中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1294-1306 DOI: 10.7536/PC200121 Previous Articles   Next Articles

• Review •

Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA

Xuechen Liu1,2, Juanjuan Xing1, Haipeng Wang2, Yuanyi Zhou2, Ling Zhang2,**(), Wenzhong Wang2,**()   

  1. 1. School of Material Science & Engineering, Shanghai University, Shanghai 200072, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
  • Contact: Ling Zhang, Wenzhong Wang
  • Supported by:
    the General Program of National Natural Science Foundation of China(51972327, 51772312)
Richhtml ( 92 ) PDF ( 2641 ) Cited
Export

EndNote

Ris

BibTeX

Under the background of limited petroleum reserves, the conversion of renewable biomass to valuable chemicals is undoubtedly an effective strategy to alleviate the current and future resource crisis. The green chemical industry based on biomass platform molecules is gradually replacing traditional petroleum chemistry. The value-added 2,5-furandicarboxylic acid(FDCA) fabricated from the selective oxidation of the bio-based 5-hydroxymethylfurfural(HMF) is considered as an important monomer in green polymer production, such as polyethylene 2,5-furandicarboxylate(PEF). The production of FDCA from HMF generally involves thermal-, electro-, photo-, and bio-catalytic methods. Thermocatalysis is prized for the high yield and purity of FDCA but suffers from the harsh conditions, limiting its application in industry. Electrocatalysis and photocatalysis become promising for HMF conversion to FDCA due to the effective utilization of electric and solar energy to generate abundant reactive species for oxidation. In addition, the biocatalytic processes produce FDCA under mild conditions with high selectivity, which is an important development direction utilizing the biomass resources effectively in the future, although the productivity is unsatisfied at this stage. In this review, we discuss various oxidation routes and the corresponding chemical mechanisms and comprehensively review the current progress on the production of FDCA from HMF, focusing on its development and challenges. Finally, we envisage the future of selective catalytic oxidation of HMF, which might be helpful for the researchers.

Contents

1 Introduction

2 The mechanism of FDCA fabrication by selective HMF oxidation

3 Influence factors of FDCA fabrication by selective HMF oxidation

3.1 The choice of oxidant

3.2 The choice of reaction medium

3.3 Substrate adsorption over the catalysts

4 Thermocatalytic oxidation

4.1 Noble metal catalysts

4.2 Transition metal catalysts

4.3 Metal-free catalysts

4.4 The mechanism of base addition

5 Electrocatalytic oxidation

6 Photocatalytic oxidation

7 Biocatalytic oxidation

8 Conclusion and outlook

Table 1 Basic physical properties of HMF and FDCA
Fig.1 Possible pathways of HMF oxidation into FDCA
Fig.2 Incorporation of 18O in the reaction steps:18O(blue) and observed units in dashed ellipses[1]
Fig.3 (a) Time course for the conversion of HMF over the Au/CNT catalyst;(b) Time course for the conversion of HMF over the Au-Pd/CNT(Au/Pd=1/1) catalyst(Reaction conditions: HMF, 0.50 mmol; HMF/Au(molar ratio), 200/1; H2O, 20 mL; O2, 0.5 MPa; temperature, 373 K)[33]
Fig.4 Overall reaction scheme and proposed mechanism for the oxidation of HMF in aqueous solution in the presence of excess base(OH-) and Pt or Au[26]
Fig.5 Conversion of HMF(%) and yield(%) of oxidation products obtained by using MnO x anodes at 1.6 V(vs RHE)(a) and Pt anodes at 2.0 V(vs RHE)(b) during the course of electrochemical oxidation of HMF in a pH=1 H2SO4 solution containing 20 mM HMF at various amounts of charge passed[56]
Fig.6 SEM images of nanostructured Ni x Co3- x O4 catalysts on 3D NF: (a) NiO,(b) Ni2CoO4,(c) Ni1.5Co1.5O4,(d) NiCo2O4, and(e) Co3O4 [62]
Fig.7 Possible mechanism of the photocatalytic oxidation of HMF into FDCA with the CoPz/g-C3N4 catalyst[82]
Fig.8 Enzymatic synthesis of FDCA via tandem oxidations[86]
[1]
Sajid M , Zhao X , Liu D. , Green Chem. 2018, 20: 5427.
[2]
Bender T A , Dabrowski J A , Gagné M R. Nat. Rev. Chem., 2018, 2: 35.
[3]
Galkin K I , Krivodaeva E A , Romashov L V , Zalesskiy S S , Kachala V V , Burykina J V , Ananikov V P. Angew. Chem. Int. Ed. Engl., 2016, 55: 8338.
[4]
Sun Z , Wang S , Wang X , Jiang Z. Fuel, 2016, 164: 262.
[5]
Lv G , Wang H , Yang Y , Deng T , Chen C , Zhu Y , Hou X. , ACS Catal. 2015, 5: 5636.
[6]
Liu X , Xiao J , Ding H , Zhong W , Xu Q , Su S , Yin D. Chem. Eng. J., 2016, 283: 1315.
[7]
Chidambaram M , Bell A T. Green Chem., 2010, 12: 1253.
[8]
Song D , An S , Lu B , Guo Y , Leng J. Appl.Catal. B-Environ., 2015, 179: 445.
[9]
Yin S , Sun J , Liu B , Zhang Z. J Mater. Chem. A, 2015, 3: 4992.
[10]
Xia Q N , Cuan Q , Liu X H , Gong X Q , Lu G Z , Wang Y Q. Angew. Chem. Int. Ed. Engl., 2014, 53: 9755.
[11]
Auvergne R , Caillol S , David G , Boutevin B , Pascault J P. Chem. Rev., 2014, 114: 1082.
[12]
Swan S H. Environ. Res., 2008, 108: 177.
[13]
Eerhart A J J E, Faaij A P C , Patel M K . Energy Environ. Sci., 2012, 5: 6407.
[14]
Sousa A F , Vilela C , Fonseca A C , Matos M , Freire C S R, Gruter G-J M, Coelho J F J, Silvestre A J D. Polym. Chem., 2015, 6: 5961.
[15]
Mishra D K , Lee H J , Kim J , Lee H S , Cho J K , Suh Y W , Yi Y , Kim Y J. Green Chem., 2017, 19: 1619.
[16]
Nguyen C V , Liao Y T , Kang T C , Chen J E , Yoshikawa T , Nakasaka Y , Masuda T , Wu K C W. Green Chem., 2016, 18: 5957.
[17]
Zhu M M , Du X L , Zhao Y , Mei B B , Zhang Q , Sun F F , Jiang Z , Liu Y M , He H Y , Cao Y. ACS Catal., 2019, 9: 6212.
[18]
Ait Rass H , Essayem N , Besson M. , Green Chem. 2013, 15.
[19]
Chen C T , Nguyen C V , Wang Z Y , Bando Y , Yamauchi Y , Bazziz M T S, Fatehmulla A, Farooq W A, Yoshikawa T, Masuda T, Wu K C W. ChemCatChem, 2018, 10: 361.
[20]
Hansen T S , Sádaba I , García-Suárez E J, Riisager A. Appl. Catal. A-Gen., 2013, 456: 44.
[21]
Miura T , Kakinuma H , Kono T , Matsuhisa H. JP5012348- B2, 2008.
[22]
Araji N , Madjinza D D , Chatel G , Moores A , Jérôme F , De Oliveira Vigier K. Green Chem., 2017, 19: 98.
[23]
Gawade A B , Nakhate A V , Yadav G D. Catal. Today, 2018, 309: 119.
[24]
Tong X , Sun Y , Bai X , Li Y. , RSC Adv.2014, 4: 44307.
[25]
Choudhary H , Nishimura S , Ebitani K. Appl. Catal. A-Gen., 2013, 458: 55.
[26]
Davis S E , Zope B N , Davis R J. Green Chem., 2012, 14: 143.
[27]
Siankevich S , Savoglidis G , Fei Z , Laurenczy G , Alexander D T L, Yan N, Dyson P J. J. Catal., 2014, 315: 67.
[28]
Shuai L , Luterbacher J. ChemSusChem, 2016, 9: 133.
[29]
Ghezali W , De Oliveira Vigier K, Kessas R, Jérôme F. Green Chem., 2015, 17: 4459.
[30]
Liu H , Cao X , Wang T , Wei J , Tang X , Zeng X , Sun Y , Lei T , Liu S , Lin L. J. Ind. Eng. Chem., 2019, 77: 209.
[31]
Tsilomelekis G , Josephson T R , Nikolakis V , Caratzoulas S. ChemSusChem, 2014, 7: 117.
[32]
Sang B , Li J , Tian X , Yuan F , Zhu Y. Mol. Catal., 2019, 470: 67.
[33]
Wan X , Zhou C , Chen J , Deng W , Zhang Q , Yang Y , Wang Y. , ACS Catal. 2014, 4: 2175.
[34]
Nishimura Y , Suda M , Kuroha M , Kobayashi H , Nakajima K , Fukuoka A. , Carbohydr. Res. 2019, 486: 107826.
[35]
Hu L , Lin L , Wu Z , Zhou S , Liu S. Renew. Sust. Energ. Rev., 2017, 74: 230.
[36]
Lu Z , Chen G , Siahrostami S , Chen Z , Liu K , Xie J , Liao L , Wu T , Lin D , Liu Y , Jaramillo T F , Nørskov J K , Cui Y. , Nat. Catal. 2018, 1: 156.
[37]
Zhou C , Deng W , Wan X , Zhang Q , Yang Y , Wang Y. ChemCatChem, 2015, 7: 2853.http://doi.wiley.com/10.1002/cctc.v7.18

doi: 10.1002/cctc.v7.18
[38]
Wang Y , Zhou W , Gao J , Ding Y , Kou K. J. Electroanal. Chem., 2019, 833: 258.
[39]
Yan Y , Miao J , Yang Z , Xiao F X , Yang H B , Liu B , Yang Y. Chem. Soc. Rev., 2015, 44: 3295.
[40]
Liu Z Q , Ma J , Cui Y H , Zhao L , Zhang B P. Appl. Catal.B-Environ., 2010, 101: 74.
[41]
Zhou J , An X , Lan H , Liu H , Qu J. Appl. Surf. Sci., 2020, 509.
[42]
Megías-Sayago C , Chakarova K , Penkova A , Lolli A , Ivanova S , Albonetti S , Cavani F , Odriozola J A. ACS Catal., 2018, 8: 11154.
[43]
Yi G , Teong S P , Zhang Y. , Green Chem. 2016, 18: 979.
[44]
Villa A , Schiavoni M , Campisi S , Veith G M , Prati L. ChemSusChem, 2013, 6: 609.
[45]
Antonyraj C A , Huynh N T T, Park S K, Shin S, Kim Y J, Kim S, Lee K Y, Cho J K. Appl. Catal. A-Gen., 2017, 547: 230.
[46]
Siyo B , Schneider M , Pohl M M , Langer P , Steinfeldt N. , Catal. Lett. 2014, 144: 498.
[47]
Hayashi E , Yamaguchi Y , Kamata K , Tsunoda N , Kumagai Y , Oba F , Hara M. J. Am. Chem. Soc., 2019, 141: 890.
[48]
Han X , Li C , Liu X , Xia Q , Wang Y. , Green Chem. 2017, 19: 996.
[49]
Ventura M , Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A. Green Chem., 2018, 20: 3921.
[50]
Verma S , Nadagouda M N , Varma R S. Sci. Rep., 2017, 7: 13596.
[51]
Sahu R , Dhepe P L. React. Kinet. Mech.Cat., 2014, 112: 173.
[52]
Ventura M , Aresta M , Dibenedetto A. ChemSusChem, 2016, 9: 1096.
[53]
Liu W J , Dang L , Xu Z , Yu H Q , Jin S , Huber G W. ACS Catal., 2018, 8: 5533.
[54]
Chadderdon D J , Xin L , Qi J , Qiu Y , Krishna P , More K L , Li W. , Green Chem. 2014, 16: 3778.
[55]
Vuyyuru K R , Strasser P. Catal. Today, 2012, 195: 144.
[56]
Kubota S R , Choi K S. ChemSusChem, 2018, 11: 2138.
[57]
Cao T , Wu M , Ordomsky V V , Xin X , Wang H , Metivier P , Pera-Titus M. ChemSusChem, 2017, 10: 4851.
[58]
Li K , Sun Y. Chem. Eur. J., 2018, 24: 18258.
[59]
Chernysheva D V , Klushin V A , Zubenko A F , Pudova L S , Kravchenko O A , Chernyshev V M , Smirnova N V. Mendeleev Commun., 2018, 28: 431.
[60]
Grzegorz Grabowski J L a R S. Electrochim. Acta, 1991, 36: 1995.
[61]
Kang M J , Park H , Jegal J , Hwang S Y , Kang Y S , Cha H G. Appl. Catal.B -Environ., 2019, 242: 85.
[62]
Gao L , Bao Y , Gan S , Sun Z , Song Z , Han D , Li F , Niu L. ChemSusChem, 2018, 11: 2547.
[63]
Weidner J , Barwe S , Sliozberg K , Piontek S , Masa J , Apfel U P , Schuhmann W. Beilstein J. Org. Chem., 2018, 14: 1436.
[64]
Nam D H , Taitt B J , Choi K S. ACS Catal., 2018, 8: 1197.
[65]
Taitt B J , Nam D H , Choi K S. ACS Catal., 2018, 9: 660.
[66]
Gao L , Liu Z , Ma J , Zhong L , Song Z , Xu J , Gan S , Han D , Niu L. Appl. Catal.B-Environ., 2020, 261.
[67]
Li W , Jiang N , Hu B , Liu X , Song F , Han G , Jordan T J , Hanson T B , Liu T L , Sun Y. Chem, 2018, 4: 637.
[68]
Chen C W , Ho C T. Agric. Food Chem., 1996, 44: 2078.
[69]
Nosaka Y , Nosaka A Y. Chem. Rev., 2017, 117: 11302.
[70]
Heugebaert T S , Stevens C V , Kappe C O. ChemSusChem, 2015, 8: 1648.
[71]
Zhang H , Feng Z , Zhu Y , Wu Y , Wu T. J. Photochem. Photobiol. A: Chem., 2019, 371: 1.
[72]
Lolli A , Maslova V , Bonincontro D , Basile F , Ortelli S , Albonetti S. Molecules, 2018, 23.
[73]
Yurdakal S , Tek B S , Alagöz O , Augugliaro V , Loddo V , Palmisano G , Palmisano L. ACS Sustain. Chem. Eng., 2013, 1: 456.
[74]
Marcì G , García-López E I, Palmisano L. Catal. Today, 2018, 315: 126.
[75]
Wang H , Zhang X , Xie Y. ACS Nano, 2018, 12: 9648.
[76]
Planas O , Macia N , Agut M , Nonell S , Heyne B. J. Am. Chem. Soc., 2016, 138: 2762.
[77]
Macia N , Bresoli-Obach R , Nonell S , Heyne B. J. Am. Chem. Soc., 2019, 141: 684.
[78]
Iqbal N , Choi S , You Y , Cho E J. Tetrahedron Lett., 2013, 54: 6222.
[79]
Wang H , Jiang S , Chen S , Li D , Zhang X , Shao W , Sun X , Xie J , Zhao Z , Zhang Q , Tian Y , Xie Y. , Adv. Mater. 2016, 28: 6940.
[80]
Wang H , Jiang S , Chen S , Zhang X , Shao W , Sun X , Zhao Z , Zhang Q , Luo Y , Xie Y. Chem. Sci., 2017, 8: 4087.
[81]
Xiao C , Zhang L , Hao H , Wang W. ACS Sustain. Chem. Eng., 2019, 7: 7268.
[82]
Xu S , Zhou P , Zhang Z , Yang C , Zhang B , Deng K , Bottle S , Zhu H. J. Am. Chem. Soc., 2017, 139: 14775.
[83]
Ilkaeva M , Krivtsov I , García-López E I, Marcì G, Khainakova O, García J R, Palmisano L, Díaz E, Ordóñez S. J. Catal., 2018, 359: 212.
[84]
van Deurzen M P J, van Rantwijk F , Sheldon R A . Tetrahedron, 1997, 53: 13183.
[85]
Zhang C , Chang X , Zhu L , Xing Q , You S , Qi W , Su R , He Z. Int. J. Biol. Macromol., 2019, 128: 132.
[86]
Qin Y Z , Li Y M , Zong M H , Wu H , Li N. Green Chem., 2015, 17: 3718.
[87]
Dijkman W P , Fraaije M W. Appl. Environ. Microbiol., 2014, 80: 1082.
[88]
Martin C , Ovalle Maqueo A , Wijma H J , Fraaije M W. Biotechnol Biofuels, 2018, 11: 56.
[89]
Dijkman W P , Binda C , Fraaije M W , Mattevi A. , ACS Catal. 2015, 5: 1833.
[90]
McKenna S M , Mines P , Law P , Kovacs-Schreiner K , Birmingham W R , Turner N J , Leimkühler S , Carnell A J . Green Chem., 2017, 19: 4660.
[91]
Dijkman W P , Groothuis D E , Fraaije M W. Angew. Chem. Int. Ed. Engl., 2014, 53: 6515.
[92]
Krystof M , Perez-Sanchez M , Dominguez de Maria P. ChemSusChem, 2013, 6: 826.
[93]
Yang Z Y , Wen M , Zong M H , Li N. , Catal. Commun. 2020, 139.
[94]
Koopman F , Wierckx N, de Winde J H, Ruijssenaars H J. Bioresour. Technol., 2010, 101: 6291.
[95]
Hossain G S , Yuan H , Li J , Shin H D , Wang M , Du G , Chen J , Liu L. Appl. Environ. Microbiol., 2017, 83.
[96]
Yuan H , Li J , Shin H D , Du G , Chen J , Shi Z , Liu L. , Bioresour. Technol. 2018, 247: 1184.
[97]
Jia H Y , Zong M H , Zheng G W , Li N. ChemSusChem, 2019, 12: 4764.
[98]
Guajardo N , Domínguez de María P. ChemCatChem, 2019, 11: 3128.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[5] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[8] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[9] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[12] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[15] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.