中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 895-905 DOI: 10.7536/PC191226 Previous Articles   Next Articles

• Review •

Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes

Chen Hou1,**(), Wenqiang Chen1, Linhui Fu1, Sufeng Zhang1, Chen Liang2   

  1. 1. College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
    2. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
  • Received: Online: Published:
  • Contact: Chen Hou
  • About author:
  • Supported by:
    Guangxi Key Laboratory of Clean Pulping, Papermaking, and Pollution Control Opening Fund(KF20171)
Richhtml ( 132 ) PDF ( 2876 ) Cited
Export

EndNote

Ris

BibTeX

Covalent organic frameworks(COFs) are a class of crystalline porous organic material, constructed with light elements by reversible covalent bonds. Due to their high surface area, low density, regular channel structure and facile functionalization, COFs have attracted much attention and shown high perspectives in gas adsorption, chemical sensing, heterogeneous catalysis, etc. Recently, COFs have shown potential applications in enzyme immobilization and mimic enzymes. COFs present an attractive category of enzyme immobilization matrix, because the functional groups on COFs can be readily tailored to hold specific interactions between COFs and enzymes. Moreover, the continuous and confined open channels of COFs provide a favorable micro-environment for infiltrating enzymes. Meanwhile, the mimic enzyme features of COFs are explored, COF mimic enzymes are designed either by “from bottom to top” method or post modification strategy. As a result, not only the carrier materials for enzyme immobilization are expanded, but also it provides new ideas for biomimetic catalysis of mimic enzymes. This review focuses on recent advances of COFs immobilized enzyme and COFs mimic enzymes(nanozyme) applied in biocatalysis. Special emphasis is placed on the deliberation of synthetic and functional strategies, immobilization methods of COFs carrier, as well as the design concept, catalytic activity and selectivity of COFs mimic enzymes. Finally, the remaining challenges of COFs in enzyme catalysis and prospects in this field are summarized.

Contents

1 Introduction

2 Application of COFs materials in enzyme catalysis

2.1 COFs as immobilized enzyme carriers

2.2 COFs as mimic enzymes

3 Conclusion and outlook

Fig.1 The synthetic procedure for COF-ETTA- EDDA[37]
Fig.2 Synthesis of CON(TpBD)[41]
Fig.3 (a) Synthesis reaction of COF 1;(b) Illustration of the covalent strategy to bond various biomolecules with COFs[47]
Fig.4 (a) Preparation of SNW-1;(b) Fabrication of cellulase@poly(GMA-EDMA-SNW-1) capillary monolithic column[48]
Table 1 Textural parameters of various porous materials before and after loading of lipase PS as well as the corresponding loading capacity[29]
Fig.5 Schematic illustration of ETTA-TPAL synthesis and the assembly of both GOD and MP-11 into the pores of COFETTA-TPAL[49]
Fig.6 2D COFs containing iron porphyrin used as biomimetic oxidation catalyst[51]
Table 2 Kinetic parameters for the oxidation of substrates by different catalysts[51]
Fig.7 Illustration of the trimerization of DCB to yield CTF-1 by using a microwave-enhanced high-temperature ionothermal method[35]
Table 3 Comparison of the steady-state kinetic fitting parameters V max and K m[24]
Fig.8 Colorimetric sensor for glucose detection using the Fe-COF as the catalyst[24]
Fig.9 PTAZo-Au for colorimetric detection of H2+ [59]
Table 4 Comparison of detection performances of PTAZo-Au and other materials[59]
Fig.10 Synthesis of the copper-modified covalent triazine framework(CCTF)[64]
Table 5 Comparison of several colorimetric methods for Cu2+detection[65]
Fig.11 Synthesis of AuNPs@Tp-Bpy[72]
[1]
丁慧敏(Ding H M), 喻娜(Yu N), 汪成(Wang C) . 中国科学:化学 (Scientia Sinica Chimica), 2016,46(7):625.
[2]
Ennaert T , Aelst J V , Dijkmans J , Clercq R D , Schutyser W , Dusselier M , Verboekend D , Sels B F . Chem. Soc. Rev., 2016,45:584. doi: 10.1039/c5cs00859j https://www.ncbi.nlm.nih.gov/pubmed/26691750

pmid: 26691750
[3]
Cui Y J , Li B , He H J , Zhou W , Chen B L , Qian G D . Acc. Chem. Res., 2016,49:483. https://www.ncbi.nlm.nih.gov/pubmed/26878085

pmid: 26878085
[4]
Das S , Heasman P , Ben T , Qiu S L . Chem. Rev., 2017,117:1515. https://www.ncbi.nlm.nih.gov/pubmed/28035812

pmid: 28035812
[5]
Tan L X , Tan B . Chem. Soc. Rev., 2017,46:3322. doi: 10.1039/c6cs00851h https://www.ncbi.nlm.nih.gov/pubmed/28224148

pmid: 28224148
[6]
Bezzu C G , Carta M , Tonkins A , Jansen J C , Bernardo P , Bazzarelli F , McKeown N B . Adv. Mater., 2012,24:5930. doi: 10.1002/adma.201202393 https://www.ncbi.nlm.nih.gov/pubmed/22961917

pmid: 22961917
[7]
Du R , Zheng Z , Mao N , Zhang N , Hu W P , Zhang J . Adv. Sci., 2015,2:1400006. doi: 10.1002/advs.201400006 http://doi.wiley.com/10.1002/advs.201400006
[8]
Ben T , Ren H , Ma S , Cao D , Lan J , Jing X , Wang W , Xu J , Deng F , Simmons J M , Qiu S , Zhu G . Angew. Chem. Int. Ed., 2009,48:9457. doi: 10.1002/anie.200904637 http://doi.wiley.com/10.1002/anie.200904637
[9]
Kuhn P , Antonietti M , Thomas A . Angew. Chem. Int. Ed., 2008,47:3450. doi: 10.1002/(ISSN)1521-3773 http://doi.wiley.com/10.1002/%28ISSN%291521-3773
[10]
Ding S Y , Wang W . Chem. Soc. Rev., 2013,42:548. doi: 10.1039/c2cs35072f https://www.ncbi.nlm.nih.gov/pubmed/23060270

pmid: 23060270
[11]
Feng X , Ding X S , Jiang D L . Chem. Soc. Rev., 2012,41:6010. doi: 10.1039/c2cs35157a https://www.ncbi.nlm.nih.gov/pubmed/22821129

pmid: 22821129
[12]
周婷(Zhou T), 龚祎凡(Gong Y F), 郭佳(Guo J) . 功能高分子学报 (Journal of Functional Polymers), 2018,31(3):189.
[13]
Côté A P , Benin A I , Ockwig N W , O’Keeffe M , Matzger A J , Yaghi O M . Science, 2005,310:1166. https://www.ncbi.nlm.nih.gov/pubmed/16293756

pmid: 16293756
[14]
Nagai A , Guo Z Q , Feng X , Jin S B , Chen X , Ding X S , Jiang D L . Nat. Commun., 2011,2:536. doi: 10.1038/ncomms1542 https://www.ncbi.nlm.nih.gov/pubmed/22086337

pmid: 22086337
[15]
Uribe-Romo F J , Hunt J R , Furukawa H , Klock C , O’Keeffe M , Yaghi O M . J. Am. Chem. Soc., 2009,131:4570. https://www.ncbi.nlm.nih.gov/pubmed/19281246

pmid: 19281246
[16]
Chan-Thaw C E , Villa A , Prati L , Thomas A . Chem. Eur. J., 2011,17:1052. https://www.ncbi.nlm.nih.gov/pubmed/21226123

pmid: 21226123
[17]
El-Kaderi H M , Hunt J R , Mendoza-Cortés J L , Côté A P , Taylor R E , O’Keeffe M , Yaghi O M . Science, 2007,316:268. doi: 10.1126/science.1139915 https://www.ncbi.nlm.nih.gov/pubmed/17431178

pmid: 17431178
[18]
Ding S Y , Gao J , Wang Q , Zhang Y , Song W G , Su C Y , Wang W . J. Am. Chem. Soc., 2011,133:19816. doi: 10.1021/ja206846p 53aebe2e-129c-4963-95b4-c62a0c87a2d0 http://dx.doi.org/10.1021/ja206846p
[19]
Furukawa H , Yaghi O M . J. Am. Chem. Soc., 2009,131:8875. https://www.ncbi.nlm.nih.gov/pubmed/19496589

pmid: 19496589
[20]
Wan S , Guo J , Kim J , Ihee H , Jiang D L . Angew. Chem. Int. Ed., 2009,48:5439. doi: 10.1002/anie.v48:30 http://doi.wiley.com/10.1002/anie.v48%3A30
[21]
Schmid A , Dordick J S , Hauer B , Kiener A , Wubbolts M , Witholt B . Nature, 2001,409:258. https://www.ncbi.nlm.nih.gov/pubmed/11196655

pmid: 11196655
[22]
Mohamad N R , Marzuki N H C , Buang N A , Huyop F, Wahab R A . Biotechnol Biotec Eq., 2015,29:205. doi: 10.1080/13102818.2015.1008192 http://www.tandfonline.com/doi/abs/10.1080/13102818.2015.1008192
[23]
Wang Q Q , Wei H , Zhang Z Q , Wang E , Dong S J . Trac-Trend. Anal. Chem., 2018,105:218. doi: 10.1016/j.trac.2018.05.012 https://linkinghub.elsevier.com/retrieve/pii/S0165993617304752
[24]
Wang J N , Yang X , Wei T X , Bao J C , Zhu Q S , Dai Z H . ACS Appl. Bio Mater., 2018,1:382. doi: 10.1021/acsabm.8b00104 https://pubs.acs.org/doi/10.1021/acsabm.8b00104
[25]
Mateo C , Palomo J M , Fernandez-Lorente G , Guisan J M , Fernandez-Lafuente R . Enzyme Microb. Tech., 2007,40:1451. doi: 10.1016/j.enzmictec.2007.01.018 https://linkinghub.elsevier.com/retrieve/pii/S0141022907000506
[26]
Rodrigues R C , Ortiz C , Berenguer-Murcia A , Torres R , Fernandez-Lafuente R . Chem. Soc. Rev., 2013,42:6290. https://www.ncbi.nlm.nih.gov/pubmed/23059445

pmid: 23059445
[27]
Vinu A , Murugesan V , Tangermann O , Hartmann M . Chem. Mater., 2004,16:3056. doi: 10.1021/cm049718u https://pubs.acs.org/doi/10.1021/cm049718u
[28]
Song Y P , Sun Q , Aguila B , Ma S Q . Adv. Sci., 2018,10:1002.
[29]
Sun Q , Fu C W , Aguila B , Perman J , Wang S , Huang H Y , Xiao S F , Ma S Q . J. Am. Chem. Soc., 2018,140:984. doi: 10.1021/jacs.7b10642 https://www.ncbi.nlm.nih.gov/pubmed/29275637

pmid: 29275637
[30]
Gao L Z , Zhuang J , Nie L , Zhang J B , Zhang Y , Gu N , Wang T H , Feng J , Yang D L , Perrett S , Yan X Y . Nat. Nanotechnol., 2007,2:577. https://www.ncbi.nlm.nih.gov/pubmed/18654371

pmid: 18654371
[31]
Wang S , Chen W , Liu A L , Hong L , Deng H H , Lin X H . ChemPhysChem, 2012,13:1199. https://www.ncbi.nlm.nih.gov/pubmed/22383315

pmid: 22383315
[32]
Lin Y H , Ren J S , Qu X G . Adv. Mater., 2014,26:4200. doi: 10.1002/adma.201400238 ce451c9f-9fa9-47ab-98ae-686650e61518 http://dx.doi.org/10.1002/adma.201400238
[33]
Song Y J , Qu K G , Zhao C , Ren J S , Qu X G . Adv. Mater., 2010,22:2206. doi: 10.1002/adma.200903783 https://www.ncbi.nlm.nih.gov/pubmed/20564257

pmid: 20564257
[34]
Ai L H , Li L L , Zhang C H , Fu J , Jiang J . Chem. Eur. J., 2013,19:15105. doi: 10.1002/chem.201303051 https://www.ncbi.nlm.nih.gov/pubmed/24150880

pmid: 24150880
[35]
He J , Xu F J , Hu J , Wang S L , Hou X D , Long Z . Microchem. J., 2017,135:91. doi: 10.1016/j.microc.2017.08.009 https://linkinghub.elsevier.com/retrieve/pii/S0026265X17307701
[36]
Kandambeth S , Venkatesh V , Shinde D B , Kumari S , Halder A , Verma S , Banerjee R . Nat. Commun., 2015,6:6786. doi: 10.1038/ncomms7786 https://www.ncbi.nlm.nih.gov/pubmed/25858416

pmid: 25858416
[37]
Sun Q , Aguila B , Lan P C , Ma S Q . Adv. Mater., 2019,31:1900008. doi: 10.1002/adma.v31.19 https://onlinelibrary.wiley.com/toc/15214095/31/19
[38]
Su D , Feng B , Xu P , Zeng Q , Shan B , Song Y G . Anal. Methods., 2018,10:4320. doi: 10.1039/C8AY01386A http://xlink.rsc.org/?DOI=C8AY01386A
[39]
Ni T H , Zhang D W , Wang J , Wang S , Liu H L , Sun B G . Sensor. Actuat. B-Chem., 2018,269:340. doi: 10.1016/j.snb.2018.04.172 https://linkinghub.elsevier.com/retrieve/pii/S0925400518308864
[40]
Li Z , Yang Y W . J. Mater. Chem. B, 2017,5:9278. doi: 10.1039/c7tb02647a https://www.ncbi.nlm.nih.gov/pubmed/32264531

pmid: 32264531
[41]
Kong W F , Wan J X , Namuangruk S , Guo J , Wang C C . Sci. Rep., 2018,8:5529. doi: 10.1038/s41598-018-23744-1 https://www.ncbi.nlm.nih.gov/pubmed/29615680

pmid: 29615680
[42]
Su L J , Zhang Z , Xiong Y H . Nanoscale, 2018,10:20120. https://www.ncbi.nlm.nih.gov/pubmed/30376033

pmid: 30376033
[43]
Wang H P , Jiao F L , Gao F Y , Zhao X Y , Zhao Y , Shen Y H , Zhang Y J , Qian X H . Anal. Bioanal. Chem., 2017,409:2179. doi: 10.1007/s00216-016-0163-z https://www.ncbi.nlm.nih.gov/pubmed/28078417

pmid: 28078417
[44]
Shi C , Deng C , Li Y , Zhang X , Yang P . Proteomics., 2014,14:1457. doi: 10.1002/pmic.201300487 https://www.ncbi.nlm.nih.gov/pubmed/24723515

pmid: 24723515
[45]
Zhao M , Zhang X , Deng C . Chem. Commun., 2015,51:8116. doi: 10.1039/C5CC01908G http://xlink.rsc.org/?DOI=C5CC01908G
[46]
Cheng G , Chen P , Wang Z G , Sui X J , Zhang J L , Ni J Z . Anal. Chim. Acta, 2014,812:65. doi: 10.1016/j.aca.2013.12.035 https://www.ncbi.nlm.nih.gov/pubmed/24491766

pmid: 24491766
[47]
Zhang S N , Zheng Y L , An H D , Aguila B , Yang C X , Dong Y Y , Xie W , Cheng P , Zhang Z J , Chen Y , Ma S Q . Angew. Chem. Int. Ed., 2018,57:16754. doi: 10.1002/anie.v57.51 https://onlinelibrary.wiley.com/toc/15213773/57/51
[48]
Xu S J , Wang Y Y , Li W , Ji Y B . J. Chromatogr. A, 2019,1602:481. https://www.ncbi.nlm.nih.gov/pubmed/31230876

pmid: 31230876
[49]
Wang L , Liang H H , Xu M L , Wang L Y , Xie Y , Song Y H . Sensor. Actuat. B-Chem., 2019,298:126859. doi: 10.1016/j.snb.2019.126859 https://linkinghub.elsevier.com/retrieve/pii/S0925400519310585
[50]
Wang K , Qi D D , Li Y L , Wang T Y , Liu H B , Jiang J Z . Coordin. Chem. Rev., 2017,378:188. doi: 10.1016/j.ccr.2017.08.023 https://linkinghub.elsevier.com/retrieve/pii/S0010854517304010
[51]
Wang X S , Chrzanowski M , Yuan D Q , Sweeting B S , Ma S Q . Chem. Mater., 2014,26:1639. doi: 10.1021/cm403860t https://pubs.acs.org/doi/10.1021/cm403860t
[52]
Xue T , Jiang S , Qu Y , Su Q , Cheng R , Dubin S , Chiu C Y , Kaner R , Huang Y , Duan X . Angew. Chem. Int. Ed., 2012,51:3822. doi: 10.1002/anie.v51.16 http://doi.wiley.com/10.1002/anie.v51.16
[53]
Feng D , Gu Z Y , Li J R , Jiang H L , Wei Z , Zhou H C . Angew. Chem. Int. Ed., 2012,51:10307. doi: 10.1002/anie.201204475 http://doi.wiley.com/10.1002/anie.201204475
[54]
Kuhn P , Antonietti M , Thomas A . Angew. Chem. Int. Ed., 2008,47:3450. doi: 10.1002/(ISSN)1521-3773 http://doi.wiley.com/10.1002/%28ISSN%291521-3773
[55]
Artz J . ChemCatChem., 2018,10:1753. doi: 10.1002/cctc.v10.8 http://doi.wiley.com/10.1002/cctc.v10.8
[56]
Dong, Y M , Zhang J J , Jiang P P , Wang G L , Wu X M , Zhao H , Zhang C . New J. Chem., 2015,39:4141. doi: 10.1039/C5NJ00012B http://xlink.rsc.org/?DOI=C5NJ00012B
[57]
Wu Y Z , Ma Y J , Xu G H , Wei F D , Ma Y S , Song Q , Wang X , Tang T , Song Y Y , Shi M L , Xu X M , Hu Q . Sensor. Actuat. B-Chem., 2017,249:195. doi: 10.1016/j.snb.2017.03.145 https://linkinghub.elsevier.com/retrieve/pii/S0925400517305737
[58]
Tan H L , Ma C J , Gao L , Li Q , Song Y H , Xu F G , Wang T , Wang L . Chem. Eur. J., 2014,20:16377. https://www.ncbi.nlm.nih.gov/pubmed/25332148

pmid: 25332148
[59]
Li W , Li Y , Qian H L , Zhao X , Yang C X , Yan X P . Talanta, 2019,204:224. doi: 10.1016/j.talanta.2019.05.086 https://www.ncbi.nlm.nih.gov/pubmed/31357286

pmid: 31357286
[60]
Zhang Y A , Guo S , Jiang Z R , Mao G B , Ji X H , He Z K . Anal. Chem., 2018,90:9796. doi: 10.1021/acs.analchem.8b01574 https://www.ncbi.nlm.nih.gov/pubmed/30014694

pmid: 30014694
[61]
Miao Y M , Sun X J , Lv J Z , Yan G Q . Anal. Chem., 2019,91:5036. doi: 10.1021/acs.analchem.8b05099 https://www.ncbi.nlm.nih.gov/pubmed/30919612

pmid: 30919612
[62]
Long Y J , Li Y F , Liu Y , Zheng J J , Tang J , Huang C Z . Chem. Commun., 2011,47:11939. doi: 10.1039/c1cc14294a http://xlink.rsc.org/?DOI=c1cc14294a
[63]
Ding S Y , Dong M , Wang Y W , Chen Y T , Wang H Z , Su C Y , Wang W . J. Am. Chem. Soc., 2016,138:3031. doi: 10.1021/jacs.5b10754 https://www.ncbi.nlm.nih.gov/pubmed/26878337

pmid: 26878337
[64]
Xiong Y H , Qin Y M , Su L J , Ye F G . Chem. Eur. J., 2017,23:11037. doi: 10.1002/chem.201701513 https://www.ncbi.nlm.nih.gov/pubmed/28516466

pmid: 28516466
[65]
Xiong Y H , Su L J , He X G , Duan Z H , Zhang Z , Chen Z L , Xie W , Zhu D J , Luo Y H . Sensor. Actuat. B-Chem., 2017,253:384. doi: 10.1016/j.snb.2017.06.167 https://linkinghub.elsevier.com/retrieve/pii/S0925400517311863
[66]
Zhang Y F , Li R , Xue Q W , Li H B , Liu J F . Microchimi. Acta, 2015,182:1677.
[67]
Sadollahkhani A , Hatamie A , Nur O , Willander M , Zargar B , Kazeminezhad I . ACS Appl. Mater. Interfaces., 2014,6:17694. doi: 10.1021/am505480y https://www.ncbi.nlm.nih.gov/pubmed/25275616

pmid: 25275616
[68]
Pan N , Zhu Y , Wu L , Xie Z , Xue F , Peng C . Anal. Methods., 2016,8:7531. doi: 10.1039/C6AY01789D http://xlink.rsc.org/?DOI=C6AY01789D
[69]
Khalil M M H , Shahat A , Radwan A , El-Shahat M F . Sensor. Actuat. B-Chem., 2016,233:272. doi: 10.1016/j.snb.2016.04.079 https://linkinghub.elsevier.com/retrieve/pii/S0925400516305615
[70]
Li J , Ji C , Hou C , Huo D , Zhang S , Luo X , Yang M , Fa H , Deng B . Sensor. Actuat. B-Chem., 2016,223:853. doi: 10.1016/j.snb.2015.10.017 https://linkinghub.elsevier.com/retrieve/pii/S0925400515304822
[71]
Ma X H , Li S H , Pang C H , Xiong Y H , Li J P . Microchim. Acta., 2018,185:546.
[72]
Cui W R , Zhang C R , Jiang W , Liang R P , Wen S H , Peng D , Qiu J D . ACS Sustainable Chem. Eng., 2019,7:9408.
[1] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[4] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[5] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[6] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[7] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[8] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.
[9] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[10] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[11] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[12] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[13] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[14] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[15] Meiyao Tang, Yanyan Wang, He Shen, Guangbo Che. Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis [J]. Progress in Chemistry, 2018, 30(11): 1646-1659.