中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 581-593 DOI: 10.7536/PC190913 Previous Articles   Next Articles

• Review •

Development and Application of Digital PCR Technology

Huitiao Li1, Jianzhang Pan1,**(), Qun Fang1,**()   

  1. Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Contact: Jianzhang Pan, Qun Fang
  • About author:
    ** e-mail: (Qun Fang);
    (Jianzhang Pan)
  • Supported by:
    National Natural Science Foundation of China(21974122); National Natural Science Foundation of China(21827806); National Natural Science Foundation of China(21435004)
Richhtml ( 113 ) PDF ( 2078 ) Cited
Export

EndNote

Ris

BibTeX

Digital PCR(dPCR) assay is a highly sensitive absolute quantitative analysis technique for nucleic acids. Digital PCR systems perform amplification by equally dividing the reaction mixtures into a large number of independent reaction units, and calculates the nucleic acid copy number based on the Poisson distribution and the positive ratio. With the advantages of high sensitivity, accuracy and tolerance, digital PCR assay enables absolute quantitative analysis of samples. In recent years, with the maturity of microfluidic technology, digital PCR assay based on microfluidic technology has been rapidly developed, and widely applied in the analysis of gene mutation, copy number variation, viral microbial, genetically modified foods and DNA sequencing. In this article, the principle, development and applications of the digital PCR technique are reviewed.

Contents

1 Introduction

2 Principle of dPCR technology

3 Development and classification of dPCR technology

3.1 Microchamber-based digital PCR assay

3.2 Microfluidic chip-based digital PCR assay

3.3 Droplet-based digital PCR assay

4 Applications of dPCR technology

4.1 Single cell genetic analysis

4.2 Tumour research

4.3 Prenatal diagnosis

4.4 Virus and microbial analysis

4.5 Food safety and environmental monitoring

4.6 Next generation sequencing validation and gene editing

5 Conclusion and outlook

Fig. 1 The principle of Digital PCR assay[8]
Fig. 2 Numbers of published articles in the field of digital PCR from 1999 to 2018 in Web of Science
Fig. 3 Microhole array-based digital PCR chip (a) stainless steel digital PCR chip[14];(b) QuantstudioTM 3D digital PCR chip[15];(c) ClarityTM digital PCR chip[16];(d) Constellation digital PCR chip[17]
Fig. 4 (a) Digital PCR chip with PDMS microvalve structure and nucleic acid amplification results[19];(b)digital PCR chip with femtoliter microreaction chamber[20]
Fig. 5 (a)Digital PCR chip with millions of picoliters microreaction chambers[21];(b)self-digitization digital PCR chip[23];(c)self-priming compartmentalization digital PCR chip[24];(d)PET spinning disk digital PCR chip[25]
Fig. 6 Schematic diagram of BEAMing technique[28]
Fig. 7 Digital PCR analysis system integrated droplet formation, droplet reinjection, electron droplet fusion, and online fluorescence detection[33, 34]
Fig. 8 Digital PCR system integrating process of droplet formation, splitting, arraying, thermal cycling and fluorescence detection[36].(a) Schematic diagram of chip fabrication;(b) diagram of chip structure
Fig. 9 Integrated droplet digital PCR system based on step emulsification[38]
Fig. 10 Capillary-based digital PCR systems[39, 40]
Fig. 11 (a) Digital PCR system based on agarose droplets and primer microspheres[41];(b) digital PCR system based on agarose droplets[42]
Fig. 12 (a) Capillary-based integrated droplet digital PCR system[43];(b) inkjet printing-based integrated online digital PCR system[44]
Fig. 13 (a) Digital PCR system based on surface assisted formation of two-dimensional droplets[45];(b) digital PCR system using microwell arrays for droplet formation[46]
Fig. 14 Digital PCR system based on a SlipChip. (a) The operation schematic of Slipchip[47];(b) Slipchip for multi-volume digital PCRassay[49]
Table 1 Performance comparison of some commercial digital PCR instruments[51]
[1]
Saiki R K, Scharf S, Faloona F, Mullis K B, Horn G T, Erlich H A, Arnheim N. Science, 1985,230(4732):1350. https://www.sciencemag.org/lookup/doi/10.1126/science.2999980

doi: 10.1126/science.2999980
[2]
Saiki R K, Gelfand D H, Stoffel S, Scharf S J, Higuchi R, Horn G T, Mullis K B, Erlich H A. Science, 1988,239(4839):487. https://www.sciencemag.org/lookup/doi/10.1126/science.239.4839.487

doi: 10.1126/science.239.4839.487
[3]
Mullis K B. Sci. Am., 1990,262(4):56. http://www.nature.com/doifinder/10.1038/scientificamerican0490-56

doi: 10.1038/scientificamerican0490-56
[4]
Higuchi R, Fockler C, Dollinger G, Watson R. Bio-Technology, 1993,11(9):1026.
[5]
Sykes P J, Neoh S H, Brisco M J, Hughes E, Condon J, Morley A A. Biotechiques, 1992,13(3):444.
[6]
Vogelstein B, Kinzler K W. Proc. Natl. Acad. Sci. U.S. A., 1999,96(16):9236. http://www.pnas.org/cgi/doi/10.1073/pnas.96.16.9236

doi: 10.1073/pnas.96.16.9236
[7]
Pohl G, Shih L M. Expert Rev. Mol. Diagn., 2004,4(1):41. http://www.tandfonline.com/doi/full/10.1586/14737159.4.1.41

doi: 10.1586/14737159.4.1.41
[8]
Baker M. Nat. Methods, 2012,9(6):541. http://dx.doi.org/10.1038/nmeth.2027

doi: 10.1038/nmeth.2027
[9]
刘雯雯(Liu W W). 浙江大学博士论文( Doctoral Dissertation of Zhejiang University of Science and Technology), 2017.
[10]
林彩琴(Lin C Q), 姚波(Yao B). 化学进展 (Progress in Chemistry), 2012, ( 12):2415. http://www.progchem.ac.cn//CN/abstract/abstract10997.shtml
[11]
Whale A S, Huggett J F, Cowen S, Speirs V, Shaw J, Ellison S, Foy C A, Scott D J. Nucleic Acids Res., 2012,40(11):e82. https://academic.oup.com/nar/article/40/11/e82/2409772

doi: 10.1093/nar/gks203
[12]
Hindson C M, Chevillet J R, Briggs H A, Gallichotte E N, Ruf I K, Hindson B J, Vessella R L, Tewari M. Nat. Methods, 2013,10(10):1003. http://dx.doi.org/10.1038/nmeth.2633

doi: 10.1038/nmeth.2633
[13]
Stephens J C, Rogers J, Ruano G. Am. J. Hum. Genet., 1990,46(6):1149.
[14]
Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, Cho J, Kanigan T, Ilyin S E, Horowitz D, Dixon J M, Brenan C J H. Nucleic Acids Res., 2006,34(18):e123. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl639

doi: 10.1093/nar/gkl639
[15]
Kinz E, Leiherer A, Lang A H, Drexel H, Muendlein A. Int. J. Lab. Hematol., 2015,37(2):217. http://doi.wiley.com/10.1111/ijlh.2015.37.issue-2

doi: 10.1111/ijlh.2015.37.issue-2
[16]
Low H Y, Chan S J, Soo G H, Ling B, Tan E L. Anal. Bioanal. Chem., 2017,409(7):1869. http://link.springer.com/10.1007/s00216-016-0131-7

doi: 10.1007/s00216-016-0131-7
[17]
Rutsaert S, Bosman K, Trypsteen W, Nijhuis M, Vandekerckhove L. Retrovirology, 2018,15(1):16. https://doi.org/10.1186/s12977-018-0399-0

doi: 10.1186/s12977-018-0399-0
[18]
Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R. Science, 2000,288(5463):113. https://www.sciencemag.org/lookup/doi/10.1126/science.288.5463.113

doi: 10.1126/science.288.5463.113
[19]
Ottesen E A, Hong J W, Quake S R, Leadbetter J R. Science, 2006,314(5804):1464. https://www.sciencemag.org/lookup/doi/10.1126/science.1131370

doi: 10.1126/science.1131370
[20]
Men Y F, Fu Y S, Chen Z T, Sims P A, Greenleaf W J, Huang Y Y. Anal. Chem., 2012,84(10):4262. https://pubs.acs.org/doi/10.1021/ac300761n

doi: 10.1021/ac300761n
[21]
Heyries K A, Tropini C, Vaninsberghe M, Doolin C, Petriv O I, Singhal A, Leung K, Hughesman C B, Hansen C L. Nat. Methods, 2011,8(8):649. https://doi.org/10.1038/nmeth.1640

doi: 10.1038/nmeth.1640
[22]
White A K, Heyries K A, Doolin C, VanInsberghe M, Hansen C L. Anal. Chem., 2013,85(15):7182. https://pubs.acs.org/doi/10.1021/ac400896j

doi: 10.1021/ac400896j
[23]
Thompson A M, Gansen A, Paguirigan A L, Kreutz J E, Radich J P, Chiu D T. Anal. Chem., 2014,86(24):12308. https://pubs.acs.org/doi/10.1021/ac5035924

doi: 10.1021/ac5035924
[24]
Zhu QY, Qiu L, Yu B W, Xu Y N, Gao Y B, Pan T T, Tian Q C, Song Q, Jin W, Jin Q H, Mu Y. Lab Chip, 2014,14(6):1176. http://dx.doi.org/10.1039/c3lc51327k

doi: 10.1039/c3lc51327k
[25]
Sundberg S O, Wittwer C T, Gao C, Gale B K. Anal. Chem., 2010,82(4):1546. https://pubs.acs.org/doi/10.1021/ac902398c

doi: 10.1021/ac902398c
[26]
Margulies M, Egholm M, Altman W E, Attiyal S, Baderl J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M LI, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Nature, 2005,437:376. https://doi.org/10.1038/nature03959

doi: 10.1038/nature03959
[27]
Tawfik D S, Griffiths A D. Nat. Biotechnol., 1998,16:652. https://doi.org/10.1038/nbt0798-652

doi: 10.1038/nbt0798-652
[28]
Dressman D, Yan H, Traverso G, Kinzler K W, Vogelstein B. Proc. Natl. Acad. Sci. U. S. A., 2003,100(15):8817. http://www.pnas.org/cgi/doi/10.1073/pnas.1133470100

doi: 10.1073/pnas.1133470100
[29]
Huang H, Qi Z T, Deng L L, Zhou G H, Kajiyama T, Kambara H. Chem. Commun., 2009,27(27):4094.
[30]
Beer N R, Hindson B J, Wheeler E K, Hall S B, Rose K A, Kennedy I M, Colston B W. Anal. Chem., 2007,79(22):8471. https://pubs.acs.org/doi/10.1021/ac701809w

doi: 10.1021/ac701809w
[31]
Beer N R, Wheeler E K, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, Leung P, Arnold D W, Bailey C G, Colston B W. Anal. Chem., 2008,80(6):1854. https://pubs.acs.org/doi/10.1021/ac800048k

doi: 10.1021/ac800048k
[32]
Hindson B J, Ness K D, Masquelier D A, Belgrader P, Heredia N J, Makarewicz A J, Bright I J, Lucero M Y, Hiddessen A L, Legler T C, Kitano T K, Hodel M R, Petersen J F, Wyatt P W, Steenblock E R, Shah P H, Bousse L J, Troup C B, Mellen J C, Wittmann D K, ErndtN G, Cauley T H, Koehler R T, So A P, Dube S, Rose K A, Montesclaros L, Wang S L, Stumbo D P, Hodges S P, Romine S, Milanovich F P, White H E, Regan J F, Karlin-Neumann G A, Hindson C M, Saxonov S, Colston B W. Anal. Chem., 2011,83(22):8604. https://pubs.acs.org/doi/10.1021/ac202028g

doi: 10.1021/ac202028g
[33]
Mazutis L, Araghi A F, Miller O J, Baret J C, Frenz Lucas, Janoshazi A, Taly V, Miller B J, Hutchison J B, Link D, Griffiths A D, Ryckelynck M. Anal. Chem., 2009,81(12):4813. https://pubs.acs.org/doi/10.1021/ac900403z

doi: 10.1021/ac900403z
[34]
Pekin D, Skhiri Y, Baret J C, Le Corre D, Mazutis L, Ben S C, Millot F, El Harrak A, Hutchison J B, Larson J W, Link D R, Laurent-Puig P, Griffiths A D, Taly V. Lab Chip, 2011,11(13):2156. http://dx.doi.org/10.1039/c1lc20128j

doi: 10.1039/c1lc20128j
[35]
Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths A D, Link D R, Larson J W. Lab Chip, 2011,11(13):2167. http://dx.doi.org/10.1039/c1lc20126c

doi: 10.1039/c1lc20126c
[36]
Hatch A C, Fisher J S, Tovar A R, Hsieh A T, Lin R, Pentoney S L, Yang D L, Lee A P. Lab Chip, 2011,11(22):3838. http://dx.doi.org/10.1039/c1lc20561g

doi: 10.1039/c1lc20561g
[37]
Dangla R, Kayi S C, Baroud C N. Proc. Natl. Acad. Sci. USA, 2013,110(3):853. http://www.pnas.org/cgi/doi/10.1073/pnas.1209186110

doi: 10.1073/pnas.1209186110
[38]
Schuler F, Trotter M, Geltman M, Schwemmer F, Wadle S, Dominguez-Garrido E, Lopez M, Cervera-Acedo C, Santibanez P, Von Stetten F, Zengerle R, Paust N. Lab Chip, 2016,16(1):208. http://xlink.rsc.org/?DOI=C5LC01068C

doi: 10.1039/C5LC01068C
[39]
Xu P, Zheng X, Tao Y, Du W B. Anal. Chem., 2016,88(6):3171. https://pubs.acs.org/doi/10.1021/acs.analchem.5b04510

doi: 10.1021/acs.analchem.5b04510
[40]
Chen Z T, Liao P Y, Zhang F L, Jiang M C, Zhu Y S, Huang Y Y. Lab Chip, 2017,17(2):235. http://xlink.rsc.org/?DOI=C6LC01305H

doi: 10.1039/C6LC01305H
[41]
Novak R, Zeng Y, Shuga J, Venugopalan G, Fletcher D A, Smith M T, Mathies R A. Angew. Chem. Int. Edit., 2011,123(2):410.
[42]
Leng X F, Zhang W H, Wang C M, Cui L A, Yang C J. Lab Chip, 2010,10(21):2841. http://xlink.rsc.org/?DOI=c0lc00145g

doi: 10.1039/c0lc00145g
[43]
Chen J Y, Luo Z F, Li L, He J L, Li L Q, Zhu J W, Wu P, He L Q. Lab Chip, 2018,18(3):412. http://xlink.rsc.org/?DOI=C7LC01160A

doi: 10.1039/C7LC01160A
[44]
Zhang W F, Li N, Koga D, Zhang Y, Zeng H L, Nakajima H, Lin J M, Uchiyama K. Anal. Chem., 2018,90(8):5329. https://pubs.acs.org/doi/10.1021/acs.analchem.8b00463

doi: 10.1021/acs.analchem.8b00463
[45]
Liu W W, Zhu Y, Feng Y M, Fang J, Fang Q. Anal. Chem., 2016,89(1):822. https://pubs.acs.org/doi/10.1021/acs.analchem.6b03687

doi: 10.1021/acs.analchem.6b03687
[46]
Li X R, Zhang D F, Zhang H M, Guan Z C, Song Y L, Liu R C, Zhu Z, Yang C Y. Anal. Chem., 2018,90(4):2570. https://pubs.acs.org/doi/10.1021/acs.analchem.7b04040

doi: 10.1021/acs.analchem.7b04040
[47]
Shen F, Du W B, Kreutz J E, Fok A, Ismagilov R F. Lab Chip, 2010,10(20):2666. http://xlink.rsc.org/?DOI=c004521g

doi: 10.1039/c004521g
[48]
Shen F, Davydova E K, Du W B, Kreutz J E, Piepenburg O, Ismagilov R F. Anal. Chem., 2011,83(9):3533. https://pubs.acs.org/doi/10.1021/ac200247e

doi: 10.1021/ac200247e
[49]
Kreutz J E, Munson T, Huynh T, Shen F, Du W B, Ismagilov R F. Anal. Chem., 2011,83(21):8158. https://pubs.acs.org/doi/10.1021/ac201658s

doi: 10.1021/ac201658s
[50]
Shen F, Sun B, Kreutz J E, Davydova E K, Du W B, Reddy P L, Joseph L J, Ismagilov R F. J. Am. Chem. Soc., 2011,133(44):17705. http://dx.doi.org/10.1021/ja2060116

doi: 10.1021/ja2060116
[51]
彭年才(PengN C), 数字PCR——原理、技术及应用 (Digital PCR-Principles, Technologies and Applications). 北京: 科学出版社( Beijing: Science Press), 2017. 204.
[52]
Farago N, Kocsis A K, Lovas S, Molnar G, Boldog E, Rozsa M, Szemenyei V, Vamos E, Nagy L I, Tamas G, Puskas L G. Biotechniques, 2013,54(6):327.
[53]
Jim F H, Simon C, Carole A F. Clin. Chem., 2015,61(1):79. https://academic.oup.com/clinchem/article/61/1/79/5611450

doi: 10.1373/clinchem.2014.221366
[54]
Cui X Y, Cao L, Huang Y L, Bai D, Huang S, Lin M, Yang Q Z, Lu T J, Xu F, Li F. Analyst, 2018,143:3011.
[55]
Wiencke J K, Bracci P M, Hsuang G, Zheng S, Hansen H, Wrensch M R, Rice T, Eliot M, Kelsey K T. Epigenetics, 2014,9(10):1360. http://dx.doi.org/10.4161/15592294.2014.967589

doi: 10.4161/15592294.2014.967589
[56]
Sartore-Bianchi A, Pietrantonio F, Amatu A, Milione M, Cassingena A, Ghezzi S, Caporale M, Berenato R, Falcomatà C, Pellegrinelli A, Bardelli A, Nichelatti M, Tosi F, De Braud F, Di Nicolantonio F, Barault L, Siena S. Eur. J. Cancer, 2017,71:43. https://linkinghub.elsevier.com/retrieve/pii/S0959804916325394

doi: 10.1016/j.ejca.2016.10.032
[57]
Hubers A J, Heideman D A M, Yatabe Y, Wood M D, Tull J, Taron M, Molina M A, Mayo C, Bertran-Alamillo J, Herder G J M, Koning R, Sie D, Ylstra B, Meijer G A, Snijders P J F, Witte B I, Postmus PE, Smith E F, Thunnissen E. Lung Cancer, 2013,82(1):38. https://linkinghub.elsevier.com/retrieve/pii/S0169500213003206

doi: 10.1016/j.lungcan.2013.07.011
[58]
Beaver J A, Jelovac D, Balukrishna S, Cochran R L, Croessmann S, Zabransky D J, Wong H Y, Valda Toro P, Cidado J, Blair B G, Chu D, Burns T, Higgins M J, Stearns V, Jacobs L, Habibi M, Lange J, Hurley P J, Lauring J, Van Den Berg D A, Kessler J, Jeter S, Samuels M L, Maar D, Cope L, Cimino-Mathews A, Argani P, Wolff A C, Park B H. Clin. Cancer Res., 2014,20(10):2643. http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-13-2933

doi: 10.1158/1078-0432.CCR-13-2933
[59]
Oxnard G R, Paweletz C P, Kuang Y, Mach S L, O’Connell A, Messineo M M, Luke J J, Butaney M, Kirschmeier P, Jackman D M, Janne P A. Clin. Cancer Res., 2014,20(6):1698. http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-13-2482

doi: 10.1158/1078-0432.CCR-13-2482
[60]
Mangolini A, Ferracin M, Zanzi M V, Saccenti E, Ebnaof S O, Poma V V, Sanz J M, Passaro A, Pedriali M, Frassoldati A, Querzoli P, Sabbioni S, Carcoforo P, Hollingsworth A, Negrini M. Biomark Res., 2015,3(1):12. http://biomarkerres.biomedcentral.com/articles/10.1186/s40364-015-0037-0

doi: 10.1186/s40364-015-0037-0
[61]
Lo Y M D, Corbetta N, Chamberlain P F, Rai V, Sargent I L, Redman CWG, Wainscoat J S. Lancet, 1997,350(9076):485. https://linkinghub.elsevier.com/retrieve/pii/S0140673697021740

doi: 10.1016/S0140-6736(97)02174-0
[62]
Lo Y M D, Lun F M F, Chan K C A, Lun F M F, Chan K C A, Tsui N B Y, Chong Ka C, Lau T K, Leung T Y, Zee B C Y, Cantor C R, Chiu R W K. Proc. Natl. Acad. Sci. U. S. A., 2007,104(32):13116. http://www.pnas.org/cgi/doi/10.1073/pnas.0705765104

doi: 10.1073/pnas.0705765104
[63]
Tsui N B Y, Kadir R A, Chan K C A, Chi C, Mellars G, Tuddenham E G, Leung T Y, Lau T K, Chiu R W K, Lo Y M D. Blood, 2011,117(13):3684. http://dx.doi.org/10.1182/blood-2010-10-310789

doi: 10.1182/blood-2010-10-310789
[64]
Strain M C, Lada S M, Luong T, Rought S E, Gianella S, Terry V H, Spina C A, Woelk CH, Richman D D. PloS One, 2013,8(4):e55943. https://dx.plos.org/10.1371/journal.pone.0055943

doi: 10.1371/journal.pone.0055943
[65]
Corbisier P, Bhat S, Partis L, Xie V R D, Emslie K R. Anal. Bioanal. Chem., 2010,396(6):2143. http://link.springer.com/10.1007/s00216-009-3200-3

doi: 10.1007/s00216-009-3200-3
[66]
Kim T G, Jeong S, Cho K. Appl. Microbiol. Biot., 2014,98(13):6105. http://link.springer.com/10.1007/s00253-014-5794-4

doi: 10.1007/s00253-014-5794-4
[67]
Boettger L M, Handsaker R E, Zody M C, McCarroll S A. Nat. Genet., 2012,44(8):881. https://doi.org/10.1038/ng.2334

doi: 10.1038/ng.2334
[68]
Mock U, Hauber I, Fehse B. Nat. Protoc., 2016,11(3):598. https://doi.org/10.1038/nprot.2016.027

doi: 10.1038/nprot.2016.027
[1] Zhaoxuan Fan, Liang Zhao, Xueji Zhang. The Detection of Circulating Tumor DNA: From Digitalization to Sequencing [J]. Progress in Chemistry, 2019, 31(10): 1384-1395.
[2] Lin Caiqin, Yao Bo* . Recent Advance in Digital PCR [J]. Progress in Chemistry, 2012, 24(12): 2415-2423.