中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 917-926 DOI: 10.7536/PC191209 Previous Articles   Next Articles

• Review •

Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide

Meng Dan1,2, Qing Cai2, Jianglai Xiang1,2, Junlian Li1,2, Shan Yu1,2, Ying Zhou1,2,**()   

  1. 1. China State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    2. School of New Energy and Material, Southwest Petroleum University, Chengdu 610500, China
  • Received: Online: Published:
  • Contact: Ying Zhou
  • About author:
  • Supported by:
    National Natural Science Foundation of China(U1862111); Chinese Academic of Science “Light of West China” Program, the Sichuan Provincial International Cooperation Project(2017HH0030); Graduate Student Scientific Research Innovative Project of SWPU(2019cxzd009)
Richhtml ( 52 ) PDF ( 1028 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen sulfide(H2S), owing to the extremely toxic, malodorous and corrosive nature, is a detrimental and undesirable environmental pollutant widely generated in the petrochemical industry. How to handle H2S effectively and convert it into highly-valued products is vital. Photocatalysis is one of the most ideal routes to realize the resource utilization of H2S. Recently, metal sulphides are widely used as desirable photocatalysts for H2 production from waste H2S due to their remarkable visible-light response, proper band structure and strong resistance against H2S poisoning. Here, we summarize the current status, and challenges of this field. The photocatalytic H2S splitting mechanism are overviewed in different reaction medium. Particularly, promising strategies for highly efficient photocatalytic conversion of H2S are systematically discussed, which is aimed to inspire researchers interested in this field. Finally, some challenges in the H2S splitting process and their future research directions are outlined.

Contents

1 Introduction

2 Photocatalytic H2 production from waste H2S over metal sulfides

2.1 Binary metal sulfides

2.2 Ternary and solid-solution metal sulfides

2.3 Metal sulfide composites

3 Conclusion and outlook

Fig.1 (a) Principle of photocatalytic H2S decomposition over a photocatalyst; (b) Potential-pH diagram for a S-H2O system[33]. Copyright 2019, Elsevier.
Fig.2 Relationship between band structure of semiconductor and redox potentials of H2S decomposition
Table 1 Comparison of hydrogen evolution over reported metal sulfide photocatalysts
Fig.3 Photocatalytic H2 production over Pt/CdS(0.20 wt% Pt) in different alkanolamine solutions. Reaction conditions: volume, 100 mL; concentration of H2S, 0.30 M; catalyst, 0.025 g; light source, 300-W Xe lamp with a cutoff filter(λ > 420 nm)[50]. Copyright 2008, Elsevier
Fig.4 (a) SEM images of the Bi2S3 samples; (b) Hydrogen evolution using Bi2S3 samples for H2S decomposition[51]. Copyright 2014, Royal Society of Chemistry
Fig.5 (a) EIS of MnS sample in the 0.1 M Na2S and 0.6 M Na2SO3; (b) Schematic representation of the mechanism for photo-splitting H2S by MnS[54]. Copyright 2017, Journal of Inorganic Materials
Fig.6 Schematic illustration of the possible growth mechanism of ZnIn2 S 4 [ 43 ] . Copyright 2011, Royal Society of Chemistry
Fig.7 The volume of hydrogen gas photocatalytically produced as a function of irradiation time over (a) Fe-Zn-S[52]. Copyright 2018, Elsevier; (b) Fe-Co-Zn-S solid solutions (data were recorded every 10 min under atmospheric pressure at 298 K; the reaction chamber contained 0.2 g photocatalyst powder dispersed in a 50 mL H2S alkaline solution at pH=11)[53]. Copyright 2019, Elsevier
Fig.8 The energy band structure and photocatalytic process of splitting H2S over Cd x In1- x S solid solutions[48]. Copyright 2019, John Wiley and Sons
Fig.9 Comparison of the photocatalytic activity of MnS/In2S3 samples[32]. Reaction conditions: reaction solution, Na2SO3-Na2S(0.6 mol/L-0.1 mol/L) aqueous solution(50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter(λ> 420 nm). Copyright 2017, Elsevier
Fig.10 (a) Long-term cycling experiments over MnS/In2S3_0.7[32]. Copyright 2017, Elsevier. (b) In2S3/CuS composite[55]. Copyright 2018, Elsevier. Reaction conditions: reaction solution, Na2S-Na2SO3 (0.1 M/0.6 M) aqueous solution (50 mL); concentration of H2S, 3 M; catalyst,2.5 mg; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
Fig.11 (a) Photocatalytic process of splitting H2S over MnS/In2S3 composites in Na2S/Na2SO3 reaction solution[32]. Copyright 2017, Elsevier. (b) Photocatalytic H2 production, (c)Long-team stability of over MnS/In2S3/PdS samples[56]. Copyright 2019, Elsevier. Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
Fig.12 (a) UV-vis DRS of MnS/In2S3/PdS samples[56]; (b) Photocatalytic H2 production performance; (c)Cycling test; (d) UV-vis DRS of MnS/(In x Cu1- x )2S3 samples[47]. Copyright 2019, Elsevier. Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
Fig.13 (a)Photocatalytic H2 production; (b) Formation mechanism of MnS/In2S3/MoS2 composites[57]. Copyright 2019, Elsevier Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
Fig.14 Photocatalytic H2 production from H2S splitting over metal sulfides(insert is the corresponding construction of metal sulfides for highly efficient photocatalytic H2 production from H2S)
[1]
Kimura H . Mol. Neurobiol., 2002,26(1):13. doi: 10.1385/MN:26:1:013 b5cb2979-b341-4e12-9c94-fa4dd1451e96 http://www.springerlink.com/content/m7147830766q2420/
[2]
Kabil O , Banerjee R J . Biol. Chem., 2010,285(29):21903. doi: 10.1074/jbc.R110.128363 http://www.jbc.org/lookup/doi/10.1074/jbc.R110.128363
[3]
Khan A A , Schuler M M , Prio M G , Yong S , Coppock R W , Florence L Z , Lillie L E . Toxicol. Appl. Pharm., 1990,103(3):482. doi: 10.1016/0041-008X(90)90321-K https://linkinghub.elsevier.com/retrieve/pii/0041008X9090321K
[4]
Zhang X , Tang Y , Qu S , Da J , Hao Z . ACS Catal., 2015,5(2):1053. doi: 10.1021/cs501476p https://pubs.acs.org/doi/10.1021/cs501476p
[5]
魏国齐(Wei G Q), 谢增业(Xie Z Y), 宋家荣(Song J R), 杨威(Yang W), 王志宏(Wang Z H), 李剑(Li J), 王东良(Wang D L), 李志生(Li Z S), 谢武仁(Xie W R) . 石油勘探与开发 (Petrol. Explor. Dev.), 2015,42(6):2.
[6]
于燕秋(Yu Y Q), 毛红艳(Mao H Y), 裴爱霞(Pei A X) . 天然气工业 (Nat. Gas Ind.), 2011,31(3):22. doi: 10.3787/j.issn.1000-0976.2011.03.006 3d2c8fe6-cdf7-4fbe-9d71-85738af851e6 http://www.trqgy.cn/CN/abstract/abstract11928.shtml
[7]
Ma W G , Wang H , Yu W , Wang X M , Xu Z Q , Zong X , Li C . Angew. Chem. Int. Ed., 2018,57(13):3473. doi: 10.1002/anie.201713029 http://doi.wiley.com/10.1002/anie.201713029
[8]
Reverberi A P , Klemeš J J , Varbanov P S , Fabiano B . J. Clean. Prod., 2016,136:72. doi: 10.1016/j.jclepro.2016.04.139 https://linkinghub.elsevier.com/retrieve/pii/S0959652616304280
[9]
Baykara S Z , Figen E H , Kale A , Veziroglu T N . Int. J. Hydrogen Energy, 2007,32(9):1246. doi: 10.1016/j.ijhydene.2006.07.021 https://linkinghub.elsevier.com/retrieve/pii/S0360319906003673
[10]
Lagas J A , Borsboom J , Berben P H . 1988,86(41):68.
[11]
Monnery W D , Svrcek W Y , Behie L A . Can. J. Chem. Eng., 1993,71(5):711.
[12]
Zhang M , Guan J , Tu Y C , Chen S M , Wang Y , Wang S H , Yu L , Ma C , Deng D H , Bao X H . Energy Environ. Sci., 2020,doi: 10.1039/C9EE03231B. doi: 10.1039/C2EE22486K https://www.ncbi.nlm.nih.gov/pubmed/25035710

pmid: 25035710
[13]
Bhirud A P , Sathaye S D , Waichal R P , Ambekar J D , Park C J , Kale B B . Nanoscale, 2015,7(11):5023. doi: 10.1039/c4nr06435f https://www.ncbi.nlm.nih.gov/pubmed/25697910

pmid: 25697910
[14]
Subramanian E , Baeg J O , Lee S M , Moon S J , Kong K J . Int. J. Hydrogen Energy, 2008,33(22):6586. doi: 10.1016/j.ijhydene.2008.07.016 https://linkinghub.elsevier.com/retrieve/pii/S0360319908008392
[15]
Gurunathan K , Baeg J O , Lee S M , Subramanian E , Moon S J , Kong K J . Int. J. Hydrogen Energy, 2008,33(11):2646. doi: 10.1016/j.ijhydene.2008.03.018 https://linkinghub.elsevier.com/retrieve/pii/S0360319908002942
[16]
Qureshi N M , Shinde M D , Baeg J O , Kale B B . New J. Chem., 2017,41(10):4000. doi: 10.1039/C6NJ04012H http://xlink.rsc.org/?DOI=C6NJ04012H
[17]
Kale B B , Baeg J O , Apte S K , Sonawane R S , Naik S D , Patil K R . J. Mater. Chem., 2007,17(40):4297.
[18]
Patil S S , Patil D R , Apte S K , Kulkarni M V , Ambekar J D , Park C J , Gosavi S W , Kolekar S S , Kale B B . Appl. Catal. B: Environ., 2016,190:75. doi: 10.1016/j.apcatb.2016.02.068 https://linkinghub.elsevier.com/retrieve/pii/S0926337316301655
[19]
Zong X , Han J , Seger B , Chen H , Lu G , Li C , Wang L . Angew. Chem. Int. Ed., 2014: 53(17):4399. doi: 10.1002/anie.201400571 http://doi.wiley.com/10.1002/anie.201400571
[20]
Zong X , Chen H , Seger B , Pedersen T , Dargusch M S , McFarland E W , Li C , Wang L . Energy Environ. Sci., 2014,7(10):3347. doi: 10.1039/C4EE01503G http://xlink.rsc.org/?DOI=C4EE01503G
[21]
Luo T , Bai J , L Ji , Zeng Q , Ji Y, Qiao L, Li X, Zhou. B . Environ. Sci. Technol., 2017,51(21):12965. doi: 10.1021/acs.est.7b03116 https://www.ncbi.nlm.nih.gov/pubmed/28971667

pmid: 28971667
[22]
Qiao L , Bai J , Luo T , Li J , Zhang Y , Xia L , Zhou T , Xu Q , Zhou B . Appl. Catal. B: Environ., 2018,238:491. doi: 10.1016/j.apcatb.2018.07.051 https://linkinghub.elsevier.com/retrieve/pii/S0926337318306593
[23]
Ma W G , Han J F , Yu W , Yang D , Wang H , Zong X , Li C . ACS Catal., 2016,6(9):6198.
[24]
Low J , Yu J , Jaroniec M , Wageh S , Al-Ghamdi A A . Adv. Mater., 2017,29(20):1601694. doi: 10.1002/adma.v29.20 http://doi.wiley.com/10.1002/adma.v29.20
[25]
Li X , Yu J , Jaroniec M . Chem. Soc. Rev., 2016,45(9):2603. doi: 10.1039/c5cs00838g https://www.ncbi.nlm.nih.gov/pubmed/26963902

pmid: 26963902
[26]
Wan W , Zhang R , Ma M , Zhou Y . J. Mater. Chem. A, 2018,6(3):754. doi: 10.1039/C7TA09227J http://xlink.rsc.org/?DOI=C7TA09227J
[27]
Hoffmann M R , Martin S T , Choi W , Bahnemann D W . Chem. Rev., 1995,95(1):69. doi: 10.1021/cr00033a004 https://pubs.acs.org/doi/abs/10.1021/cr00033a004
[28]
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y . Science, 2001,293(5528):269. doi: 10.1126/science.1061051 https://www.ncbi.nlm.nih.gov/pubmed/11452117

pmid: 11452117
[29]
Schneider J , Matsuoka M , Takeuchi M , Zhang J , Horiuchi Y , Anpo M , Bahnemann D W . Chem. Rev., 2014,114(19):9919. doi: 10.1021/cr5001892 https://www.ncbi.nlm.nih.gov/pubmed/25234429

pmid: 25234429
[30]
Kudo A , Miseki Y . Chem. Soc. Rev., 2009,38(1):253. doi: 10.1039/b800489g https://www.ncbi.nlm.nih.gov/pubmed/19088977

pmid: 19088977
[31]
Jang J S , Kim H G , Borse P H , Lee J S . Int. J. Hydrogen Energy, 2007,32(18):4786. doi: 10.1016/j.ijhydene.2007.06.026 https://linkinghub.elsevier.com/retrieve/pii/S0360319907003709
[32]
Dan M , Zhang Q , Yu S , Prakash A , Lin Y , Zhou Y . Appl. Catal. B: Environ., 2017,217:530. doi: 10.1016/j.apcatb.2017.06.019 https://linkinghub.elsevier.com/retrieve/pii/S0926337317305623
[33]
Bedoya-Lora F E , Hankin A , Kelsall G H . Electrochim. Acta, 2019,314:40. doi: 10.1016/j.electacta.2019.04.119 https://linkinghub.elsevier.com/retrieve/pii/S0013468619308072
[34]
Steudel R . Top Curr. Chem., 2003,231:99.
[35]
Steudel R . Top Curr. Chem., 2003,231:127.
[36]
Pandit V U , Arbuj S S , Mulik U P , Kale B B . Environ. Sci. Technol., 2014,48(7):4178. doi: 10.1021/es405150p https://www.ncbi.nlm.nih.gov/pubmed/24597841

pmid: 24597841
[37]
Chaudhari N S , Warule S S , Dhanmane S A , Kulkarni M V , Valant M , Kale B B . Nanoscale, 2013,5(19):9383. doi: 10.1039/c3nr02975a e5255d89-b329-4606-a7ab-aaf19a3fb115 http://dx.doi.org/10.1039/c3nr02975a
[38]
Kale B B , Baeg J O , Yoo J S , Lee S M , Lee C W , Moon S J , Chang H . Can. J. Chem., 2005,83(6/7):527. doi: 10.1139/v05-036 http://www.nrcresearchpress.com/doi/10.1139/v05-036
[39]
Kanade K G , Baeg J O , Kong K J , Kale B B , Lee S M , Moon S J , Lee C W , Yoon S . Int. J. Hydrogen Energy, 2008,33(23):6904. doi: 10.1016/j.ijhydene.2008.08.062 https://linkinghub.elsevier.com/retrieve/pii/S0360319908011257
[40]
Kale B B , Baeg J O , Kong K J , Moon S J , Lee S M , So W W . Int. J. Energy Res., 2010,34(5):404. doi: 10.1002/er.1645 http://doi.wiley.com/10.1002/er.1645
[41]
Naman S A , Grätzel M . J. Photochem. Photobiol. A: Chem., 1994,77(2):249. doi: 10.1016/1010-6030(94)80050-2 https://linkinghub.elsevier.com/retrieve/pii/1010603094800502
[42]
Kale B B , Baeg J O , Lee S M , Chang H , Moon S J , Lee C W . Adv. Funct. Mater., 2006,16(10):1349. doi: 10.1002/(ISSN)1616-3028 http://doi.wiley.com/10.1002/%28ISSN%291616-3028
[43]
Chaudhari N S , Bhirud A P , Sonawane R S , Nikam L K , Warule S S , Rane V H , Kale B B . Green Chem., 2011,13(9):2500. doi: 10.1039/c1gc15515f 0876b96b-c1cc-4d44-bc47-519b756f7e8b http://dx.doi.org/10.1039/c1gc15515f
[44]
Bhirud A , Chaudhari N , Nikam L , Sonawane R , Patil K , Baeg J O , Kale B B . Int. J. Hydrogen Energy, 2011,36(18):11628. doi: 10.1016/j.ijhydene.2011.06.061 https://linkinghub.elsevier.com/retrieve/pii/S0360319911015333
[45]
Kale B B , Baeg J O , Kong K J , Moon S J , Nikam L K , Patil K R . J. Mater. Chem., 2011,21(8):2624.
[46]
Liu X , Liang X , Wang P , Huang B , Qin X , Zhang X , Dai Y . Appl. Catal. B: Environ., 2017,203:282. doi: 10.1016/j.apcatb.2016.10.040 https://linkinghub.elsevier.com/retrieve/pii/S0926337316308037
[47]
Dan M , Wei S , Doronkin D E , Li Y , Zhao Z , Yu S , Grunwaldt J D , Lin Y , Zhou Y . Appl. Catal. B: Environ., 2019,243:790. doi: 10.1016/j.apcatb.2018.11.016 https://linkinghub.elsevier.com/retrieve/pii/S092633731831066X
[48]
Dan M , Prakash A , Cai Q , Xiang J , Ye Y , Li Y , Yu S , Lin, Y , Zhou Y . Sol. RRL, 2019,3(1):1800237. doi: 10.1002/solr.v3.1 http://doi.wiley.com/10.1002/solr.v3.1
[49]
Borgarello E , Kalyanasundaram K , Grätzel M , Pelizzetti E . Helv. Chim. Acta, 1982,65(1):243. doi: 10.1002/hlca.19820650123 http://doi.wiley.com/10.1002/hlca.19820650123
[50]
Ma G , Yan H , Shi J , Zong X , Lei Z , Li C . J. Catal, 2008,260(1):134. doi: 10.1016/j.jcat.2008.09.017 https://linkinghub.elsevier.com/retrieve/pii/S0021951708003503
[51]
Kawade U V , Panmand R P , Sethi Y A , Kulkarni, M V , Apte S K , Naik S D , Kale B B . RSC Adv., 2014,4(90):49295. doi: 10.1039/C4RA07143C http://xlink.rsc.org/?DOI=C4RA07143C
[52]
Lashgari M , Ghanimati M . J. Hazard. Mater., 2018,345:10. doi: 10.1016/j.jhazmat.2017.10.062 https://www.ncbi.nlm.nih.gov/pubmed/29128722

pmid: 29128722
[53]
Lashgari M , Ghanimati M . Chem. Eng. J., 2019,358:153. doi: 10.1016/j.cej.2018.10.011 https://linkinghub.elsevier.com/retrieve/pii/S1385894718319521
[54]
淡猛(Dan M), 张骞(Zhang Q), 钟云倩(Zhong Y Q), 周莹(Zhou Y) . 无机材料学报 (J. Inorg. Mater.), 2017,32(12):1308. doi: 10.15541/jim20170104 9edf2dc2-bacf-49e9-b5b5-5768e0fb084d http://www.jim.org.cn/CN/abstract/abstract13721.shtml
[55]
Prakash A , Dan M , Yu S , Wei S , Li Y , Wang F , Zhou Y . Sol. Energy Mater. Sol. C., 2018,180:205. doi: 10.1016/j.solmat.2018.03.011 https://linkinghub.elsevier.com/retrieve/pii/S0927024818301144
[56]
Li Y , Yu S , Doronkin D E , Wei S , Dan M , Wu F , Ye L , Grunwaldt J D , Zhou Y . J. Catal., 2019,373:48. doi: 10.1016/j.jcat.2019.03.021 https://linkinghub.elsevier.com/retrieve/pii/S0021951719301290
[57]
Dan M , Xiang J , Wu F , Yu S , Cai Q , Ye L , Ye Y , Zhou Y . Appl. Catal. B: Environ., 2019,256:117870. doi: 10.1016/j.apcatb.2019.117870 https://linkinghub.elsevier.com/retrieve/pii/S0926337319306162
[58]
Li Z , Zhang Q , Dan M , Guo Z , Zhou Y . Mater. Lett., 2017,201:118. doi: 10.1016/j.matlet.2017.05.002 https://linkinghub.elsevier.com/retrieve/pii/S0167577X1730719X
[59]
Wang F , Wei S , Zhang Z , Patzke G R , Zhou Y . Phys. Chem. Chem. Phys., 2016,18(9):6706. doi: 10.1039/c5cp06835e https://www.ncbi.nlm.nih.gov/pubmed/26875868

pmid: 26875868
[60]
Wei S , Wang F , Dan M , Zeng K , Zhou Y . Appl. Surf. Sci., 2017,422:990.
[61]
Wang F , Li P , Wei S , Guo J , Dan M , Zhou Y . Appl. Surf. Sci., 2018,445:568. doi: 10.1016/j.apsusc.2018.03.198 https://linkinghub.elsevier.com/retrieve/pii/S0169433218308857
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[6] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[7] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[8] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[9] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[10] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[13] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[14] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[15] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.