中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 906-916 DOI: 10.7536/PC191223 Previous Articles   Next Articles

• Review •

Wood-Derived Carbon Functional Materials

Yun Lu1,**(), Jingpeng Li3, Yan Zhang2, Guorui Zhong2, Bo Liu1, Huiqing Wang2,**()   

  1. 1. Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
    2. Department of Polymer, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
    3. China National Bamboo Research Center, Hangzhou 310012, China
  • Received: Online: Published:
  • Contact: Yun Lu, Huiqing Wang
  • About author:
    ** e-mail: (Yun Lu);
  • Supported by:
    National Natural Science Foundation of China(31870535); National Natural Science Foundation of China(51603059)
Richhtml ( 28 ) PDF ( 1036 ) Cited
Export

EndNote

Ris

BibTeX

The wood-based carbon skeleton is derived from natural wood after pyrolysis. The wood-derived carbon inherits the hierarchical structural of the pore morphology and connectivity formed by the long-term evolution of wood. Due to its special structure, the carbon skeleton has huge application potential in the aspects of biological templates, sensors, oil absorbent, nanomaterial preparation, etc. The hierarchical wood-derived carbon skeleton could be further treated as a new type of scaffold, after the micro-/nano- scale modification and secondary regulation of the pores, it has extremely broad application in many innovative fields such as seawater desalination, environmental remediation, energy storage materials and electrochemical catalysis. This article first introduces the hierarchical structure of wood, describes several important stages of structural changes in the process of the wood pyrolysis, and then summarizes the application of wood-derived carbon skeleton as advanced materials in recent years. We also discuss the pros and cons of the functional carbon in the application, and prospect the future research works of wood-based carbon materials. The purposes of this review are to re-examine and functionally develop the wood hierarchical structure and to promote the development of wood as advanced materials.

Contents

1 Introduction

2 The pyrolysis process of wood

3 Porous wood carbon skeleton as bio-template

4 Functional utilization of micro- and nano- hierarchical channels in wood carbon skeleton

4.1 Highly compressible carbon sponge

4.2 The wood matrix derived microreactor

4.3 Water transpiration and desalination of marine

5 Wood-derived carbon skeleton in energy materials

6 Conclusion and outlook

Fig.1 (a) Schematic of wood structure and definition of the three main planes used to describe both gymnosperm and angiosperm specimens[23];(b) illustration of the hierarchical structure of wood showing different levels[5]
Fig.2 Structure evolution during pyrolysis of wood. Left column: X-ray scattering patterns showing in succession the scattering from crystalline cellulose fibrils in wood, and from amorphous structureless carbon, turbostratic carbon, and highly crystalline graphite, respectively, obtained from the pyrolysis of wood. The scattering angle range is from 0.2°~27° at a wavelength λ = 0.154 nm, covering the small-angle (SAXS) and part of the wide-angle (WAXS) region. Right column: Transmission electron micrographs (upper three images) and Raman spectra (lower two graphs, x-axis is the Raman shift in cm-1), demonstrating the transformation of a fibrillar structure into a homogeneous, amorphous material during pyrolysis and the growing carbon crystallites at high temperatures. Middle column: Sketch of the proposed nanostructure (size of the box is about 20 nm) illustrating the loss of fibrillar structure, the formation of tur-bostratic graphite platelets and their crystal growth[1]
Fig.3 (a) Different routes to biomorphic SiC materials and composites by infiltration of a porous carbon precursor[23];(b) microstructure of porous bioSiC obtained from Si vapour infiltrated-pine char[24]
Fig.4 Graphical illustration of the design and fabrication process of the fragile wood carbon and the highly compressible wood carbon sponge[28]
Fig.5 Mechanical compressibility and elasticity of wood-based scaffolds. (a)~(c) Photographs of the wood-based scaffold before compression (a), under compression (b), and after release (c). (d) Stress-strain curves of wood-based scaffolds with different maximum strains of 20%, 40% and 60%, respectively. (e) Stress-strain curve of wood-based scaffolds under cyclic com-pression with a maximum strain of 40%. (f) Height retention of the wood-based scaffold during fifty cycles with a maximum strain of 40%. The inset illustrates the repeated compression of the wood-based scaffold.
Fig.6 (a) Schematic of the microwave heating setup. (b) Image of the heating process taking place and the resulting light emitted from the material. (c) Schematic of metal oxide nanoparticles fabricated within the C-wood substrate by the 3D heating treatment at ≈1400 K for 4 s[29]
Fig.7 Model of the catalytic degradation process in Mn3O4/TiO2/wood matrix as a microreactor; (a) Initial flux and rejection rate of wood matrix with different treatment for filtering MB solution; (b) Flux ratio of Mn3O4/TiO2/wood matrix filtration for 180 min without H2O2 and treated by five times intermittent H2O2 rinse[30]
Fig.8 Graphical illustration of the flexible solar steam generator made from CNT-coated flexible wood membrane[33]
Fig.9 (a) Graphical illustration of the natural tree. (b) Longitudinal wood blocks can be prepared in extremely large scale from natural wood by cutting along the tree growth direction. (c) Reverse-tree design of artificial tree as a high-performance solar steam generation device by surface carbonizing the longitudinal wood block. (d) Photo images of a large, longitudinal surface carbonized wood block that can float on seawater, suggesting its potential application in solar steam generation and water purification in a low-cost and scalable manner[39]. (e) Schematic showing (left) our self-regenerating solar evaporator design, and (right) multidirectional mass transfer in the evaporator[38]
Fig.10 (a) Graphical illustration of the design concept and construction process of the all-wood-structured supercapacitor. (b) Graphical illustration of the design concept of ultrathick 3D electrode using a 3D conductive carbon framework as current collector. (c) The illustration of fabrication procedure of ultrathick LCO cathode by wood templating[40]
Fig.11 The advantages of wood-based 3D thick electrode[40]
Fig.12 Fabrication process of the MgO@WC/Li composite. (a) A schematic of the material design and the subsequent synthesis from natural wood, to WC, MgO@WC, and, finally, to MgO@WC/Li composite within 20 mAh·cm-2 Li. (b)The cor-responding SEM images of wood, WC, MgO@WC and MgO@WC/Li composite, which indicates Li deposited into the WC channels completely[45]
Fig.13 A 3D conductive carbon frameworks as Current Collectors: (a) Morphology and microstructure; (b) Structure stability; (c) Cycling performance of the ultrathick LFP-CF electrode and the conventional thick LFP electrode at 2 mA·cm-2. (d) SEM images for the wood carbon/MnO2 (MnO2@WC) composite. (e) Pictures of the AWC anode, wood separator, MnO2@WC cathode and the all-wood structured all-solid state asymmetric supercapacitor. (f) Electrochemical performances of the anode, cathode and the all-wood structured all-solid state asymmetric supercapacitor[40]
Fig.14 Schematic diagram of the Li-O2 batteries with the CA-wood/Ru cathode. The CA-wood/Ru cathode has open and aligned microchannels which are well preserved after carbonization and activation. The porous framework of carbonized and activated wood acts as a 3D current collector for fast electron transport and a high-surface-area substrate for Ru nanoparticles anchoring. The hierarchically porous, open, and low-tortuosity microchannels allow unimpeded Li-ion transport and oxygen gas diffusion[47]
[1]
Paris O , Fritz-Popovski G , Van Opdenbosch D , Zollfrank C . Adv. Funct. Mater., 2013,23(36):4408. doi: 10.1002/adfm.v23.36 http://doi.wiley.com/10.1002/adfm.v23.36
[2]
Antal M J , Grønli M . Ind. Eng. Chem. Res., 2003,42(8):1619. doi: 10.1021/ie0207919 https://pubs.acs.org/doi/10.1021/ie0207919
[3]
Kercher A K , Nagle D C . Carbon, 2003,41(1):3. doi: 10.1016/S0008-6223(02)00262-2 ae922af7-7e86-4fd8-bb63-45d081d4a3ee http://www.sciencedirect.com/science/article/pii/S0008622302002622
[4]
Evert R F . Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. John Wiley & Sons, 2006.
[5]
Berglund L A , Burgert I . Advanced Materials, 2018,30(19):1704285. doi: 10.1002/adma.v30.19 http://doi.wiley.com/10.1002/adma.v30.19
[6]
Brandt B , Zollfrank C , Franke O , Fromm J , Göken M , Durst K . Acta Biomater., 2010,6(11):4345. doi: 10.1016/j.actbio.2010.05.026 https://www.ncbi.nlm.nih.gov/pubmed/20621631

pmid: 20621631
[7]
Paris O , Zollfrank C , Zickler G A . Carbon, 2005,43(1):53. doi: 10.1016/j.carbon.2004.08.034 46a548ea-4a59-4244-b09b-a3557e105c46 http://www.sciencedirect.com/science/article/pii/S0008622304005214
[8]
Zollfrank C , Fromm J . Holzforschung, 2009,63(2):248.
[9]
Mochida I , Ku C H , Korai Y . Carbon, 2001,39(3):399. doi: 10.1016/S0008-6223(00)00137-8 592fb5be-df0c-4315-aea8-4c2bd626265c http://www.sciencedirect.com/science/article/pii/S0008622300001378
[10]
Bacon R , Tang M M . Carbon, 1964,2(3):221. doi: 10.1016/0008-6223(64)90036-3 https://linkinghub.elsevier.com/retrieve/pii/0008622364900363
[11]
Peng S J , Shao H L , Hu X C . J. Appl. Polym. Sci., 2003,90(7):1941. doi: 10.1002/(ISSN)1097-4628 http://doi.wiley.com/10.1002/%28ISSN%291097-4628
[12]
Kim D Y , Nishiyama Y , Wada M , Kuga S , Okanoet T . Holzforschung, 2001,55(5):521. doi: 10.1515/HF.2001.084 http://www.degruyter.com/view/j/hfsg.2001.55.issue-5/hf.2001.084/hf.2001.084.xml
[13]
Greil P , Lifka T , Kaindl A . J. Eur. Ceram. Soc., 1998,18(14):1961. doi: 10.1016/S0955-2219(98)00156-3 https://linkinghub.elsevier.com/retrieve/pii/S0955221998001563
[14]
Ishimaru K , Hata T , Bronsveld P , Imamura Y . J. Mater. Sci., 2007,42(8):2662. doi: 10.1007/s10853-006-1361-4 http://link.springer.com/10.1007/s10853-006-1361-4
[15]
Tang M M , Bacon R . Carbon, 1964,2(3):211. doi: 10.1016/0008-6223(64)90035-1 https://linkinghub.elsevier.com/retrieve/pii/0008622364900351
[16]
Byrne C E , Nagle D C . Carbon, 1997,35(2):259. doi: 10.1016/S0008-6223(96)00136-4 https://linkinghub.elsevier.com/retrieve/pii/S0008622396001364
[17]
Byrne C E , Nagle D C . Carbon, 1997,35(2):267. doi: 10.1016/S0008-6223(96)00135-2 https://linkinghub.elsevier.com/retrieve/pii/S0008622396001352
[18]
Windeisen E , Strobel C , Wegener G . Wood Sci. Technol., 2007,41(6):523. doi: 10.1007/s00226-007-0146-5 beb44bf9-ded3-43b7-aa6f-d4f41fd9376c http://www.springerlink.com/content/xt4w6l218m2713k2/
[19]
Gosselink R J A , Krosse A M A , Van der Putten J C , Van der KolkJ C , Klerk-Engels B , Van Dam J E G . Ind. Crop. Prod., 2004,19(1):3. doi: 10.1016/S0926-6690(03)00037-2 https://linkinghub.elsevier.com/retrieve/pii/S0926669003000372
[20]
Nishimiya K , Hata T , Imamura Y , Ishihara S . J. Wood Sci., 1998,44(1):56. doi: 10.1007/BF00521875 https://jwoodscience.springeropen.com/articles/10.1007/BF00521875
[21]
Cheng H M , Endo H , Okabe T , Saito K , Zheng G B . J. Porous Mat., 1999,6(3):233. doi: 10.1023/A:1009684014651 http://link.springer.com/10.1023/A:1009684014651
[22]
Zickler G A , Schöberl T , Paris O . Philos. Mag., 2006,86(10):1373. doi: 10.1080/14786430500431390 http://www.tandfonline.com/doi/abs/10.1080/14786430500431390
[23]
Ramírez-Rico J , Martínez-Fernandez J , Singh M . Int. Mater. Rev., 2017,62(8):465. doi: 10.1080/09506608.2017.1354429 https://www.tandfonline.com/doi/full/10.1080/09506608.2017.1354429
[24]
Vogli E , Sieber H , Greil P . J. Eur. Ceram. Soc., 2002,22(14/15):2663. doi: 10.1016/S0955-2219(02)00131-0 https://linkinghub.elsevier.com/retrieve/pii/S0955221902001310
[25]
周明(Zhou M), 王成毓(Wang C Y . 科技导报 (Science & Technology Review), 2016,34(19):111. doi: 10.3981/j.issn.1000-7857.2016.19.019 57115ee3-a6ef-44f2-97fa-cf646dc337da http://www.kjdb.org/CN/abstract/abstract13922.shtml
[26]
张荻(Zhang D), 张书倩(Zhang S Q), 张旺(Zhang W), 顾佳俊(Gu J J), 刘庆雷(Liu Q L), 苏慧兰(Su H L) . 中国材料进展 (Materials China), 2018,37(10):765.
[27]
Lu L L , Lu Y Y , Xiao Z J , Zhang T W , Zhou F , Ma T , Ni Y , Yao H B , Yu S H , Cui Y . Adv.Mater., 2018,30(20):1706745.
[28]
Chen C J , Song J W , Zhu S Z , Li Y J , Kuang Y D , Wan J Y , Kirsch D , Xu L S , Wang Y B , Gao T T , Wang Y L , Huang H , Gan W T , Gong A , Li T , Xie J , Hu L B . Chem, 2018,4(3):544. doi: 10.1016/j.chempr.2017.12.028 https://linkinghub.elsevier.com/retrieve/pii/S2451929417305302
[29]
Zhong G , Xu S M , Chen C J , Jacob Kline D J , Giroux M , Pei Y , Jiao M L , Liu D P , Mi R Y , Xie H , Yang B , Wang C , Zachariah M R , Hu L B . Adv. Funct. Mater., 2019,29(48):1904282.
[30]
Liu G G , Chen D Y , Liu R K , Yu Z , Jiang J L , Liu Y , Hu J B , Chang S S . ACS Sustain. Chem. Eng., 2019,7(7):6782.
[31]
Sinha R K . Modern Plant Physiology. CRC Press, 2004.
[32]
Xue G B , Liu K , Chen Q , Yang P H , Li J , Ding T P , Duan J J , Qi B , Zhou J . ACS Appl. Mater Inter., 2017,9(17):15052.
[33]
Chen C J , Li Y J , Song J W , Yang Z , Kuang Y D , Hitz E , Jia C , Gong A , Jiang F , Zhu J Y , Yang B , Xie J , Hu L B . Adv. Mater., 2017,29(30):1701756.
[34]
Liu K K , Jiang Q S , Tadepalli S , Raliya R , Biswas P , Naik R R , Singamaneni S . ACS Appl. Mater. Inter., 2017,9(8):7675. doi: 10.1021/acsami.7b01307 https://pubs.acs.org/doi/10.1021/acsami.7b01307
[35]
Wang Z , Yan Y T , Shen X P , Jin C D , Sun Q F , Li H Q . J. Mater. Chem. A, 2019,7(36):20706.
[36]
Kartal S N , Green Iii F , Clausen C A . Int. Biodeter. Biodegr., 2009,63(4):490. doi: 10.1016/j.ibiod.2009.01.007 https://linkinghub.elsevier.com/retrieve/pii/S0964830509000213
[37]
Yang X , Cranston E D . Chem. Mater., 2014,26(20):6016. doi: 10.1021/cm502873c https://pubs.acs.org/doi/10.1021/cm502873c
[38]
Kuang Y D , Chen C J , He S M , Hitz E M , Wang Y L , Gan W T , Mi R Y , Hu L B . Adv. Mater., 2019,31(23):1900498. doi: 10.1002/adma.v31.23 https://onlinelibrary.wiley.com/toc/15214095/31/23
[39]
Liu H , Chen C J , Chen G , Kuang Y D , Zhao X P , Song J W , Jia C , Xu X , Hitz E , Xie H , Wang S , Jiang F , Li T , Li Y J , Gong A , Yang R G , Das S , Hu L B . Adv. Energy Mater., 2018,8(8):1701616. doi: 10.1002/aenm.v8.8 http://doi.wiley.com/10.1002/aenm.v8.8
[40]
Chen C J , Hu L B . Acc. Chem. Res., 2018,51(12):3154. doi: 10.1021/acs.accounts.8b00391 https://www.ncbi.nlm.nih.gov/pubmed/30299086

pmid: 30299086
[41]
Li Y J , Fu K K , Chen C J , Luo W , Gao T T , Xu S M , Dai J Q , Pastel G , Wang Y B , Liu B Y , Song J W , Chen Y N , Yang C P , Hu L B . ACS Nano, 2017,11(5):4801. https://www.ncbi.nlm.nih.gov/pubmed/28485923

pmid: 28485923
[42]
Zhang Y , Luo W , Wang C W , Li Y J , Chen C J , Song J W , Dai J Q , Hitz E M , Xu S M , Yang C P , Wang Y B , Hu L B . Proc. Natl. Acad. Sci. U. S. A., 2017,114(14):3584. doi: 10.1073/pnas.1618871114 https://www.ncbi.nlm.nih.gov/pubmed/28320936

pmid: 28320936
[43]
Chen C J , Zhang Y , Li Y J , Dai J Q , Song J W , Yao Y G , Gong Y H , Kierzewski L , Xie J , Hu L B . Energy Environ. Sci., 2017,10(2):538.
[44]
Chen C J , Zhang Y , Li Y J , Kuang Y D , Song J W , Luo W , Wang Y B , Yao Y G , Pastel G , Xie J , Hu L B . Adv. Energy Mater., 2017,7(17):1700595.
[45]
Jin C B , Sheng O W , Lu Y , Luo J M , Yuan H D , Zhang W K , Huang H , Gan Y P , Xia Y , Liang C , Zhang J , Tao X Y . Nano Energy, 2018,45:203.
[46]
Wang Y M , Lin X J , Liu T , Chen H , Chen S , Jiang Z J , Jiang L , Huang J L , Liu M L . Advanced Functional Materials, 2018,28(52):1806207.
[47]
Song H Y , Xu S M , Li Y J , Dai J Q , Gong A , Zhu M W , Zhu C L , Chen C J , Chen Y N , Yao Y G , Liu B Y , Song J W , Pastel G , Hu L B . Adv. Energy Mater., 2018,8(4):1701203.
[48]
Huang J L , Zhao B T , Liu T , Mou J R , Jiang Z J , Jiang L , Li H X , Liu M L . Advanced Functional Materials, 2019,29(31):1902255.
[1] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[2] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[3] Yushan Liu, Wei Li, Peng Wu, Shouxin Liu*. Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method [J]. Progress in Chemistry, 2018, 30(4): 349-364.
[4] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[5] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[6] Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao. Fabrication and Application of New Polymer-Based Materials by Freeze-Drying [J]. Progress in Chemistry, 2014, 26(11): 1832-1839.
[7] Liu Juan, Yang Qinglin*, Xu Jingjing, Liu Kesong*, Guo Lin, Jiang Lei. Adhesive Materials Inspired by Gecko and Mussel [J]. Progress in Chemistry, 2012, (10): 1946-1954.
[8] Li Ang, Zhang Chunling, Sun Guoen, Mu Jianxin. Synthesis and Application of POMSS [J]. Progress in Chemistry, 2012, 24(07): 1309-1323.
[9] Tang Rui, Li Ping. Synthesis and Application of Hierarchically Structured Nano-Alumina [J]. Progress in Chemistry, 2012, 24(0203): 284-293.
[10] Ma Guilin, Xu Jia, Zhang Ming, Wang Xiaowen, Yin Jinling, Xu Jianhong. The Developments of Inorganic Proton Conductors [J]. Progress in Chemistry, 2011, 23(0203): 441-448.
[11] Mi Baoxiu, Wang Haishan, Gao Zhiqiang, Wang Xupeng, Chen Runfeng, Huang Wei. Development of Devices and Materials for Small Molecular Organic Light-emitting Diodes and Hurdles for Applications [J]. Progress in Chemistry, 2011, 23(01): 136-152.
[12] Liu Zheng, Sun Lining, Shi Liyi, Zhang Dengsong. Near-Infrared Lanthanide Luminescence for Functional Materials [J]. Progress in Chemistry, 2011, 23(01): 153-164.
[13] . Molecularly Imprinted Functional Materials Based on Polysaccharides [J]. Progress in Chemistry, 2010, 22(11): 2165-2172.
[14] . Chemocatalytic Transformation of Sugars to Transportation Fuels [J]. Progress in Chemistry, 2010, 22(09): 1844-1851.
[15] Liu Xiangmei He Junhui. Progress in Antifogging Technology —— from Surface Engineering to Functional Surfaces [J]. Progress in Chemistry, 2010, 22(0203): 270-276.
Viewed
Full text


Abstract

Wood-Derived Carbon Functional Materials