中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1386-1401 DOI: 10.7536/PC200126 Previous Articles   Next Articles

• Review •

NiFe Layered Double Hydroxides for Oxygen Evolution Reaction

Yu Du3, Depei Liu2, Shicheng Yan1,**(), Tao Yu2, Zhigang Zou1,2   

  1. 1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
    2. School of Physics, Nanjing University, Nanjing 210093, China
    3. College of Chengxian, Southeast University, Nanjing 210088, China
  • Received: Revised: Online: Published:
  • Contact: Shicheng Yan
  • Supported by:
    the National Natural Science Foundation of China(51872135, 51572121, 21603098, 21633004); the Natural Science Foundation of Jiangsu Province(BK20151265, BK20151383, BK20150580); the Fundamental Research Funds for the Central Universities(021314380133, 021314380084)
Richhtml ( 111 ) PDF ( 2011 ) Cited
Export

EndNote

Ris

BibTeX

Oxygen evolution reaction(OER) is a crucial half-reaction of energy storage and transfer technologies, such as water splitting, CO2 reduction reaction, and rechargeable metal-air batteries. NiFe layered double hydroxide(NiFe-LDH) has been considered as one of the most promising OER catalysts due to its unique layered structure, high performance, and low cost. However, it is limited by the poor conductivity and insufficient exposure to active sites. Therefore, an efficient modification method can greatly improve the electrocatalytic performance of NiFe-LDH. In this review, several typical modification methods are reviewed in detail, including defects introducing, exfoliating, elements doping, surface decorating, and in-situ growing. These methods can develop the intrinsic activity of NiFe-LDH effectively by exposing more reactive sites, increasing the conductivity, and reducing the kinetic energy barrier. Finally, the challenges and opportunities about modifications of NiFe-LDH are discussed.

Contents

1 Introduction

2 OER electrocatalysis

3 The structure of layered double hydroxides

4 Modification methods

4.1 Defect introducing

4.2 Exfoliating

4.3 Element doping

4.4 Surface decorating

4.5 In-situ growing

4.6 Other methods

5 Conclusion and prospect

Fig.1 Catalysis mechanism of transition metal catalyst for OER[1]
Fig.2 The electron transfer steps during OER[15]
Fig.3 Schematic diagram of the structure of LDHs[7]
Table 1 Recent reports on the OER performances of modified NiFe-LDH electrocatalysts
Fig.4 (a) Schematic illustration of defective NiFe-LDH with oxygen vacancies prepared by fast reducing flame treatment,(b) LSV curves,(c) chronoamperometry curves, SEM of flame-engraved NiFe-LDH(d) before and(e) after stability test[33]
Fig.5
Fig.6 Schematic diagram of the synthesis of v-NiFe LDH with metal ions and oxygen vacancies[37]
Fig.7 (a) Schematic representation of exfoliation of NiFe-LDH,(b) Chronoamperometric measurement with Overpotential at 300 mV,(c) LSV curves[11]
Fig.8 The morphology of (a) porous monolayered NiFe-LDH[50] and (b) sub-3 nm ultrafine monolayered NiFe-LDH[51]
Fig.9 (a) LSV curves and(b) EIS curves with different Ni/Co ratios[39]
Fig.10 (a) Schematic illustration of fabrication process and crystal structure of preoxidized trinary LDH,(b, c) TEM images of NiCoFe-LDH and O-NiCoFe-LDH nanoplate.[71]
Fig.11 OER performance of NiO/NiFe-LDH,(a)LSV curves,(b)Tafel curves,(c) Comparison on the overpotentials at 10 mA·cm-2 and Tafel slopes of recently reported earth-abundant OER catalysts,(d) the chronopotentiometric curve of NiO/NiFe-LDH[43]
Fig.12 (a) TEM,(b) HAADF-STEM and(c) EDS mapping images of sAu/NiFe LDH.(d) Au L3-edge XANES spectra of the experimental and simulated results for sAu/NiFe LDH, and the Au foil.(e) Differential charge densities of NiFe LDH with and without Au atom when one O atom is adsorbed on the Fe site. The iso-surface value is 0.004 e?-3. Yellow and blue contours represent electron accumulation and depletion, respectively[46]
Fig.13 Schematic representation of the synthesis of 3D hierarchical NiFe-LDH@NiCoP/NF electrodes[47]
Fig.14 TEM image and schematic diagram of NiFe-LDH HMS[104]
Table 2 Pros and cons of various modification methods
Fig.15 Schematic representation of NiFe-LDH/GO’s structure and its OER activity[53]
[1]
Yao Y F , Xu Z , Cheng F , Li W C , Cui P X , Xu G Z , Xu S , Wang P , Sheng G D , Yan Y D , Yu Z T , Yan S C , Chen Z X , Zou Z G. Energy Environ. Sci., 2018, 11(2): 407.
[2]
Yang Y , Dang L N , Shearer M J , Sheng H Y , Li W J , Chen J , Xiao P , Zhang Y H , Hamers R J , Jin S. Adv. Energy Mater., 2018, 8(15): 1703189.
[3]
Betley T A , Wu Q , Van Voorhis T , Nocera D G. Inorg. Chem., 2008, 47(6): 1849.
[4]
Subbaraman R , Tripkovic D , Chang K C , Strmcnik D , Paulikas A P , Hirunsit P , Chan M , Greeley J , Stamenkovic V , Markovic N M. Nat. Mater., 2012, 11(6): 550.
[5]
Hong W T , Risch M , Stoerzinger K A , Grimaud A , Suntivich J , Shao-Horn Y. Energy Environ. Sci., 2015, 8(5): 1404.
[6]
Suntivich J , May K J , Gasteiger H A , Goodenough J B , Shao-Horn Y. Science, 2011, 334(6061): 1383.
[7]
Cai Z Y , Bu X M , Wang P , Ho J C , Yang J H , Wang X Y. J. Mater. Chem. A, 2019, 7(10): 5069.
[8]
周伶俐( Zhou L L ), 谢瑞刚(Xie R G), 王林江(Wang L J). 化学进展(Prog. Chem.), 2019, 31(2/3): 275.
[9]
Jamil S , Alvi A R , Khan S R , Janjua M R S A. 化学进展(Prog. Chem.), 2019, 31(2/3): 394.
[10]
Gong M , Dai H J. Nano Res., 2015, 8(1): 23.
[11]
Song F , Hu X. Nat. Commun., 2014, 5(1): 4477.
[12]
Li Z H , Shao M F , An H L , Wang Z X , Xu S M , Wei M , Evans D G , Duan X. , Chem. Sci. 2015, 6(11): 6624.
[13]
Lyons M E , Floquet S. Phys. Chem. Chem. Phys., 2011, 13(12): 5314.
[14]
陈金男( Chen J N ), 何小波(He X B), 银凤翔(Yin F X). 化工进展(Chem. Ind. Eng. Prog.), 2016, 35(09): 2775.
[15]
Tao H B , Xu Y H , Huang X , Chen J Z , Pei L J , Zhang J M , Chen J G , Liu B. Joule, 2019, 3(6): 1498.
[16]
Louie M W , Bell A T. J. Am. Chem. Soc., 2013, 135(33): 12329.
[17]
Klaus S , Cai Y , Louie M W , Trotochaud L , Bell A T. J. Phys. Chem. C, 2015, 119(13): 7243.
[18]
Friebel D , Louie M W , Bajdich M , Sanwald K E , Cai Y , Wise A M , Cheng M J , Sokaras D , Weng T C , Alonso-Mori R. J. Am. Chem. Soc., 2015, 137(3): 1305.
[19]
Lee S , Bai L C , Hu X L. Angew. Chem. Int. Ed., 2020, 59: 1.
[20]
Li N , Bediako D K , Hadt R G , Hayes D , Kempa T J , Von Cube F , Bell D C , Chen L X , Nocera D G. Proc. Natl. Acad. Sci., 2017, 114(7): 1486.
[21]
Chen J Y , Dang L N , Liang H F , Bi W L , Gerken J B , Jin S , Alp E E , Stahl S S. J. Am. Chem. Soc., 2015, 137(48): 15090.
[22]
Sayler R I , Hunter B M , Fu W , Gray H B , Britt R D. J. Am. Chem. Soc., 2020, 142(4): 1838.
[23]
陈春霞( Chen C X ), 徐成华(Xu C H), 冯良荣(Feng L R), 索继栓(Suo J S), 邱发礼(Qiu F L). 化学通报(Chem. Bull.), 2005, (02): 123.
[24]
Zhou D J , Cai Z , Bi Y M , Tian W L , Luo M , Zhang Q , Xie Q X , Wang J D , Li Y P , Kuang Y. Nano Res., 2018, 11(3): 1358.
[25]
Carrasco J A , Sanchis-Gual R , Silva A S D, AbellÁn G, Coronado E. Chem. Mater., 2019, 31(17): 6798.
[26]
Li X M , Hao X G , Wang Z D , Abudula A , Guan G Q. J. Power Sources, 2017, 347: 193.
[27]
Wang Q , O’Hare D. Chem. Rev., 2012, 112(7): 4124.
[28]
王雅( Wang Y ), 方志强(Fang Z Q), 史晓雨(Shi X Y), 楚意月(Chu Y Y), 郝召民(Hao Z M). 华南师范大学学报(自然科学版)(J. South China Norm. Univ.(Nat. Sci. Ed.)), 2018, 29(06): 638.
[29]
徐梦莹( Xu M Y ), 孟玲袆(Meng L Y), 王雅静(Wang Y J), 刘洪涛(Liu H T). 龙岩学院学报(J. Longyan Univ.), 2016, 34(05): 24.
[30]
Liu R , Wang Y Y , Liu D D , Zou Y Q , Wang S Y. Adv. Mater., 2017, 29(30): 1701546.
[31]
Yang M Q , Wang J , Wu H , Ho G W. Small, 2018, 14(15): e1703323.
[32]
Xiong X Y , Cai Z , Zhou D J , Zhang G X , Zhang Q , Jia Y , Duan X X , Xie Q X , Lai S B , Xie T H. Sci. China Mater., 2018, 61(7): 939.
[33]
Zhou D J , Xiong X Y , Cai Z , Han N N , Jia Y , Xie Q X , Duan X X , Xie T H , Zheng X L , Sun X M. Small Methods, 2018, 2(7): 1800083.
[34]
Cai Z , Bi Y M , Hu E Y , Liu W , Dwarica N , Tian Y , Li X L , Kuang Y , Li Y P , Yang X Q. Adv. Energy Mater., 2018, 8(3): 1701694.
[35]
Cai L L , McClellan C J, Koh A L, Li H, Yalon E, Pop E, Zheng X L. Nano Lett., 2017, 17(6): 3854.
[36]
Wang Y Y , Qiao M , Li Y F , Wang S Y. Small, 2018, 14(17): 1800136.
[37]
Yuan Z J , Bak S M , Li P S , Jia Y , Zheng L R , Zhou Y , Bai L , Hu E Y , Yang X Q , Cai Z. ACS Energy Lett., 2019, 4(6): 1412.
[38]
Asnavandi M , Yin Y C , Li Y B , Sun C H , Zhao C. ACS Energy Lett., 2018, 3(7): 1515.
[39]
Long X , Xiao S , Wang Z , Zheng X L , Yang S. Chem. Commun., 2015, 51(6): 1120.
[40]
Zhou D J , Cai Z , Lei X D , Tian W L , Bi Y M , Jia Y , Han N N , Gao T F , Zhang Q , Kuang Y , Pan J Q , Sun X M , Duan X. Adv. Energy Mater., 2018, 8(9): 1701905.
[41]
Dinh K N , Zheng P L , Dai Z F , Zhang Y , Dangol R , Zheng Y , Li B , Zong Y , Yan Q Y. Small, 2018, 14(8): 1703257.
[42]
Xu H , Wang B , Shan C , Xi P , Liu W , Tang Y . ACS Appl. Mater. Interfaces, 2018, 10(7): 6336.
[43]
Gao Z W , Liu J Y , Chen X M , Zheng X L , Mao J , Liu H , Ma T , Li L , Wang W C , Du X W. Adv. Mater., 2019, 31(11): e1804769.
[44]
Wang X X , Yang Y , Diao L C , Tang Y , He F , Liu E Z , He C N , Shi C S , Li J J , Sha J W. ACS Appl. Mater. Interfaces, 2018, 10(41): 35145.
[45]
Chen J D , Zheng F , Zhang S J , Fisher A , Zhou Y , Wang Z Y , Li Y Y , Xu B B , Li J T , Sun S G. ACS Catal., 2018, 8(12): 11342.
[46]
Zhang J , Liu J , Xi L , Yu Y , Chen N , Sun S , Wang W , Lange K M , Zhang B. J. Am. Chem. Soc., 2018, 140(11): 3876.
[47]
Zhang H J , Li X P , Hähnel A , Naumann V , Lin C , Azimi S , Schweizer S L , Maijenburg A W , Wehrspohn R B. Adv. Funct. Mater., 2018, 28(14): 1706847.
[48]
Wang Z Q , Zeng S , Liu W H , Wang X W , Li Q W , Zhao Z G , Geng F X. ACS Appl. Mater. Interfaces, 2017, 9(2): 1488.
[49]
Li X , Wu H J , Wu Y , Kou Z K , Pennycook S J , Wang J. ACS Appl. Nano Mater., 2018, 2(1): 325.
[50]
Zhang X , Zhao Y , Zhao Y , Shi R , Waterhouse G I N, Zhang T. Adv. Energy Mater., 2019, 9(24): 1900881.
[51]
Zhao Y F , Zhang X , Jia X D , Waterhouse G I N, Shi R, Zhang X R, Zhan F, Tao Y, Wu L Z, Tung C H, O’Hare D, Zhang T R. Adv. Energy Mater., 2018, 8(18): 1703585.
[52]
Jia Y , Zhang L Z , Gao G P , Chen H , Wang B , Zhou J Z , Soo M T , Hong M , Yan X C , Qian G R. Adv. Mater., 2017, 29(17): 1700017.
[53]
Shen J , Zhang P , Xie R S , Chen L , Li M T , Li J P , Ji B Q , Hu Z Y , Li J J , Song L X. ACS Appl. Mater. Interfaces, 2019, 11(14): 13545.
[54]
Kong X K , Zhang C L , Hwang S Y , Chen Q W , Peng Z M. Small, 2017, 13(26): 1700334.
[55]
Kang Q , Vernisse L , Remsing R C , Thenuwara A C , Shumlas S L , McKendry I G, Klein M L, Borguet E, Zdilla M J, Strongin D R. J. Am. Chem. Soc., 2017, 139(5): 1863.
[56]
Chen R , Hung S F , Zhou D , Gao J , Yang C , Tao H , Yang H B , Zhang L , Zhang L , Xiong Q , Chen H M , Liu B. Adv. Mater., 2019, 31(41): e1903909.
[57]
Lv L , Yang Z X , Chen K , Wang C D , Xiong Y J. Adv. Energy Mater., 2019, 9(17): 1803358.
[58]
Yu J F , Martin B R , Clearfield A , Luo Z P , Sun L Y. Nanoscale, 2015, 7(21): 9448.
[59]
Zhang C , Antonietti M , Fellinger T P. Adv. Funct. Mater., 2014, 24(48): 7655.
[60]
Kim J H , Shin K , Kawashima K , Youn D H , Lin J , Hong T E , Liu Y , Wygant B R , Wang J , Henkelman G , Mullins C B. ACS Catal., 2018, 8(5): 4257.
[61]
Smith R D , Prevot M S , Fagan R D , Trudel S , Berlinguette C P. J. Am. Chem. Soc., 2013, 135(31): 11580.
[62]
Ge X M , Liu Y Y , Goh F W T, Hor T S A, Zong Y, Xiao P, Zhang Z, Lim S H, Li B, Wang X, Liu Z L. ACS Appl. Mater. Interfaces, 2014, 6(15): 12684.
[63]
Mao S , Wen Z H , Huang T Z , Hou Y , Chen J H. Energy Environ. Sci., 2014, 7(2): 609.
[64]
Jia X D , Zhang X , Zhao J Q , Zhao Y F , Zhao Y X , Waterhouse G I N, Shi R, Wu L Z, Tung C H, Zhang T R. J. Energy Chem., 2019, 34: 57.
[65]
Malik B , Anantharaj S , Karthick K , Pattanayak D K , Kundu S. Catal. Sci. Technol., 2017, 7(12): 2486.
[66]
Xu H , Cao J , Shan C , Wang B , Xi P , Liu W , Tang Y. Angew. Chem. Int. Ed., 2018, 57(28): 8654.
[67]
Zheng Y R , Gao M R , Gao Q , Li H H , Xu J , Wu Z Y , Yu S H. Small, 2015, 11(2): 182.
[68]
Li H , Chen S , Zhang Y , Zhang Q , Jia X , Zhang Q , Gu L , Sun X , Song L , Wang X. Nat. Commun., 2018, 9(1): 2452.
[69]
Wang H , Yang J L , Yang L Y , Zhang G X , Liu C K , Tang H T , Zhao Q H , Pan F. Funct. Mater. Lett., 2015, 11(03): 1850058.
[70]
Yang Q , Li T , Lu Z Y , Sun X M , Liu J F. Nanoscale, 2014, 6(20): 11789.
[71]
Qian L , Lu Z Y , Xu T H , Wu X C , Tian Y , Li Y P , Huo Z Y , Sun X M , Duan X. Adv. Energy Mater., 2015, 5(13): 1500245.
[72]
Bi Y M , Cai Z , Zhou D J , Tian Y , Kuang Y , Li Y P , Sun X M , Duan X. J. Catal., 2018, 358: 100.
[73]
Liao P , Keith J A , Carter E A. J. Am. Chem. Soc., 2012, 134(32): 13296.
[74]
Gao W , Wen D , Ho J C , Qu Y. Mater. Today Chem., 2019, 12: 266.
[75]
Wang J D , Xiao X , Liu Y , Pan K M , Pang H , Wei S Z. J. Mater. Chem. A, 2019, 7(30): 17675.
[76]
Liu G , Wang M H , Wu Y , Li N , Zhao F , Zhao Q , Li J P. Appl. Catal. B, 2020, 260: 118199.
[77]
Cai Z , Zhou D J , Wang M Y , Bak S M , Wu Y S , Wu Z S , Tian Y , Xiong X Y , Li Y P , Liu W. Angew.Chem., 2018, 130(30): 9536.
[78]
Liu H X , Wang Y R , Lu X Y , Hu Y , Zhu G Y , Chen R P , Ma L B , Zhu H F , Tie Z X , Liu J , Jin Z. Nano Energy, 2017, 35: 350.
[79]
Gerken J B , Shaner S E , Massé R C , Porubsky N J , Stahl S S. Energy Environ. Sci., 2014, 7(7): 2376.
[80]
Chen G B , Wang T , Zhang J , Liu P , Sun H J , Zhuang X D , Chen M W , Feng X L. Adv. Mater., 2018, 30(10): 1706279.
[81]
Chen Q Q , Hou C C , Wang C J , Yang X , Shi R , Chen Y. Chem.Commun., 2018, 54(49): 6400.
[82]
Yao L , Gu J , Wang W , Li T , Ma D , Liu Q , Zhang W , Abbas W , Bahadoran A , Zhang D. Nanoscale, 2019, 11(5): 2138.
[83]
Qiu B C , Wang C , Zhang N , Cai L J , Xiong Y J , Chai Y. ACS Catal., 2019, 9(7): 6484.
[84]
Wu X , Yang Y , Zhang T , Wang B , Xu H , Yan X , Tang Y. ACS Appl. Mater. Interfaces, 2019, 11(43): 39841.
[85]
Gao W , Wang C , Ma F Y , Wen D. Electrochim. Acta, 2019, 320: 134608.
[86]
Guo S , Sun W , Yang W , Xu Z , Li Q , Shang J K. ACS Appl.Mater. Interfaces, 2015, 7(47): 26291.
[87]
Chi J , Yu H M , Qin B W , Fu L , Jia J , Yi B L , Shao Z G. ACS Appl. Mater. Interfaces, 2016, 9(1): 464.
[88]
Li P S , Wang M Y , Duan X X , Zheng L R , Cheng X P , Zhang Y F , Kuang Y , Li Y P , Ma Q , Feng Z X , Liu W , Sun X M. Nat. Commun., 2019, 10(1): 1.
[89]
Anantharaj S , Karthick K , Venkatesh M , Simha T V S V, Salunke A S, Ma L, Liang H, Kundu S. Nano Energy, 2017, 39: 30.
[90]
Zhang B , Zhu C , Wu Z , Stavitski E , Lui Y H , Kim T H , Liu H , Huang L , Luan X , Zhou L , Jiang K , Huang W , Hu S , Wang H , Francisco J S. Nano Lett., 2019, 20(1): 136.
[91]
Ning Y Y , Ma D D , Shen Y , Wang F M , Zhang X B. Electrochim. Acta, 2018, 265: 19.
[92]
Wang J , Zhong H X , Qin Y L , Zhang X B. Angew. Chem. Int. Ed., 2013, 52(20): 5248.
[93]
Kibsgaard J , Gorlin Y , Chen Z , Jaramillo T F. J. Am. Chem. Soc., 2012, 134(18): 7758.
[94]
Wang Q , Shang L , Shi R , Zhang X , Zhao Y F , Waterhouse G I , Wu L Z , Tung C H , Zhang T R. Adv. Energy Mater., 2017, 7(21): 1700467.
[95]
Tang C , Wang H S , Wang H F , Zhang Q , Tian G L , Nie J Q , Wei F. Adv. Mater., 2015, 27(30): 4516.
[96]
Yuan H , Kong L , Li T , Zhang Q. Chin. Chem. Lett., 2017, 28(12): 2180.
[97]
Wang W , Liu Y C , Li J , Luo J , Fu L , Chen S L. J. Mater. Chem. A, 2018, 6(29): 14299.
[98]
杜世超( Du S C ), 任志宇(Ren Z Y), 吴君(Wu J), 付宏刚(Fu H G). 高等学校化学学报(Chem. J. Chin. Univ.), 2016, 37(08): 1415
[99]
Wang Z , Jia W , Jiang M L , Chen C , Li Y D. Sci. China Mater., 2015, 58(12): 944.
[100]
Gong M , Li Y G , Wang H L , Liang Y Y , Wu J Z , Zhou J G , Wang J , Regier T , Wei F , Dai H J. J. Am. Chem. Soc., 2013, 135(23): 8452.
[101]
Long X , Li J K , Xiao S , Yan K Y , Wang Z L , Chen H N , Yang S H. Angew. Chem. Int. Ed., 2014, 53(29): 7584.
[102]
Xiang Q , Li F , Chen W L , Ma Y L , Wu Y , Gu X , Qin Y , Tao P , Song C Y , Shang W. ACS Energy Lett., 2018, 3(10): 2357.
[103]
Yu L , Yang J F , Guan B Y , Lu Y , Lou X W. Angew. Chem. Int. Ed., 2018, 57(1): 172.
[104]
Zhang C , Shao M F , Zhou L , Li Z H , Xiao K M , Wei M. ACS Appl. Mater. Interfaces, 2016, 8(49): 33697.
[105]
Hou Y , Lohe M R , Zhang J , Liu S , Zhuang X , Feng X. Energy Environ. Sci., 2016, 9(2): 478.
[106]
Wang J , Zhong H X , Wang Z L , Meng F L , Zhang X B. ACS Nano, 2016, 10(2): 2342.
[107]
Ganesan P , Prabu M , Sanetuntikul J , Shanmugam S. ACS Catal., 2015, 5(6): 3625.
[108]
Liu Q , Jin J , Zhang J Y. ACS Appl. Mater. Interfaces, 2013, 5(11): 5002.
[109]
Shi J L , Hu J M , Luo Y G , Sun X P , Asiri A M. Catal. Sci. Technol., 2015, 5(11): 4954.
[110]
Yang L B , Qi H L , Zhang C X , Sun X P. , Nanotechnology 2016, 27(23): 23LT01.
[111]
Liu M J , Li J H. ACS Appl. Mater. Interfaces, 2016, 8(3): 2158.
[112]
Zhao X , Zhang H T , Yan Y , Cao J H , Li X Q , Zhou S M , Peng Z M , Zeng J. Angew. Chem. Int. Ed., 2017, 56(1): 328.
[113]
张璋( Zhang Z ), 胡先标(Hu X B). 华南师范大学学报(自然科学版)(J. South China Norm. Univ.(Nat. Sci. Ed.)), 2019, 51(05): 18.
[114]
Zhang F S , Wang J W , Luo J , Liu R R , Zhang Z M , He C T , Lu T B. Chem. Sci., 2018, 9(5): 1375.
[115]
Zhou J Q , Yu L , Zhu Q C , Huang C Q , Yu Y. J. Mater. Chem. A, 2019, 7(30): 18118.
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[4] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[7] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[10] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[11] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[12] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[13] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[14] Lingli Zhou, Ruigang Xie, Linjiang Wang. Application of Layered Double Hydroxides in Electrocatalysis [J]. Progress in Chemistry, 2019, 31(2/3): 275-282.
[15] Lulu Huang, Kailing Sun, Mingrui Liu, Jing Li, Shijun Liao. Carbon-Based Cathode Materials for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2019, 31(10): 1406-1416.