there are still some problems inhibiting the large-scale application, such as low activity under neutral conditions, low utilization of hydrogen peroxide(H2O2), and low conversion rate of Fe(Ⅲ)/Fe(Ⅱ). This article summarizes the heterogeneous Fenton reaction mechanism involving different active oxygen species as well as various heterogeneous Fenton catalysts and their applications in control of organic pollutants and provides a reference for continuing research on heterogeneous Fenton catalysts.

Contents

1 Introduction

2 Classical Fenton and heterogeneous Fenton reaction

3 Mechanism of the heterogeneous Fenton reaction

3.1 Hydroxyl radical mechanism

3.2 Singlet oxygen mechanism

3.3 High-valent iron species mechanism

4 Development and utilization of heterogeneous Fenton co-catalyst

4.1 Accelerate interface electron migration

4.2 Increase active site

5 Heterogeneous Fenton catalytic oxidation for organic wastewater

5.1 Dye wastewater

5.2 Antibiotic wastewater

5.3 Phenolic wastewater

6 Conclusion and outlook

Fig.1 Mechanisms proposed up to now for the heterogeneous Fenton reaction
Fig.2 Proposed reaction mechanisms involved in the Fh-OA system under visible light irradiation[13]
Fig.3 Schematic diagram of molybdenum-assisted Fenton catalytic reaction[16]
Fig.4 Mechanistic presentation of possible reactions involved in the thermal Fenton reaction(with Simplified Notations Used for the Various Iron Complexes)[7]
Fig.5 Possible oxidative mechanism of CBZ in FePcF16-O-FePcF16/H2O2 system[21]
Fig.6 Schematic illustration for the possible hydroxyl radical generation mechanism in the α-FeOOH-HA/H2O2 system[24]
Fig.7 Organic pollutants degradation in Sed/AA/H2O2 system[30]
Fig.8 Scheme of the possible mechanism for Fe-N/pentlandite/Al2O3/C catalyst in the Fenton reaction[34]
Fig.9 Schematic illustration of the co-catalytic mechanism of MoS2 in AOPs[35]. Copyright 2018, Elsevier
Fig.10 Schematic of SAFe-SBA and AGFe-SBA catalyst synthesis[39]
Fig.11 The possible underlying mechanism of the process: activation
[1]
Fenton H J H . J. Chem. Soc., 1894,65:899. doi: 10.1039/CT8946500899 http://xlink.rsc.org/?DOI=CT8946500899
[2]
Cheng M , Lai C , Liu Y , Zeng G , Huang D , Zhang C , Qin L , Hu L , Zhou C , Xiong W . Coord. Chem. Rev., 2018,368:80.
[3]
Tang S , Wang Z , Yuan D , Zhang Y , Qi J , Rao Y , Lu G , Li B , Wang K , Yin K . Inter. J. Electrochem. Sci., 2020,15:2470.
[4]
吕来(Lv L), 胡春(Hu C) . 化学进展 (Progress in Chemistry), 2017, (9):981. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC170552
[5]
Haber F , Weiss J . Naturwissenschaften, 1932,20:948.
[6]
Zhang M , Dong H , Zhao L , Wang D , Meng D . Sci. Total. Environ., 2019,670:110. doi: 10.1016/j.scitotenv.2019.03.180 https://www.ncbi.nlm.nih.gov/pubmed/30903886

pmid: 30903886
[7]
Stefan H , Bossmann E , Oliveros S , Göb S , Siegwart E . J. Phys. Chem. A, 1998,102:5542. doi: 10.1021/jp980129j https://pubs.acs.org/doi/10.1021/jp980129j
[8]
Lei L , He F . J. Chem. Eng. Jpn., 2003,54(11):1592.
[9]
Yang D , Xiang T U , Dai Y , Shi G , Song Y . Acta Scien. Circum., 2016,36:2460.
[10]
Sun H , Xie G , He D , Zhang L . Appl. Catal. B: Environ., 2019, DOI: 10.1016/j.apcatb.2009.118383.
[11]
Zhang Q , Zhang S , Zhao Z , Liu M , Yin X , Zhou Y , Wu Y , Peng Q . J. Clean. Prod., 2020,255:120297.
[12]
Kwan W P , Voelker B M V . Environ. Sci. Technol., 2002,36:1467. doi: 10.1021/es011109p https://www.ncbi.nlm.nih.gov/pubmed/11999052

pmid: 11999052
[13]
Xu T , Zhu R , Shang H , Xia Y , Liu X , Zhang L . Water. Res., 2019,159:10. doi: 10.1016/j.watres.2019.04.055 https://www.ncbi.nlm.nih.gov/pubmed/31075500

pmid: 31075500
[14]
Yang Z , Qian J , Yu A , Pan B . Proc. Natl. Acad. Sci., 2019,116(14):6659. doi: 10.1073/pnas.1819382116 https://www.ncbi.nlm.nih.gov/pubmed/30872470

pmid: 30872470
[15]
Li X , Liu J , Rykov A I , Han H , Jin C , Liu X , Wang J . Appl. Catal. B: Environ., 2015,179:196.
[16]
Yi Q , Ji J , Shen B , Dong C , Liu J , Zhang J , Xing M . Environ. Sci. Technol., 2019,53(16):9725. doi: 10.1021/acs.est.9b01676 https://www.ncbi.nlm.nih.gov/pubmed/31331171

pmid: 31331171
[17]
Ensing B , Buda F , Gribnau M C M , Baerends E J . J. Am. Chem. Soc., 2004,126:4355. https://www.ncbi.nlm.nih.gov/pubmed/15053625

pmid: 15053625
[18]
Kremer M L . Phys. Chem. Chem. Phys., 1999,1(15):3595.
[19]
Li F , England J , Que L . J. Am. Chem. Soc., 2010,132(7):2134. doi: 10.1021/ja9101908 https://www.ncbi.nlm.nih.gov/pubmed/20121136

pmid: 20121136
[20]
Buda F , Ensing B , Gribnau M C M , Baerends E J . Chem, 2001,7(13):2775.
[21]
Zhou J , Wu F , Zhu Z , Xu T , Lu W . Chem. Eng. J., 2017,328:915. doi: 10.1016/j.cej.2017.07.065 https://linkinghub.elsevier.com/retrieve/pii/S1385894717312111
[22]
Viollier P W . Appl. Geochem., 2000,15(6):785.
[23]
Chen L , Ma J , Li X , Zhang J , Fang J , Guan Y , Xie P . Environ. Sci. Technol., 2011,45(9):3925. doi: 10.1021/es2002748 https://www.ncbi.nlm.nih.gov/pubmed/21469678

pmid: 21469678
[24]
Hou X , Huang X , Jia F , Ai Z , Zhao J , Zhang L . Environ. Sci. Technol., 2017,51(9):5118. https://www.ncbi.nlm.nih.gov/pubmed/28358480

pmid: 28358480
[25]
Hou X , Huang X , Ai Z , Zhao J , Zhang L . J. Hazard. Mater., 2016,310:170. doi: 10.1016/j.jhazmat.2016.01.020 https://www.ncbi.nlm.nih.gov/pubmed/26921510

pmid: 26921510
[26]
Qin Y , Song F , Ai Z , Zhang P , Zhang L . Environ. Sci. Technol., 2015,49(13):7948. https://www.ncbi.nlm.nih.gov/pubmed/26066010

pmid: 26066010
[27]
Deng Y . Langmuir, 1997,13(6):1835.
[28]
Larsen O , Postma D , Jakobsen R . Geochim. Cosmochim. Ac., 2006,70(19):4827.
[29]
Afonso M D S , Morando P J , Blesa M A , Banwart S , Stumm W . J. Colloid. Interf. Sci., 1990,138(1):74.
[30]
Hou X , Huang X , Li M , Zhang Y , Yuan S , Ai Z , Zhao J , Zhang L . Chem. Eng. J., 2018,348:255. doi: 10.1016/j.cej.2018.05.015 https://linkinghub.elsevier.com/retrieve/pii/S1385894718308040
[31]
Hammouda S B , Fourcade F , Assadi A , Soutrel I , Adhoum N , Amrane A , Monser L . Appl. Catal. B: Environ., 2016,182:47.
[32]
Zhuang Y , Shi B . J. Environ. Sci.(China), 2019,85:147.
[33]
Xu T , Zhu R , Zhu G , Zhu J , Liang X , Zhu Y , He H . Appl. Catal. B: Environ., 2017,212:50.
[34]
Ma J , Xu L , Shen C , Wen Y , Hu C , Liu W . Environ. Sci. Technol., 2018,52:3608. https://www.ncbi.nlm.nih.gov/pubmed/29431432

pmid: 29431432
[35]
Xing M , Xu W , Dong C , Bai Y , Zeng J , Yi Z , Zhang J , Yin Y . Chem, 2018,4(6):1359.
[36]
Liu M , Jia L , Zhao Z , Han Y , Li Y , Peng Q , Zhang Q . Chem. Eng. J. 2020,390:124667.
[37]
An S , Zhang G , Wang T , Zhang W , Li K , Song C , Miller J T , Miao S , Wang J , Guo X . ACS Nano, 2018,12(9):9441. doi: 10.1021/acsnano.8b04693 https://www.ncbi.nlm.nih.gov/pubmed/30183258

pmid: 30183258
[38]
Zhou P , Lv F , Li N , Zhang Y , Mu Z , Tang Y , Lai J , Chao Y , Luo M , Lin F , Zhou J , Su D , Guo S . Nano Energy., 2019,56:127.
[39]
Yin Y , Shi L , Li W , Li X , Wu H , Ao Z , Tian W , Liu S , Wang S , Sun H . Environ. Sci. Technol., 2019,53(19):11391. doi: 10.1021/acs.est.9b03342 https://www.ncbi.nlm.nih.gov/pubmed/31436973

pmid: 31436973
[40]
Monteagudo J M , Durán A , Martín I S , Aguirre M . Appl. Catal. B: Environ., 2009,89(3/4):510.
[41]
Monteagudo J M , Durán A , Martín I S , Aguirre M . Appl. Catal. B: Environ., 2010,95(1/2):120. doi: 10.1016/j.apcatb.2009.12.018 https://linkinghub.elsevier.com/retrieve/pii/S092633730900486X
[42]
Soares P A , Batalha M , Souza S M a G U , Boaventura R A R , Vilar V J P . J. Environ. Manage., 2015,152:120. doi: 10.1016/j.jenvman.2015.01.032 https://www.ncbi.nlm.nih.gov/pubmed/25618444

pmid: 25618444
[43]
Hu L , Wang P , Xiong S , Chen S , Yin X , Wang L , Wang H . Appl. Surf. Sci., 2019,467/468:185.
[44]
潘继生(Pan J S), 邓家云(Deng J Y), 张棋翔(Zhang Q X), 阎秋生(Yan Q S) . 广东工业大学学报 (Journal of Guangdong University of Technology), 2019,36(2):70.
[45]
陆清华(Lu Q H), 李沅瑾(Li Y J), 宋凤丹(Song F D), 陈昊(Chen H), 齐随涛(Qi S T) . 化工进展 (Chemical Industry and Engineering Progress), 2018,37(8):3021.
[46]
任南琪(Ren N Q), 周显娇(Zhou X J), 郭婉茜(Guo W Q), 杨珊珊(Yang S S) . 化工学报 (CIESC Journal), 2013,64(1):84.
[47]
Yuan D , Zhang C , Tang S , Li X , Tang J , Rao Y , Wang Z , Zhang Q . Water. Res., 2019,163:114861. doi: 10.1016/j.watres.2019.114861 https://linkinghub.elsevier.com/retrieve/pii/S004313541930627X
[48]
Liu Z , Zhang L , Dong F , Dang J , Wang K , Wu D , Zhang J , Fang J . ACS Applied Nano Materials., 2018,1(8):4170.
[49]
Kumar A , Rana A , Sharma G , Naushad M , Dhiman P , Kumari A , Stadler F J . J. Mol. Liq., 2019,290:111177.
[50]
黄昱(Huang Y), 李小明(Li X M), 杨麒(Yang Q), 曾光明(Zeng G M), 刘精今(Liu J J) . 工业水处理 (Industrial Water Treatment), 2006,26(8):13.
[51]
Wang H , Chen T , Chen D , Zou X , Li M , Huang F , Sun F , Wang C , Shu D , Liu H . Appl. Catal. B:Environ., 2020,260.
[52]
Li Y , Zhang B , Liu X , Zhao Q , Zhang H , Zhang Y , Ning P , Tian S . J. Hazard. Mater., 2018,353:26. https://www.ncbi.nlm.nih.gov/pubmed/29631044

pmid: 29631044
[53]
Yu Y , Huang F , He Y , Liu X , Song C , Xu Y , Zhang Y . Sci. Total. Environ., 2019,654:942. doi: 10.1016/j.scitotenv.2018.11.156 https://www.ncbi.nlm.nih.gov/pubmed/30453264

pmid: 30453264
[54]
侯晓静(Hou X J) . 华中师范大学博士论文 (Doctoral Dissertation of Huazhong Normal University), 2018.
[55]
Hou L , Zhang Q , Jérôme F , Duprez D , Zhang H , Royer S . Appl. Catal. B: Environ. 2014,144:739.
[56]
Gonçalves N P F , Minella M , Fabbri D , Calza P , Malitesta C , Mazzotta E , Prevot A B . Chem. Eng. J., 2020,390(15):124619.
[57]
Rodrigues C S D , Soares O S G P , Pinho M T , Pereira M F R , Madeira L M . Appl. Catal. B: Environ., 2017,219:109.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[13] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[14] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[15] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.