中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 752-760 DOI: 10.7536/PC191121 Previous Articles   Next Articles

• Review •

Total Synthesis of Stemona Alkaloids

Xiaoxiao Wu1,3, Kaiqing Ma2,**()   

  1. 1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
    2. Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
    3. College of Chemistry and Chemical Engineering, Shanxi University,Taiyuan 030006, China
  • Received: Revised: Online: Published:
  • Contact: Kaiqing Ma
  • Supported by:
    the Natural Science Foundation of Shanxi Province(201901D111012); Key R&D Program of Shanxi Province(201803D421059)
Richhtml ( 20 ) PDF ( 1202 ) Cited
Export

EndNote

Ris

BibTeX

Stemona alkaloids are a class of alkaloids isolated from the roots of Stemona sessilifolia and its related plants. In terms of molecular structure, stemona alkaloids generally have [1, 2-b]pyrrolo[1, 2-a]azepine as the core structure. The substitutions at different positions on the core scaffold afford various complex structures which exhibit many important biological activities. Therefore, the research on the total synthesis of the stemona alkaloids has attracted the attention of chemists worldwide. However, due to the polycyclic structure and multiple chiral centers in the structure of stemona alkaloids, the total synthesis of stemona alkaloids is extremely challenging. In recent years, chemists have developed the reactions with high enantioselectivity and tandem reactions to complete the total synthesis of the stemona alkaloids, which has laid a solid foundation for further research and development of the stemona alkaloids. Based on the relevant research of our research group, this paper reviews the recent effort on the total synthesis of various types of stemona alkaloids.

Contents

1 Introduction
2 The synthesis of hemiterpenoidpyrrolidine-class stemona alkaloids
3 The synthesis of monoterpenoid pyrrolidine-class stemona alkaloids

3.1 Protostemonine-type stemona alkaloids

3.2 Stemonamine-type stemona alkaloids

3.3 Stemofoline-type stemona alkaloids

3.4 Stenine-type stemona alkaloids

3.5 Tuberostemoamide-type stemona alkaloids

4 Conclusion and outlook
Scheme 1 Synthesis of stemoamide 7(Chida group)[18]
Scheme 2 Synthesis of stemonine 12(Chida group)[18]
Scheme 3 Synthesis of(+)-parvineostemonine(19) and its enantiomer(20)(Gaich group)[21]
Scheme 4 Synthesis of stemaphylline 25(Leonori and Aggarwal group)[23]
Scheme 5 Synthesis of saxorumamide and isosaxorumamide(Chida group)[18]
Scheme 6 Synthesis of stemonamine(35)(Shindo group)[24]
Scheme 7 Synthesis of the core structure 43 of stemofolin(Fukuyama group)[30]
Scheme 8 Scheme 8 Synthesis of (+)-methoxystemofoline and (+)-isomethoxystemofoline(Huang group)[31]
Scheme 9 Synthesis of Neostenine(56)(Chida group)[33]
Scheme 10 Synthesis of the core structure 61 of Stenine(Booker-Milburn group)[34]
Scheme 11 Synthesis of sessilifoliamide A(68) and tuberostemoamide(69)(Wang group)[35]
Scheme 12 Synthesis of bisdehydroneostemoninine(76) and bisdehydrostemoninine(77)(Dai group)[13]
[1]
Wang F P , Chen Q H. Nat. Prod. Commun., 2014,9: 1809. ef814d2c-0db5-45e0-a2b9-a6cafa5593afWOS:000346892700038
[2]
Pilli R A , Rosso G B, de Oliveira M d C F. Nat. Prod. Rep., 2010,27: 1908. https://www.ncbi.nlm.nih.gov/pubmed/21042634

pmid: 21042634
[3]
Huang S Z, Kong F D, Ma Q Y, Guo Z K, Zhou L M, Wang Q, Dai H F, Zhao Y X . [J]. Nat. Prod., 2016,79: 2599.
[4]
Dong J L, Yang Z D, Zhou S Y, Yu H T, Yao X J, Xue H Y , Shu Z M. Phytochemistry Lett., 2017,19: 259.
[5]
Lin L G, Zhong Q X, Cheng T Y, Tang C P, Ke C Q, Lin G, Ye Y . [J]. Nat. Prod., 2006,69: 1051.
[6]
Chanmahasathien W, Ohnuma S, Ambudkar SV, Limtrakul P . Planta Med., 2011,77: 1990. https://www.ncbi.nlm.nih.gov/pubmed/21786221

doi: 10.1055/s-0031-1280054 pmid: 21786221
[7]
Chanmahasathien W, Ampasavate C, Greger H, Limtrakul P . Phytomedicine, 2011,18: 199.
[8]
Hu Z X, Tang H Y, Guo J, Aisa H A, Zhang Y, Hao X J . Tetrahedron, 2019,75: 1711. https://linkinghub.elsevier.com/retrieve/pii/S0040402018314546

doi: 10.1016/j.tet.2018.11.064
[9]
Li Y Y, Wang Y Y, Taniguchi T, Kawakami T, Baba T, Ishibashi H , Mukaida N. Int J Cancer., 2010,127: 474. https://www.ncbi.nlm.nih.gov/pubmed/19921695

pmid: 19921695
[10]
Frankowski K J, Setola V, Evans J M, Neuenswander B, Roth B L , Aube J. Proc. Natl. Acad. Sci. U S A., 2011,108: 6727. https://www.ncbi.nlm.nih.gov/pubmed/21368188

doi: 10.1073/pnas.1016558108 pmid: 21368188
[11]
Liu X Y , Wang F P. Nat. Prod. Commun., 2015,10: 1093. https://www.ncbi.nlm.nih.gov/pubmed/26197559

pmid: 26197559
[12]
Brito G A , Pirovani R V. Org. Prep. Proced. Int., 2018,50: 245. https://www.tandfonline.com/doi/full/10.1080/00304948.2018.1462032

doi: 10.1080/00304948.2018.1462032
[13]
Ma K Q, Yin X L , Dai M J. Angew. Chem. Int. Ed., 2018,57: 15209. https://onlinelibrary.wiley.com/toc/15213773/57/46

doi: 10.1002/anie.v57.46
[14]
Ma K Q, Martin B S, Yin X L , Dai M J. Nat. Prod. Rep., 2019,36: 174. https://www.ncbi.nlm.nih.gov/pubmed/29923586

pmid: 29923586
[15]
马开庆 ( Ma K Q), 任虎斌(Ren H B), 吴晓晓(Wu X X), 钞键斌(Chao J B), 秦雪梅(Qin X M). 有机化学(Chin. J. Org. Chem.), 2019,39: 2094.
[16]
Ma K Q, Ren H B, Chao J B , Qin X M. J. Asian Nat. Prod. Res., 2019: DOI: 10.1080/10286020.2019.1608956. https://www.ncbi.nlm.nih.gov/pubmed/32441112

pmid: 32441112
[17]
Williams D R, Shamim K, Reddy J P, Amato G S , Shaw S M. Org. Lett., 2003,5: 3361. https://www.ncbi.nlm.nih.gov/pubmed/12943427

pmid: 12943427
[18]
Yoritate M, Takahashi Y, Tajima H, Ogihara C, Yokoyama T, Soda Y, Oishi T, Sato T, Chida N . J. Am. Chem. Soc., 2017,139: 18386. https://www.ncbi.nlm.nih.gov/pubmed/29179540

pmid: 29179540
[19]
Ke C Q, He Z S, Yang Y P , Ye Y. Chin. Chem. Lett., 2003,14: 173.
[20]
Chen Z H, Tian J M, Chen Z M , Tu Y Q. Chem. Asian. J., 2012,7: 2199. https://www.ncbi.nlm.nih.gov/pubmed/22778054

doi: 10.1002/asia.201200493 pmid: 22778054
[21]
Ckg G, Krüger S , Gaich T. Chem. Eur. J. 2018,24: 3994. https://www.ncbi.nlm.nih.gov/pubmed/29384223

doi: 10.1002/chem.201800365 pmid: 29384223
[22]
Mungkornasawakul P, Chaiyong S, Sastraruji T, Jatisatienr A, Jatisatienr C, Pyne SG, Ung AT, Korth J, Lie W . [J]. Nat. Prod., 2009,72: 848.
[23]
Varela A , Garve L K B, Leonori D D, Aggarwal V K. Angew. Chem. Int. Ed., 2017,56: 2127.
[24]
Fujita S, Nishikawa K, Iwata T, Tomiyama T, Ikenaga H, Matsumoto K , Shindo M. Chem. Eur. J., 2018,24: 1539. https://www.ncbi.nlm.nih.gov/pubmed/29276813

doi: 10.1002/chem.201706057 pmid: 29276813
[25]
Irie H, Masaki N, Ohno K, Osaki K, Taga T, Uyeo S . Journal of the Chemical Society D Chem. Commun., 1970,17: 1066.
[26]
Brüggemann M , McDonald AI, Overman LE, Rosen MD, Schwink L, Scott JP. J. Am. Chem. Soc., 2003,125: 15284. https://www.ncbi.nlm.nih.gov/pubmed/14664560

doi: 10.1021/ja0388820 pmid: 14664560
[27]
Anderson B K, Livinghouse T . J. Org. Chem., 2015,80: 9847. https://www.ncbi.nlm.nih.gov/pubmed/26360508

doi: 10.1021/acs.joc.5b01625 pmid: 26360508
[28]
Burns T, Helliwell M, Thomas E. Tetrahedron Lett. 2013,54: 2120.
[29]
Fang C, Shanahan CS, Paull DH , Martin SF. Angew. Chem. Int. Ed., 2012,124: 10748.
[30]
Ideue E, Shimokawa J, Fukuyama T. Org. Lett., 2015,17: 4964. https://www.ncbi.nlm.nih.gov/pubmed/26376282

pmid: 26376282
[31]
Huang P Q, Huang S Y, Gao L H, Mao Z Y, Chang Z , Wang A E. Chem. Commun., 2015,51: 4576.
[32]
Chung H S, Hon P M, Lin G , But P P H, Dong H. Planta Med., 2003,69: 914. https://www.ncbi.nlm.nih.gov/pubmed/14648394

doi: 10.1055/s-2003-45100 pmid: 14648394
[33]
Nakayama Y, Maeda Y, Kotatsu M, Sekiya R, Ichiki M, Sato T , Chida N. Chem. Eur. J., 2016,22: 3300. https://www.ncbi.nlm.nih.gov/pubmed/26756545

pmid: 26756545
[34]
Connelly R L, Knowles J P , Booker-Milburn K I. Org Lett., 2019,21: 18. https://www.ncbi.nlm.nih.gov/pubmed/30560676

doi: 10.1021/acs.orglett.8b03371 pmid: 30560676
[35]
Hou Y, Shi T, Yang Y, Fan X, Chen J, Cao F, Wang Z . Org. Lett., 2019,21: 29.
[1] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[2] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[3] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[4] Wu Li, Junjie Wang, Dawei Ma. The Total Synthesis of ent-Kaurane Diterpenoids [J]. Progress in Chemistry, 2019, 31(11): 1460-1471.
[5] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[6] Xiaoyu Liu, Tao Xiao, Yong Qin. Total Synthesis of the Akuammiline Alkaloid Strictamine [J]. Progress in Chemistry, 2018, 30(5): 578-585.
[7] Tingting Huang, Zihua Zhou, Qi Liu, Xiaozheng Wang, Wenli Guo, Shuangjun Lin*. Biosynthetic Mechanisms of Alkaloids from Actinomycetes [J]. Progress in Chemistry, 2018, 30(5): 692-702.
[8] Yuan Shuo, Sun Dequn. The Conformational Restriction of β-Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2016, 28(7): 1084-1098.
[9] Cui Jianguo, Liu Liang, Gan Chunfang, Xiao Qi, Huang Yanmin. Synthesis and Biological Activity of Steroids Bearing Aromatic Rings and Heterocycles [J]. Progress in Chemistry, 2014, 26(0203): 320-333.
[10] Xu Lining, Zhang Juntao, Tao Cheng, Cao Xiaoping. Advances in the Synthesis of Vinyl Chloride Compounds [J]. Progress in Chemistry, 2013, 25(11): 1876-1887.
[11] Wu Jindan, Ju Yong. Molecular and Ion Recognition Molecules Based on Natural Products [J]. Progress in Chemistry, 2013, 25(11): 1888-1897.
[12] Song Gao, Sumit Basu, Guangyi Yang, Arijita Deb, Ming Hu. Oral Bioavailability Challenges of Natural Products Used in Cancer Chemoprevention [J]. Progress in Chemistry, 2013, 25(09): 1553-1574.
[13] Tong Xing, Xiao Xiaohua, Deng Jianchao, Wang Jiayue, Li Gongke. Applications of Low Temperature Microwave Technique in Chemistry Research [J]. Progress in Chemistry, 2010, 22(12): 2462-2468.
[14] . The Study of Resource Chemistry [J]. Progress in Chemistry, 2010, 22(04): 537-556.
[15] Xing Jing Zhou Yinzhuang. Synthesis, Structure and Biological Activity of Vanadium Complexes Containing Acylhydrazone Ligands [J]. Progress in Chemistry, 2009, 21(6): 1199-1206.
Viewed
Full text


Abstract

Total Synthesis of Stemona Alkaloids