中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 803-816 DOI: 10.7536/PC191004 Previous Articles   Next Articles

• Review •

P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries

Jianwen Liu1, Heyang Jiang1, Chihang Sun1, Wenbin Luo1, Jing Mao2,**(), Kehua Dai1,3,**()   

  1. 1. School of Metallurgy, Northeastern University, Shenyang 110819, China
    2. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
    3. Department of Chemistry, Tianjin Normal University, Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Contact: Jing Mao, Kehua Dai
  • Supported by:
    the National Natural Science Foundation of China(51604244)
Richhtml ( 63 ) PDF ( 2001 ) Cited
Export

EndNote

Ris

BibTeX

Nowadays, lithium ion batteries as one of alkali metal(lithium, sodium, potassium, etc.) ion batteries have been widely used in all aspects of industry and life, and contribute to the success of automation, informatization and intelligence of society. However, due to the low abundance of lithium in the crust of earth, sodium-ion batteries based on sodium of high abundance have attracted extensive attention of researchers and society. Among all the component, cathode material is an important factor restricting the practicality of sodium ion batteries. Cathode materials need to be developed for practical application. P2-structure layered composite metal oxide sodium ion battery cathode material has many advantages, such as abundant resources, simple preparation, stable structure, high discharge capacity, good rate performance, good cycle stability, etc. It has attracted extensive attention of researchers and has a practical prospect. This series of materials are complex due to the combination of various transition metal elements. In this paper, the P2-structure materials containing single transition metal, binary transition metals, ternary transition metals and even more components and their optimization and modification are systematically reviewed. The future development prospects and predictions are given. The main problem of P2-structure cathode material is to improve the initial charge capacity. The use of oxygen redox is an important direction to solve this problem. In addition, optimizing the composition of materials and adopting raw materials with abundant reserves, low cost, high safety and environmental friendliness is also an important research direction for further reducing costs and protecting the environment.

Contents

1 Introduction
2 P2 structure materials composed by single transition metal
3 P2 structure materials composed by binary transition metals
4 P2 structure materials composed by ternary transition metals
5 Problems and optimization of P2 structure materials

5.1 Problems about P2 structure materials

5.2 Doping

5.3 Surface modification

6 Initial charge specific capacity enhanced by anion redox
7 Conclusion and perspective
Fig. 1 Classification of Na-Me-O layered materials with sheets of edge-sharing MeO6 octahedra and phase transition processes induced by sodium extraction[46]
Fig. 2 Crystal structure illustration of layered oxides with O2 and P2 structures [69]
Fig. 3 (a) GITT curves for the charge and discharge states of the first cycle and (b) corresponding sodium-ion diffusion coefficient ($D_{Na^{+}}$) of Na/NNMO cell cycling between 4.5 and 2.0 V;(c) GITT curves for the charge and discharge states of the first cycle and (d) corresponding $D_{Na^{+}}$ of Na/NNMO cell cycling between 2.0 and 1.5 V electrode at current rate of 6C[89]
Fig. 4 The cycling capacity at 10, 20, and 30 C, as well as the coulombic efficiency corresponding to 10 C[101]
Fig. 5 In situ XRD patterns collected during the first charge/discharge and second charge of the NCM55 electrode between 1.5 and 4.3 V. Black asterisks represent the peaks of the battery case[101]
Fig. 6 (a) Cyclic voltammetry(CV) curve and(b) first charge/discharge curves of the Na0.68Cu0.34Mn0.66O2 electrode[104]
Fig. 7 The cycling performance of Na2/3Ni1/3Mn7/12Fe1/12O2 at 5 C for 300 cycles [110]
Fig. 8 In-situ XRD patterns of x-NNMF electrodes with (a) x=1/12,(b) x=0; (c) the corresponding GCD profiles of 0-NNMF electrode[110]
[1]
Bruce D, Haresh K, Jean-Marie T. Science, 2011, 334: 928.https://www.ncbi.nlm.nih.gov/pubmed/22096188

doi: 10.1126/science.1212741 pmid: 22096188
[2]
潘慧霖(Pan H L), 胡勇胜(Hu Y S), 李泓(Li H),陈立泉(Chen L Q). 中国科学: 化学(Scientia Sinica: Chimica), 2014, 8: 005.
[3]
Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X. Small, 2019, 15: 1805381.
[4]
钱江锋(Qian J F), 高学平(Gao X P), 杨汉西(Yang H X) 电化学(Journal of Electrochemistry), 2013, 19: 523.
[5]
Slater M D, Kim D, Lee E, Johnson C S. Adv. Funct. Mater., 2013, 23: 947.
[6]
Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-Gonzlez J, Rojo T. Energy Environ. Sci., 2012, 5: 5884.
[7]
Moreau P, Guyomard D, Gaubicher J, Boucher F. Chem. Mater., 2010, 22: 4126.
[8]
Casascabanas M, Roddatis V V, Saurel D, Kubiak P, Carreterogonzlez J, Palomares V, Serras P, Rojo T.J. Mater. Chem., 2012, 22: 17421.
[9]
Zaghib K, Trottier J, Hovington P, Brochu F, Guerfi A, Mauger A, Julien C M.J. Power Sources, 2011, 196: 9612.https://linkinghub.elsevier.com/retrieve/pii/S0378775311012973

doi: 10.1016/j.jpowsour.2011.06.061
[10]
Lee K T, Ramesh T N, Nan F, Botton G, Nazar L F. Chem. Mater., 2011, 23: 3593.https://pubs.acs.org/doi/10.1021/cm200450y

doi: 10.1021/cm200450y
[11]
Park Y U, Seo D H, Kwon H S, Kim B, Kim J, Kim H, Kim I, Yoo H I, Kang K.J. Am. Chem. Soc., 2013, 135: 13870.https://www.ncbi.nlm.nih.gov/pubmed/23952799

pmid: 23952799
[12]
Zhao J, He J, Ding X, Zhou J, Ma Y O, Wu S, Huang R.J. Power Sources, 2010, 195: 6854.
[13]
Zhuo H, Wang X, Tang A, Liu Z, Gamboa S, Sebastian P J.J. Power Sources, 2006, 160: 698.
[14]
Sauvage F, Quarez E, Tarascon J M, Baudrin E. Solid State Sci. 2006, 8: 1215.https://linkinghub.elsevier.com/retrieve/pii/S1293255806001804

doi: 10.1016/j.solidstatesciences.2006.05.009
[15]
Plashnitsa L S, Kobayashi E, Noguchi Y, Okada S, Yamaki J.J. Electrochem. Soc., 2010, 157: A536.
[16]
Kim H, Dong J K, Seo D H, Min S Y, Kang K, Kim D K, Jung Y. Chem. Mater., 2012, 24: 1205.
[17]
Hosono E, Saito T, Hoshino J, Okubo M,Saito Y,Nishio-Hamane D, Kudo T, Zhou H.J. Power Sources, 2012, 217: 43.
[18]
Izabela K, Pawel Z, Wouter V B, Ioanna B, Alexandros L, Chris S, Green M A.J. Am. Chem. Soc., 2011, 133: 13950.https://www.ncbi.nlm.nih.gov/pubmed/21800890

pmid: 21800890
[19]
Whitacre J F, Tevar A, Sharma S. Electrochem. Commun., 2010, 12: 463.
[20]
Li Y, Wu Y. Nano Res., 2009, 2: 54.
[21]
Talaie E, Kim S Y, Chen N, Nazar L F. Chem. Mater. 2017, 29: 6684.
[22]
Kataoka R, Mukai T, Yoshizawa A, Sakai T.J. Electrochem. Soc., 2013, 160: A933.
[23]
Lu Z, Dahn J.J. Electrochem. Soc., 2001, 148: A1225.
[24]
Yuan D, Wei H, Feng P, Wu F, Yue W,Qian J, Cao Y, Ai X, Yang H.J. Mater. Chem., 2013, 1: 3895.
[25]
Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. Nat. Mater., 2012, 11: 512.https://www.ncbi.nlm.nih.gov/pubmed/22543301

doi: 10.1038/nmat3309 pmid: 22543301
[26]
Sathiya M, Hemalatha K, Ramesha K, Tarascon J M, Prakash A S. Chem. Mater., 2012, 24: 1846.
[27]
Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J. Angewandte Chemie, 2013, 52: 1964.https://www.ncbi.nlm.nih.gov/pubmed/23319239

pmid: 23319239
[28]
Wessells C D, Huggins R A, Cui Y. . Nat. Commun.., 2011, 2: 550.https://www.ncbi.nlm.nih.gov/pubmed/22109524

pmid: 22109524
[29]
Pasta M, Wessells C D, Liu N, Nelson J, McDowell M T, Huggins R A, Toney M F, Cui Y. Nat. Commun., 2014, 5: 3007.https://www.ncbi.nlm.nih.gov/pubmed/24389854

doi: 10.1038/ncomms4007 pmid: 24389854
[30]
You Y, Wu X L, Yin Y X, Guo Y G. Energy Environ. Sci. 2014, 7: 1643.http://xlink.rsc.org/?DOI=C3EE44004D

doi: 10.1039/C3EE44004D
[31]
Lee H, Kim Y I, Park J K, Choi J W. Chem. Commun., 2012, 48: 8416.
[32]
Tomoyuki M, Masamitsu T, Yutaka M. Chem. Commun., 2013, 49: 2750.
[33]
Han M H, Gonzalo E, Singh G, Rojo T. Energy Environ. Sci. 2015, 8: 81.
[34]
Kubota K, Komaba S.J. Electrochem. Soc., 2015, 162: A2538.
[35]
Kaliyappan K, Liu J, Lushington A, Li R, Sun X. ChemSusChem, 2015, 8: 2537.https://www.ncbi.nlm.nih.gov/pubmed/26119638

pmid: 26119638
[36]
Shadike Z, Zhao E, Zhou Y N, Yu X, Yang Y, Hu E, Bak S, Gu L, Yang X Q. Adv. Energy Mater., 2018, 8: 1702588.
[37]
Delmas C, Fouassier C, Hagenmuller P. Physica B&C, 1980, 99: 81.
[38]
Delmas C. Adv. Energy Mater., 2018, 8: 1703137.
[39]
Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X Q, Delmas C, Chen L. Joule, 2019, 3: 503.
[40]
Yuan D, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Electrochim Acta, 2014, 116: 300.
[41]
Yao H R, Wang P F, Wang Y, Yu X, Yin Y X, Guo Y G. Adv. Energy Mater., 2017, 7: 1700189.
[42]
Luo C, Langrock A, Fan X, Liang Y, Wang C.J. Mater. Chem., 2017, 5: 18214.
[43]
Hasa I, Passerini S, Hassoun J.J. Mater. Chem., 2017, 5: 4467.
[44]
Ma C, Alvarado J, Xu J, Clement R J, Kodur M, Tong W, Grey C P, Meng Y S.J. Am. Chem. Soc., 2017, 139: 4835.https://www.ncbi.nlm.nih.gov/pubmed/28271898

pmid: 28271898
[45]
Hou P, Sun Y, Li F, Sun Y, Deng X, Zhang H, Xu X, Zhang L. Nanoscale, 2019, 11: 2787.https://www.ncbi.nlm.nih.gov/pubmed/30672951

doi: 10.1039/c8nr09601e pmid: 30672951
[46]
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem. Rev., 2014, 114: 11636.https://www.ncbi.nlm.nih.gov/pubmed/25390643

doi: 10.1021/cr500192f pmid: 25390643
[47]
Ozawa K. Solid State Ionics, 1994, 69: 212.https://linkinghub.elsevier.com/retrieve/pii/0167273894904111

doi: 10.1016/0167-2738(94)90411-1
[48]
Kim S, Hegde V I, Yao Z, Lu Z, Amsler M, He J, Hao S, Croy J R, Lee E, Thackeray M M. ACS Appl. Mater. Interfaces, 2018, 10: 13479.https://www.ncbi.nlm.nih.gov/pubmed/29616800

pmid: 29616800
[49]
Sironval V, Reylandt L, Chaurand P, Ibouraadaten S, Palmaipallag M, Yakoub Y, Ucakar B, Rose J, Poleunis C, Vanbever R. Arch. Toxicol., 2018, 92: 1.https://www.ncbi.nlm.nih.gov/pubmed/28905185

pmid: 28905185
[50]
Yamada A, Chung S C, Hinokuma K. Cheminform, 2010, 32: 17.
[51]
Seo J H, Verlinde K, Jing G, Heidary D S B, Rajagopalan R, Mallouk T E, Randall C A Scr. Mater., 2018, 146: 267.
[52]
Marchini F, Rubi D, Pozo M D, Williams F J, Calvo E J. J. Phys. Chem C, 2016, 120: 15875.
[53]
Hyun-Wook L, Muralidharan P, Riccardo R, Mari C M, Yi C, Do Kyung K. Nano Lett., 2010, 10: 3852.https://www.ncbi.nlm.nih.gov/pubmed/20795626

doi: 10.1021/nl101047f pmid: 20795626
[54]
Leng L, Li J, Zeng X, Song H, Shu T, Wang H, Ren J, Liao S. ACS Sustainable Chem. Eng., 2019,7: 430.
[55]
Viciu L, Bos J W G, Zandbergen H W, Huang Q, Foo M L, Ishiwata S, Ramirez A P, Lee M, Ong N P, Cava R J. Phys. Rev. B, 2006, 73.
[56]
Sawicki M, Ortiz A L, Luo M, Shaw L L. ChemElectroChem, 2017, 4: 3222.
[57]
Man H H, Gonzalo E, Casascabanas M, Rojo T.J. Power Sources, 2014, 258: 266.https://linkinghub.elsevier.com/retrieve/pii/S0378775314002328

doi: 10.1016/j.jpowsour.2014.02.048
[58]
Guo J Z, Wan F, Wu X L, Zhang J P.J. Mol. Sci., 2016, 4: 3222.
[59]
Nithya C, Gopukumar S. Wiley Interdisciplinary Reviews Energy & Environment, 2015, 4: 253.
[60]
Dai K, Mao J, Song X, Battaglia V, Liu G.J. Power Sources, 2015, 285: 161.
[61]
Liu X, Xi W, Iyo A, Yu H, Li D, Zhou H S.J. Mater. Chem., 2014, 2: 14822.
[62]
Li J Y, Lü H Y, Zhang X H, Xing Y M, Wang G, Guan H Y, Wu X L. Chem. Eng. J., 2017, 316: 499.https://linkinghub.elsevier.com/retrieve/pii/S1385894717301201

doi: 10.1016/j.cej.2017.01.109
[63]
Chen S Y, Mi C H, Su L H, Gao B, Fu Q B, Zhang X G.J. Appl. Electrochem., 2009, 39: 1943.
[64]
Hemalatha K, Jayakumar M, Bera P, Prakash A S.J. Mater. Chem. A, 2015, 3: 20908.
[65]
陆雅翔(Lu Y X), 赵成龙(Zhao C L), 容晓晖(Rong X H), 陈立泉(Chen L Q), 胡勇胜(Hu Y S) 物理学报(Acta Physica Sinica), 2018, 67: 39.
[66]
Zhang J, Yu D Y W. J. Power Sources, 2018, 391: 106.
[67]
Clement R J, Bruce P G, Grey C P. Electrochem. Soc., 2015, 162: A2589.
[68]
Gao L, Chen S, Zhang L, Yang X.J. Alloys Compd., 2019, 782: 81.
[69]
方永进(Fang Y J), 陈重学(Chen C X), 艾新平(Ai X P), 杨汉西(Yang H X), 曹余良(CaoY L) 物理化学学报(Acta Physico-Chimica Sinica), 2017, 33: 211.
[70]
Xia X, Dahn J R. Electrochem Solid-State Lett., 2011, 15: A1.
[71]
Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N. Electrochem. Commun., 2010, 12: 355.https://linkinghub.elsevier.com/retrieve/pii/S1388248109006316

doi: 10.1016/j.elecom.2009.12.033
[72]
Ding J J,Zhou Y N,Sun Q,Fu Z W. Electrochem. Commun., 2012, 22: 85.
[73]
Tsuchiya Y, Glushenkov A M, Yabuuchi N. ACS Applied Nano Materials, 2017, 1: 364.
[74]
Yabuuchi N, Ikeuchi I, Kubota K, Komaba S. ACS Appl. Mater. Interfaces, 2016, 8: 32292.https://www.ncbi.nlm.nih.gov/pubmed/27933819

pmid: 27933819
[75]
Kang S M, Park J H, Jin A, Jung Y H, Mun J, Sung Y E. ACS Appl. Mater. Interfaces, 2018, 10: 3562.https://www.ncbi.nlm.nih.gov/pubmed/29300078

doi: 10.1021/acsami.7b16077 pmid: 29300078
[76]
Kim H, Kim H, Ding Z, Lee M H, Lim K, Yoon G, Kang K. Adv. Energy Mater., 2016, 6: 1600943.
[77]
Gao L, Chen S, Zhang L, Yang X.J. Power Sources, 2018, 396: 379.
[78]
Li M, Yang K, Liu J, Hu X, Kong D, Liu T, Zhang M, Pan F. Chem. Commun.(Camb), 2018, 54: 10714.
[79]
Chen M, Liu Q, Wang S W, Wang E, Guo X, Chou S L. Adv. Energy Mater., 2019, 9: 1803609.
[80]
Palomares V, Casas-Cabanas M, Castillo-Martínez E, Man H H, Rojo T. Energy Environ. Sci., 2013, 6: 2312.
[81]
Hongli Z, Taek L K, Gregory Thomas H, Xiaogang H, Yuanyuan L, Jiayu W, Steven L, Cresce A V W, Kang X, Eric W. ACS Appl. Mater Interfaces, 2014, 6: 4242.https://www.ncbi.nlm.nih.gov/pubmed/24588793

doi: 10.1021/am405970s pmid: 24588793
[82]
Kalluri S, Seng K H, Pang W K, Guo Z, Chen Z, Liu H K, Dou S X. ACS Appl. Mater. Interfaces, 2014, 6: 8953.
[83]
Billaud J, Singh G, Armstrong A R, Gonzalo E, Roddatis V, Armand M, Rojo T, Bruce P G. Energy Environ. Sci., 2014, 7: 1387.
[84]
Yabuuchi N, Hara R, Kajiyama M, Kubota K, Ishigaki T, Hoshikawa A, Komaba S. Adv. Energy Mater., 2015, 4: 13072.
[85]
Wang L, Hong L, Huang X, Baudrin E. Solid State Ionics, 2011, 193: 32.
[86]
Haridas A K, Sharma C S, Rao T N.Electrochim Acta, 2016, 212: 500.https://linkinghub.elsevier.com/retrieve/pii/S0013468616315444

doi: 10.1016/j.electacta.2016.07.039
[87]
Molenda J, Stokłlosa A. Solid State Ionics, 1990, 38: 1.
[88]
Wen Y, Wang B, Zeng G, Nogita K. Chem. Asian J., 2015, 46: 661.
[89]
Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S.J. Mater. Chem., 2019, 7: 9215.
[90]
Liu Y, Xin F, Zhang A, Shen C, Liu Q, Enaya H A, Zhou C. Nano Energy, 2016, 27: 27.
[91]
Yan P, Zheng J, Zhang X, Rui X, Amine K, Jie X, Zhang J G, Wang C M. Chem. Mater.,2016, 28: 857.
[92]
Liu H, Qian D, Verde M G, Zhang M, Meng Y S. ACS Appl. Mater. Interfaces, 2015, 7: 19189.https://www.ncbi.nlm.nih.gov/pubmed/26287963

doi: 10.1021/acsami.5b04932 pmid: 26287963
[93]
Han S C, Lim H, Jeong J, Ahn D, Park W B, Sohn K S, Pyo M.J. Power Sources, 2015, 277: 9.
[94]
Kim S W, Seo D H, Ma X, Ceder G, Kang K. Adv. Energy Mater., 2012, 2: 710.
[95]
李慧(Li H), 吴川(Wu C), 吴锋(Wu F), 白莹(Bai Y). 化学学报(Acta Chim Sinica), 2014, 72: 21.
[96]
Qian J, Wu X, Cao Y, Ai X, Yang H. Angew. Chem. Int. Ed., 2013, 52: 4633.
[97]
Manikandan P, Ramasubramonian D, Shaijumon M M. Electrochim. Acta, 2016, 206: 199.
[98]
Mao J, Liu X, Liu J, Jiang H, Zhang T, Shao G, Ai G, Mao W, Feng Y, Yang W, Liu G, Dai K.J. Electrochem. Soc., 2019, 166: A3980.
[99]
Carlier D, Cheng J H, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang B J, Delmas C. Dalton Trans., 2011, 40: 9306.https://www.ncbi.nlm.nih.gov/pubmed/21842107

pmid: 21842107
[100]
Cheng J H, Pan C J, Lee J F, Chen J M, Guignard M, Delmas C, Carlier D, Hwang B J. Chem. Mater., 2014, 26: 1219.
[101]
Zhu Y E, Qi X, Chen X, Zhou X, Zhang X, Wei J, Hu Y, Zhou Z. J. Mater. Chem. A, 2016, 4: 11103.
[102]
Manikandan P, Heo S, Kim H W, Jeong H Y, Lee E, Kim Y.J. Power Sources, 2017, 363: 442.
[103]
Hemalatha K, Jayakumar M, Prakash A S. Dalton Trans., 2018, 47: 1223.
[104]
Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q. Chin. Phys. B, 2014, 23: 118202.
[105]
Man H H, Gonzalo E, Sharma N, Amo J M L D, Armand M, Avdeev M, Garitaonandia J J S, Rojo T. Chem. Mater., 2015, 28: 106.
[106]
Zhou D, Huang W, Zhao F. Solid State Ionics, 2018, 322: 18.
[107]
Wen Y, Fan J, Shi C, Dai P, Hong Y, Wang R, Wu L, Zhou Z, Li J, Huang L,Sun S G. Nano Energy, 2019, 60: 162.
[108]
Dae Hoe L, Jing X, Shirley M Y. Physical Chemistry Chemical Physics, 2013, 15: 3304.
[109]
Yoshida H, Yabuuchi N, Kubota K, Ikeuchi I, Garsuch A, Schulz-Dobrick M, Komaba S. Chem. Commun., 2014, 50: 3677.
[110]
Yang Q, Wang P F, Guo J Z, Chen Z M, Pang W L, Huang K C, Guo Y G, Wu X L, Zhang J P. ACS Appl. Mater. Interfaces, 2018, 10: 34272.https://www.ncbi.nlm.nih.gov/pubmed/30222306

pmid: 30222306
[111]
Wang L, Sun Y G, Hu L L, Piao J Y, Guo J, Manthiram A, Ma J, Cao A M.J. Mater. Chem., 2017, 5: 8752.
[112]
Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. ACS Appl. Mater. Interfaces, 2011, 3: 4165.
[113]
Zheng J, Yan P, Kan W H, Wang C, Manthiram A.J. Electrochem. Soc., 2016, 163: A584.https://iopscience.iop.org/article/10.1149/2.0041605jes

doi: 10.1149/2.0041605jes
[114]
Wang K, Yan P, Sui M. Nano Energy, 2018, 54: 148.
[115]
Zhou Y N, Wang P F, Niu Y B, Li Q, Yu X, Yin Y X, Xu S, Guo Y G. Nano Energy, 2019, 55: 143.
[116]
Zhou D, Huang W, Lv X, Zhao F.J. Power Sources, 2019, 421: 147.
[117]
Chen S, Han E, Xu H, Zhu L, Liu B, Zhang G, Lu M. Ionics, 2017, 23: 3057.
[118]
Pang W L, Zhang X H, Guo J Z, Li J Y, Yan X, Hou B H, Guan H Y, Wu X L.J. Power Sources, 2017, 356: 80.
[119]
Wu X, Xu G L, Zhong G, Gong Z, McDonald M J, Zheng S, Fu R, Chen Z, Amine K, Yang Y. ACS Appl. Mater. Interfaces, 2016, 8: 22227.https://www.ncbi.nlm.nih.gov/pubmed/27494351

doi: 10.1021/acsami.6b06701 pmid: 27494351
[120]
Chen H, Wu Z, Zhong Y. Electrochimica Acta, 2019, 308: 64.
[121]
Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L, Guo Y G. Sci. Adv., 2018, 4: eaar6018.
[122]
Vinckeviiiuete J, Radin M D, Van der Ven A. Chem. Mater., 2016, 28: 8640.
[123]
Katcho N A, Carrasco J, Saurel D, Gonzalo E, Man H, Aguesse F, Rojo T. Adv. Energy Mater., 2016, 7: 1601477.http://doi.wiley.com/10.1002/aenm.v7.1

doi: 10.1002/aenm.v7.1
[124]
Tie D, Gao G, Xia F, Yue R, Wang Q, Qi R, Wang B, Zhao Y. ACS Appl. Mater. Interfaces, 2019, 11: 6978.
[125]
Nupur Nikkan S, Munichandraiah N. ACS Appl. Mater. Interfaces, 2009, 1: 1241.
[126]
Chu S, Jia X, Wang J, Liao K, Zhou W, Wang Y, Shao Z. Composites Part B: Engineering, 2019, 173: 106913.
[127]
Wang Y, Tang J. RSC Adv., 2018, 8: 24143.http://xlink.rsc.org/?DOI=C8RA04210A

doi: 10.1039/C8RA04210A
[128]
Wang Y, Tang K, Li X, Yu R, Zhang X, Huang Y, Chen G, Jamil S, Cao S, Xie X, Luo Z, Wang X. Chemical Engineering Journal, 2019, 372: 1066.
[129]
Singh G, Acebedo B, Cabanas M C, Shanmukaraj D, Armand M, Rojo T. Electrochem. Commun., 2013, 37: 61.
[130]
Park K, Yu B C, Goodenough J B. Chem. Mater., 2015, 27: 6682.https://pubs.acs.org/doi/10.1021/acs.chemmater.5b02684

doi: 10.1021/acs.chemmater.5b02684
[131]
Maitra U, House R A, Somerville J W, Tapia-Ruiz N, Lozano J G, Guerrini N, Hao R, Luo K, Jin L, Perez-Osorio M A, Massel F, Pickup D M, Ramos S, Lu X, McNally D E, Chadwick A V, Giustino F, Schmitt T, Duda L C, Roberts M R, Bruce P G. Nat. Chem., 2018, 10: 288.
[132]
Dai K, Wu J, Zhuo Z, Li Q, Yang W. Joule, 2019, 3: 518.
[1] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[2] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[3] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[4] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[5] Hao Wang, Bangwei Deng, Wujie Ge, Tao Chen, Meizhen Qu, Gongchang Peng. Recent Advances in Prussian Blue Analogues Materials for Sodium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(6): 683-694.
[6] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[7] Yi Luocai, Ci Suqin, Sun Chengli, Wen Zhenhai. Cathode Materials of Non-Aqueous Lithium-Oxygen Battery [J]. Progress in Chemistry, 2016, 28(8): 1251-1264.
[8] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[9] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
[10] Jin Yi, Sun Xin, Yu Yan, Ding Chuxiong, Chen Chunhua, Guan Yibiao. Research Progress in Sodium-Ion Battery Materials for Energy Storage [J]. Progress in Chemistry, 2014, 26(04): 582-591.
[11] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[12] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[13] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.
[14] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 284-301.
[15] Dong Quanfeng, Wang Chong, Zheng Mingsen. Research Progress and Prospects of Lithium Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 533-539.