中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1560-1575 DOI: 10.7536/PC190812 Previous Articles   Next Articles

Clustering-Triggered Emission of Nonconventional Luminophores

Xiaohong Chen1,2, Yunzhong Wang2, Yongming Zhang2, Wangzhang Yuan2,**()   

  1. 1. Institute for Advanced Materials, North China Electric Power University, Beijing 102206, China
    2. School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Online: Published:
  • Contact: Wangzhang Yuan
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51822303); Postdoctoral Innovative Talent Support Program of China(BX20190112)
Richhtml ( 100 ) PDF ( 1819 ) Cited
Export

EndNote

Ris

BibTeX

Intrinsic emission from nonconventional luminophores without classic remarkable conjugation has aroused increasing attention due to its significant fundamental importance and promising applications. These nonconventional luminophores generally contain the heteroatoms(i.e. N, O, S, P), unsaturated units of C≡N, C=O, C=C, etc., and their grouped moieties(i.e. hydroxyl, amino, ester, anhydride, amide, uramido, oxime, sulfone). In recent years, despite great progress has been achieved, the emission mechanism still remains under debate. Previously, we proposed the clustering-triggered emission(CTE) mechanism, namely the clustering of nonconventional chromophores with π and n electrons and subsequent through space conjugation result in extended electron delocalization and conformation rigidification, to rationalize the emission. Herein, based on the CTE mechanism, we review such typical emission characteristics of nonconventional luminophores as concentration enhanced emission, aggregation-induced emission(AIE), excitation-dependent emission, and phosphorescence. It is also noted that CTE mechanism can be used to rationalize the photophysical behaviors of different types of nonconventional luminophores of natural products, synthetic compounds, and biomolecules. Furthermore, it is also helpful to guide the rational discovery or design of new nonconventional luminogens. In addition, we briefly summarize the progress of different kinds of nonconventional luminophores. Finally, the perspectives of this emerging area are also discussed.

Fig. 1 (a) Photograph of rice taken under 365 nm UV light and its emission spectrum(λex=300 nm).(b) Photographs of the solid powders of starch and cellulose taken under 365 nm UV light[22]. Copyright 2013, Springer
Fig. 2 (a) Structures of starch, cellulose and some other natural saccharide products.(b) Single crystal structure of D-(+)-glucose and its schematic intra- and intermolecular O…O interactions.(c) Exampled 3D O…O short contacts in the D-(+)-glucose crystal
Fig. 3 (a) Photographs taken under 365 nm UV light and(b) emission spectra(λex=348 nm) of PAN/DMF solutions at varying concentrations.(c) Photographs of the solid powders and film of PAN taken under 365 nm UV light.(d) Emission spectra of 2 M PAN/DMF solution with varying λex values[57]. Copyright 2016, Wiley
Fig. 4 (a) Photographs of 1.25×10-4 M PAN/DMF taken at 77 K under 365 nm UV light or after ceasing the UV irradiation.(b) Photographs taken at room temperature under 365 nm UV light and(c) emission spectra and peak intensities of 1.25×10-5 M PAN in DMF and DMF/DCM mixtures.(d) Schematic illustration of possible electronic interactions in cyano clusters [57]. Copyright 2016, Wiley
Fig. 5 Structures of hyperbranched and linear PEIs and their photographs taken under UV irradiation[65]. Copyright 2009, Wiley
Fig. 6 (a) Photographs taken under UV irradiation and(b) emission spectra of hyperbranched PEI/ethanol solutions at varying concentrations[14]. Copyright 2017, Wiley
Fig. 7 Photographs taken under UV irradiation and(b) emission spectra of aqueous L-Lys solutions at varying concentrations[26]. Copyright 2018, Springer
Fig. 8 (a) Structure and schematic diagram of electronic interactions among different groups of HPS.(b) Photographs taken under 365 nm UV light and(c) excitation and emission spectra of HPS/ethanol solutions at varying concentrations[30].Copyright 2019, American Chemical Society
Fig. 9 (a) Structure and emission spectra of THF solution and nanosuspension in n-butyl acetate for PMV.(b) Luminescent photographs of THF solution(Ⅰ) and nanosuspensions of PMV with PMV concentration of 0.05 wt%(Ⅱ), 0.1 wt%(Ⅲ), and 1 wt%(Ⅳ).(c) SEM image of the nanoparticles[53]
Fig. 10 (a) Photographs of HOX/ethanol solutions at varying concentrations and HOX solids taken under UV light.(b) Single crystal structure of HOX and intermolecular interactions among nonconventional chromophores around one molecule.(c) Exampled through space electronic communications among C=N…O units in HOX crystal[24] Copyright 2017, Royal Society of Chemistry
Fig. 11 (a) Synthetic route to linear(l) and hyperbranched(hb) PAMAMs. Emission spectra and photographs taken under 365 nm UV light of (b) l-PAMAM and (c) hb-PAMAM in dilute aqueous solution(dash) and in 5/95(V/V) water/acetone mixture. Concentration=10 μg·mL-1, λex =380 nm. Emission spectra of (d) l-PAMAM and (e) hb-PAMAM films with different λex values as indicated. Inset: Luminescent microscopy photographs of PAMAM films taken under illumination of UV(top), blue(media), and green(bottom) lights[19]. Copyright 2015, Springer
Fig. 12 (a) Photographs of concentrated solutions of(a) PAN/DMF[57] and(b) aqueous L-Lys[26] taken at 77 K under 365 nm UV light or after ceasing the UV irradiation(a). Copyright 2016, wiley,(b) Copyright 2018, Springer
Fig. 13 (a) Structure of ε-PLL and the photograph of its powders taken under 365 nm UV light or after ceasing the irradiation.(b) Normalized emission spectra of ε-PLL powders with td of 0(solid line) and 0.1 ms(dash line) under varying λex[26]. Copyright 2018, Springer
Fig. 14 (a) Photographs of CAA solids taken under room light, 365 nm UV light or after ceasing the UV irradiation.(b) Single crystal structure of CAA and its schematic intra/intermolecular interactions among cyano and carboxyl groups.(c) Exampled 3D electronic interactions(through space conjugation) among cyano and carboxyl units in CAA crystals[27]. Copyright 2018, Royal Society of Chemistry
Fig. 15 (a) Structures of PEG, F127, and xylitol.(b) Photographs of the solid powders of F127, PEG, and xylitol taken under 312 nm UV light or after ceasing the UV irradiation at 77 K.(c) Photograph of xylitol powders taken at room temperature after ceasing the 312 nm UV irradiation, and partial electronic channels of O···O short contacts in xylitol crystals[29]. Copyright 2018, Royal Society of Chemistry
Fig. 16 (a) Structures and(b) photographs taken under 365 nm UV irradiation of MCC, HEC, HPC, CA, and C-CNC powders.(c) Delayed emission spectra of MCC solids at 77 K with different λex[42]. Copyright 2019, Springer
Fig. 17 (a) Structure of SA and photographs of solid powders, cast film, and Ca2+ crosslinked film taken under 312 nm UV light or after ceasing the irradiation.(b) Demonstration of the application of SA in anticounterfeiting[41]. Copyright 2018, American Chemical Society
Fig. 18 Structure and photographs of solid powders taken under UV light for(a) PU1~PU4[32] and(b) P1~P3[33]. Copyright 2019, Royal Society of Chemistry
Fig. 19 (a) HBPC with unreacted hydroxyl groups and(b~d) illustration of the formation of HBPC clusters in aqueous solution. TEM and luminescent images of (e) 5 and(f) 50 mg·mL-1 HBPC aqueous solutions[31]. Copyright 2017, Wiley
Fig. 20 (a) Structures and photographs of the solids taken under UV light or after ceasing the UV irradiation of PAA, PAM, and PNIPAM at ambient conditions.(b) Photographs of PNIPAM powders taken under UV light or after ceasing the UV irradiation under nitrogen(upper) or in vacuum(lower)[25]. Copyright 2019, Royal Society of Chemistry
Fig. 21 (a) Exampled nonaromatic amino acids and photographs of their recrystallized solids taken under 365 nm UV light.(b) Crystal structure of L-Ser with denoted intermolecular interactions around one molecule.(c) Fragmental 3D through space electronic communication channel in the L-Ser crystals [26]. Copyright 2018, Springer
Fig. 22 (a) Single crystal structure of BSA[83].(b) Photographs taken under 365 nm UV light or after ceasing the irradiation for aqueous solutions, solid powders, and a tablet of BSA.(c) Demonstration of the application of BSA in anticounterfeiting and oxygen sensing[44]. Copyright 2019, Wiley
Fig. 23 (a) Structure of PMVP and photographs taken under 365 nm UV light of(b) DMSO solutions(1 mg·mL-1) and(c) solid powders for PMVP with different molecular weights[34]. Copyright 2017, Royal Society of Chemistry
Fig. 24 Preparation strategy of new photoluminescent polymers and their luminescent photographs[36]. Copyright 2019, Royal Society of Chemistry
[1]
Mei J, Leung N L C, Kwok R T K, Lam J WY, Tang B Z . Chem. Rev., 2015,115:11718. https://www.ncbi.nlm.nih.gov/pubmed/26492387

doi: 10.1021/acs.chemrev.5b00263 pmid: 26492387
[2]
Guo J, Li X L, Nie H, Luo W, Gan S, Hu S, Hu R, Qin A, Zhao Z, Su S J, Tang B Z . Adv. Funct. Mater., 2017,27:1606458. http://doi.wiley.com/10.1002/adfm.v27.13

doi: 10.1002/adfm.v27.13
[3]
Long P, Feng Y, Cao C, Li Y, Han J, Li S, Peng C, Li Z, Feng W . Adv. Funct. Mater., 2018,28:1800791. http://doi.wiley.com/10.1002/adfm.v28.37

doi: 10.1002/adfm.v28.37
[4]
Zeng W, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S, Zhou T, Xie G, Sarma M, Wong K T, Wu C C, Yang C . Adv. Mater, 2018,30:1704961. http://doi.wiley.com/10.1002/adma.201704961

doi: 10.1002/adma.201704961
[5]
Ai X, Evans E W, Dong S, Gillett A J, Guo H, Chen Y, Hele T J H, Friend, R H, Li, F . Nature, 2018,563:536. https://www.ncbi.nlm.nih.gov/pubmed/30464267

doi: 10.1038/s41586-018-0695-9 pmid: 30464267
[6]
Chen Y, Spiering A J H, Karthikeyan S, Peters G W M, Meijer E W, Sijbesma R P . Nat. Chem., 2012,4:559. https://www.ncbi.nlm.nih.gov/pubmed/22717441

doi: 10.1038/nchem.1358 pmid: 22717441
[7]
Zhang Q, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee S Y, Yasuda T, Adachi C . Adv. Mater, 2015,27:2096. https://www.ncbi.nlm.nih.gov/pubmed/25678335

doi: 10.1002/adma.201405474 pmid: 25678335
[8]
He Z, Gao H, Zhang S, Zheng S, Wang Y, Zhao Z, Ding D, Yang B, Zhang Y, Yuan W Z . Adv. Mater., 2019,31:1807222. https://onlinelibrary.wiley.com/toc/15214095/31/18

doi: 10.1002/adma.v31.18
[9]
Xu Y, Liang X, Zhou X, Yuan P, Zhou J, Wang C, Li B, Hu D, Qiao X, Jiang X, Liu L, Su S J, Ma D, Ma Y . Adv. Mater, 2019,31:1807388. https://onlinelibrary.wiley.com/toc/15214095/31/12

doi: 10.1002/adma.v31.12
[10]
Hu J, Li Q, Wang X, Shao S, Wang L, Jing X, Wang F . Angew. Chem, 2019,131:8493.
[11]
Huang R, Wang C, Wang Y, Zhang H . Adv. Mater, 2018,30:1800814. http://doi.wiley.com/10.1002/adma.v30.21

doi: 10.1002/adma.v30.21
[12]
Birks J B . Photophysics of Aromatic Molecules. London:Wiley, 1970.
[13]
Klymchenko A S . Acc. Chem. Res., 2017,50:366. https://www.ncbi.nlm.nih.gov/pubmed/28067047

doi: 10.1021/acs.accounts.6b00517 pmid: 28067047
[14]
Yuan W Z, Zhang Y . Polym. Sci. Part A: Polym. Chem., 2017,55:560. http://doi.wiley.com/10.1002/pola.28420

doi: 10.1002/pola.28420
[15]
黄田(Huang T), 汪昭旸(Wang Z Y), 秦安军(Qin A J), 孙景志(Sun J Z), 唐本忠(Tang B Z) . 化学学报(Acta Chim. Sinica), 2013,71(07):979.
[16]
Wang D, Imae T . J. Am. Chem. Soc., 2004,126:13204. https://www.ncbi.nlm.nih.gov/pubmed/15479057

doi: 10.1021/ja0454992 pmid: 15479057
[17]
Lee W I, Bae Y, Bard A J . J. Am. Chem. Soc., 2004,126:8358. https://www.ncbi.nlm.nih.gov/pubmed/15237975

doi: 10.1021/ja0475914 pmid: 15237975
[18]
Lin S Y, Wu T H, Jao Y C, Liu C P, Lo L W, Yang C S . Chem. Eur. J., 2011,17:7158. https://www.ncbi.nlm.nih.gov/pubmed/21560173

doi: 10.1002/chem.201100620 pmid: 21560173
[19]
Wang R B, Yuan W Z, Zhu X Y . Chin. J. Polym. Sci., 2015,33:680. http://link.springer.com/10.1007/s10118-015-1635-x

doi: 10.1007/s10118-015-1635-x
[20]
Cao L, Yang W, Wang C, Fu S . J. Macromol. Sci. Part A: Pure Appl. Chem., 2007,44:417. http://www.tandfonline.com/doi/abs/10.1080/10601320601188299

doi: 10.1080/10601320601188299
[21]
Tomalia D A, Klajnert-Maculewicz B, Johnson K A M, Brinkman H F, Janaszewska A, Hedstrand D M . Prog. Polym. Sci., 2018,90:35. https://linkinghub.elsevier.com/retrieve/pii/S0079670018301746

doi: 10.1016/j.progpolymsci.2018.09.004
[22]
Gong Y, Tan Y, Mei J, Zhang Y, Yuan W Z, Sun J Z, Tang B Z . Sci. China Chem., 2013,56:1178. http://link.springer.com/10.1007/s11426-013-4923-8

doi: 10.1007/s11426-013-4923-8
[23]
宾鑫 (Bin X), 罗卫剑(Luo W J), 袁望章(Yuan W Z), 张永明(Zhang Y M) . 化学学报(Acta Chim. Sinica), 2016,74:935.
[24]
Zhang Q, Mao Q, Shang C, Chen Y N, Peng X, Tan H, Wang H . J. Mater. Chem. C, 2017,5:3699. http://xlink.rsc.org/?DOI=C7TC00783C

doi: 10.1039/C7TC00783C
[25]
Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan W Z . Mater. Chem. Front., 2019,3:257. http://xlink.rsc.org/?DOI=C8QM00528A

doi: 10.1039/C8QM00528A
[26]
Chen X, Luo W, Ma H, Peng Q, Yuan W Z, Zhang Y . Sci. China Chem., 2018,61:351. http://link.springer.com/10.1007/s11426-017-9114-4

doi: 10.1007/s11426-017-9114-4
[27]
Fang M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z . Mater. Chem. Front., 2018,2:2124. http://xlink.rsc.org/?DOI=C8QM00396C

doi: 10.1039/C8QM00396C
[28]
Lu H, Feng L, Li S, Zhang J, Lu H, Feng S . Macromolecules, 2015,48:476. https://pubs.acs.org/doi/10.1021/ma502352x

doi: 10.1021/ma502352x
[29]
Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan W Z . Macromol. Rapid Commun., 2018,39:1800528. https://www.ncbi.nlm.nih.gov/pubmed/30176085

doi: 10.1002/marc.201800528 pmid: 30176085
[30]
Feng Y, Bai T, Yan H, Ding F, Bai L, Feng W . Macromolecules, 2019,52:3075. https://pubs.acs.org/doi/10.1021/acs.macromol.9b00263

doi: 10.1021/acs.macromol.9b00263
[31]
Huang W, Yan H, Niu S, Du Y, Yuan L . J. Polym. Sci. Polym. Chem., 2017,55:3690. http://doi.wiley.com/10.1002/pola.v55.22

doi: 10.1002/pola.v55.22
[32]
Chen X, Liu X, Lei J, Xu L, Zhao Z, Kausar F, Xie X, Zhu X, Zhang Y, Yuan W Z . Mol. Syst. Des. Eng., 2018,3:364. http://xlink.rsc.org/?DOI=C7ME00118E

doi: 10.1039/C7ME00118E
[33]
Zhao Z, Chen X, Wang Q, Yang T, Zhang Y, Yuan W Z . Polym. Chem., 2019,10:3639. http://xlink.rsc.org/?DOI=C9PY00519F

doi: 10.1039/C9PY00519F
[34]
Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhang Z, Wang H . J. Mater. Chem. C, 2017,5:8082. http://xlink.rsc.org/?DOI=C7TC02381B

doi: 10.1039/C7TC02381B
[35]
Song G, Lin Y, Zhu Z, Zheng H, Qiao J, He C, Wang H Macromol . Rapid Commun., 2015,36:278. https://www.ncbi.nlm.nih.gov/pubmed/25420749

doi: 10.1002/marc.201400516 pmid: 25420749
[36]
Hu C, Ru Y, Guo Z, Liu Z, Song J, Song W, Zhang X, Qiao J . J. Mater. Chem. C, 2019,7:387. http://xlink.rsc.org/?DOI=C8TC05197F

doi: 10.1039/C8TC05197F
[37]
Zhou X, Luo W, Nie H, Xu L, Hu R, Zhao Z, Qin A, Tang B Z . J. Mater. Chem. C, 2017,5:4775. http://xlink.rsc.org/?DOI=C7TC00868F

doi: 10.1039/C7TC00868F
[38]
Zhao E, Lam J W Y, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang B Z . Macromolecules, 2015,48:64. https://pubs.acs.org/doi/10.1021/ma502160w

doi: 10.1021/ma502160w
[39]
Li W, Qu J, Du J, Ren K, Wang Y, Sun J, Hu Q . Chem. Commun, 2014,50:9584. https://www.ncbi.nlm.nih.gov/pubmed/25014029

doi: 10.1039/c4cc02880e pmid: 25014029
[40]
Li M, Li X, An X, Chen Z, Xiao H . Front. Chem, 2019,7:447. https://www.ncbi.nlm.nih.gov/pubmed/31281810

doi: 10.3389/fchem.2019.00447 pmid: 31281810
[41]
Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang B Z, Zhang Y, Yuan W Z . Biomacromolecules, 2018,19:2014. https://www.ncbi.nlm.nih.gov/pubmed/29558794

doi: 10.1021/acs.biomac.8b00123 pmid: 29558794
[42]
Du L L, Jiang B L, Chen X H, Wang Y Z, Zou L M, Liu Y L, Gong Y Y, Wei C, Yuan W Z . Chin. J. Polym. Sci., 2019,37:409. https://doi.org/10.1007/s10118-019-2215-2

doi: 10.1007/s10118-019-2215-2
[43]
Ye R, Liu Y, Zhang H, Su H, Zhang Y, Xu L, Hu R, Kwok R T K, Wong K S, Lam J W Y, Goddard W A, Tang B Z . Polym. Chem., 2017,8:1722. http://xlink.rsc.org/?DOI=C7PY00154A

doi: 10.1039/C7PY00154A
[44]
Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, Yuan W Z . Angew. Chem. Int. Ed., 2019,58:12667. https://www.ncbi.nlm.nih.gov/pubmed/31243877

doi: 10.1002/anie.201906226 pmid: 31243877
[45]
Homchaudhuri L, Swaminathan R . Chem. Lett, 2001,30:844. http://www.journal.csj.jp/doi/10.1246/cl.2001.844

doi: 10.1246/cl.2001.844
[46]
Shukla A, Mukherjee S, Sharma S, Agrawal V, Radha K K V, Guptasarma P . Archives Biochem Biophys, 2004,428:144. https://www.ncbi.nlm.nih.gov/pubmed/15246870

doi: 10.1016/j.abb.2004.05.007 pmid: 15246870
[47]
Chan F T S, Kaminski S G S, Kumita J R, Bertoncini C W, Dobson C M, Kaminski C F . Analyst, 2013,138:2156. https://www.ncbi.nlm.nih.gov/pubmed/23420088

doi: 10.1039/c3an36798c pmid: 23420088
[48]
Pinotsi D, Grisanti L, Mahou P, Gebauer R, Kaminski C F, Hassanali A, Kaminski S G S . J. Am. Chem. Soc., 2016,138:3046. https://www.ncbi.nlm.nih.gov/pubmed/26824778

doi: 10.1021/jacs.5b11012 pmid: 26824778
[49]
Del Mercato L L, Pompa P P, Maruccio G, Della T A, Sabella S, Tamburro A M, Cingolani R, Rinaldi R . Proc. Natl. Acad. Sci. U. S. A., 2007,104:18019. https://www.ncbi.nlm.nih.gov/pubmed/17984067

doi: 10.1073/pnas.0702843104 pmid: 17984067
[50]
Pucci A, Rausa R, Ciardelli F . Macromol. Chem. Phys., 2008,209:900. http://doi.wiley.com/10.1002/%28ISSN%291521-3935

doi: 10.1002/(ISSN)1521-3935
[51]
Du Y, Yan H, Huang W, Chai F, Niu S . ACS Sustainable Chem. Eng., 2017,5:6139. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b01019

doi: 10.1021/acssuschemeng.7b01019
[52]
Niu S, Yan H, Chen Z, Li S, Xu P, Zhi X . Polym. Chem, 2016,7:3747. http://xlink.rsc.org/?DOI=C6PY00654J

doi: 10.1039/C6PY00654J
[53]
Xing C M, Lam J W Y, Qin A, Dong Y, Häußler M, Yang W T, Tang B Z . Polym. Mater. Sci. Eng., 2007,96:418.
[54]
Chu C C, Imae T . Macromol. Rapid Commun., 2009,30:89. https://www.ncbi.nlm.nih.gov/pubmed/21706580

doi: 10.1002/marc.200800571 pmid: 21706580
[55]
Shiau S F, Juang T Y, Chou H W, Liang M . Polymer, 2013,54:623. https://linkinghub.elsevier.com/retrieve/pii/S0032386112010609

doi: 10.1016/j.polymer.2012.12.013
[56]
Bhattacharya S, Rao V N, Sarkar S, Shunmugam R . Nanoscale, 2012,4:6962. https://www.ncbi.nlm.nih.gov/pubmed/23073154

doi: 10.1039/c2nr32391e pmid: 23073154
[57]
Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan W Z, Zhang Y . Small, 2016,12:6586. https://www.ncbi.nlm.nih.gov/pubmed/27608140

doi: 10.1002/smll.201601545 pmid: 27608140
[58]
Yang L, Wang L, Cui C, Lei J, Zhang J . Chem. Commun, 2016,52:6154. https://www.ncbi.nlm.nih.gov/pubmed/27075518

doi: 10.1039/c6cc01917j pmid: 27075518
[59]
Miao X, Liu T, Zhang C, Geng X, Meng Y, Li X . Phys. Chem. Chem. Phys., 2016,18:4295. https://www.ncbi.nlm.nih.gov/pubmed/26804709

doi: 10.1039/c5cp07134h pmid: 26804709
[60]
Sun M, Hong C Y, Pan C Y . J. Am. Chem. Soc., 2012,134:20581. https://www.ncbi.nlm.nih.gov/pubmed/23215055

doi: 10.1021/ja310236m pmid: 23215055
[61]
Li Q, Tang Y, Hu W, Li Z . Small, 2018,14:1801560. http://doi.wiley.com/10.1002/smll.v14.38

doi: 10.1002/smll.v14.38
[62]
Shao S, Zhou Q, Si J, Tang J, Liu X, Wang M, Gao J, Wang K, Xu R, Shen Y . Nat. Biomed. Eng., 2017,1:745. https://www.ncbi.nlm.nih.gov/pubmed/31015667

doi: 10.1038/s41551-017-0130-9 pmid: 31015667
[63]
Wang D, Imae T, Miki M . J. Colloid Interf. Sci., 2007,306:222. https://linkinghub.elsevier.com/retrieve/pii/S0021979706009337

doi: 10.1016/j.jcis.2006.10.025
[64]
Yu W, Wu Y, Chen J, Duan X, Jiang X F, Qiu X, Li Y . RSC Adv, 2016,6:51257. http://xlink.rsc.org/?DOI=C6RA06227J

doi: 10.1039/C6RA06227J
[65]
Pastor-Pérez L, Chen Y, Shen Z, Lahoz A, Stiriba S E . Macromol. Rapid Commun., 2007,28:1404. http://doi.wiley.com/10.1002/%28ISSN%291521-3927

doi: 10.1002/(ISSN)1521-3927
[66]
Brown G M, Levy H A . Science, 1965,147:1038.
[67]
Niu S, Yan H, Chen Z, Yuan L, Liu T, Liu C . Macromol. Rapid Commun., 2016,37:136. https://www.ncbi.nlm.nih.gov/pubmed/26524219

doi: 10.1002/marc.201500572 pmid: 26524219
[68]
Hu C, Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J . Macromol. Rapid Commun., 2018,39:1800035. https://www.ncbi.nlm.nih.gov/pubmed/29675937

doi: 10.1002/marc.201800035 pmid: 29675937
[69]
Zhu S, Song Y, Shao J, Zhao X, Yang B . Angew. Chem. Int. Ed., 2015,54:14626. https://www.ncbi.nlm.nih.gov/pubmed/26471238

doi: 10.1002/anie.201504951 pmid: 26471238
[70]
Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B . Angew. Chem. Int. Ed., 2013,52:3953. https://www.ncbi.nlm.nih.gov/pubmed/23450679

doi: 10.1002/anie.201300519 pmid: 23450679
[71]
Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H . Adv. Mater, 2015,27:7782. https://www.ncbi.nlm.nih.gov/pubmed/26487302

doi: 10.1002/adma.201503821 pmid: 26487302
[72]
Zhang G, Chen J, Payne S J, Kooi S E, Demas J N, Fraser C L . J. Am. Chem. Soc., 2007,129:8942. https://www.ncbi.nlm.nih.gov/pubmed/17608480

doi: 10.1021/ja0720255 pmid: 17608480
[73]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun J Z, Ma Y, Tang B Z . J. Phys. Chem. C, 2010,114:6090. https://pubs.acs.org/doi/10.1021/jp909388y

doi: 10.1021/jp909388y
[74]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J . Nat. Chem, 2011,3:205. https://www.ncbi.nlm.nih.gov/pubmed/21336325

doi: 10.1038/nchem.984 pmid: 21336325
[75]
Hirata S, Totani K, Zhang J, Yamashita T, Kaji H, Marder S R, Watanabe T, Adachi C . Adv. Funct. Mater., 2013,23:3386. http://doi.wiley.com/10.1002/adfm.v23.27

doi: 10.1002/adfm.v23.27
[76]
An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W . Nat. Mater, 2015,14:685. https://www.ncbi.nlm.nih.gov/pubmed/25849370

doi: 10.1038/nmat4259 pmid: 25849370
[77]
Gong Y, Chen G, Peng Q, Yuan W Z, Xie Y, Li S, Zhang Y, Tang B Z . Adv. Mater., 2015,27:6195. https://www.ncbi.nlm.nih.gov/pubmed/26456393

doi: 10.1002/adma.201502442 pmid: 26456393
[78]
Jiang N, Li G F, Zhang B H, Zhu D X, Su Z M, Bryce M R . Macromolecules, 2018,51:4178. https://pubs.acs.org/doi/10.1021/acs.macromol.8b00715

doi: 10.1021/acs.macromol.8b00715
[79]
Wang D, Wang X, Xu C, Ma X . Sci. China Chem., 2019,62:430. https://doi.org/10.1007/s11426-018-9383-2

doi: 10.1007/s11426-018-9383-2
[80]
Mathew M S, Sreenivasan K, Joseph K . RSC Adv, 2015,5:100176. http://xlink.rsc.org/?DOI=C5RA16379J

doi: 10.1039/C5RA16379J
[81]
Permyakov E. A. Luminescent Spectroscopy of Proteins, 1st Ed. Boca Raton: CRC Press, 1993.
[82]
Lakowicz J R . Principles of Fluorescence Spectroscopy, 3rd Ed. New York: Springer, 2006.
[83]
Majorek K A, Porebski P J, Dayal A . Mol. Immunol, 2012,52:174. https://www.ncbi.nlm.nih.gov/pubmed/22677715

doi: 10.1016/j.molimm.2012.05.011 pmid: 22677715
[84]
Chen X, He Z, Kausar F, Chen G, Zhang Y, Yuan W Z . Macromolecules, 2018,51:9035. https://pubs.acs.org/doi/10.1021/acs.macromol.8b01743

doi: 10.1021/acs.macromol.8b01743
[85]
Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J . Chem. Soc. Rev., 2012,41:3878. https://www.ncbi.nlm.nih.gov/pubmed/22447121

doi: 10.1039/c2cs35016e pmid: 22447121
[86]
Zhao J, Chi Z, Zhang Y, Mao Z, Yang Z, Ubba E, Chi Z . J. Mater. Chem. C, 2018,6:6327. http://xlink.rsc.org/?DOI=C8TC01648H

doi: 10.1039/C8TC01648H
[87]
Luo X, Li J, Li C, Heng L, Dong Y, Liu Z, Bo Z, Tang B Z . Adv. Mater., 2011,23:3261. 5a144c8b-95b6-424c-b847-74fb25e3fe52http://dx.doi.org/10.1002/adma.201101059

doi: 10.1002/adma.201101059
[1] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[2] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[3] Zhuke Gong, Hui Xu. Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials [J]. Progress in Chemistry, 2022, 34(11): 2432-2461.
[4] Liang He, Caiping Tan, Qian Cao, Zongwan Mao. Application of Phosphorescent Cyclometalated Iridium(Ⅲ) Complexes in Cancer Treatment [J]. Progress in Chemistry, 2018, 30(10): 1548-1556.
[5] Liang Aihui, Huang Gui, Wang Zhiping, Chen Shuiliang, Hou Haoqing. Polymer Phosphorescent Materials with Iridium Complexes and Their Electroluminescent Properties [J]. Progress in Chemistry, 2016, 28(4): 471-481.
[6] Zhou Lixia, Liu Shujuan, Zhao Qiang, Ling Qidan, Huang Wei. Light-Emitting Electrochemical Cells Based on Ionic Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2011, 23(9): 1871-1882.
[7] Liao Zhangjin, Zhu Tongjun, Mi Baoxiu, Gao Zhiqiang, Fan Quli, Huang Wei. Molecular Iridium(Ⅲ) Complexes and Their Corresponding Electrophosphorescent Devices [J]. Progress in Chemistry, 2011, 23(8): 1627-1643.
[8] Tao Ran, Qiao Juan, Duan Lian, Qiu Yong. Blue Phosphorescence Materials for Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2010, 22(12): 2255-2267.
[9] Ying Lei Zhang Anqi Yang Wei Cao Yong. Electrophosphorescent Light-Emitting Polymers [J]. Progress in Chemistry, 2009, 21(6): 1275-1286.
[10]

Wang Lei|Lei Gangtie** Yi Xiaohua

. White Organic Light Emitting Diodes Based on Combination of Fluorescence and phosphorescence [J]. Progress in Chemistry, 2008, 20(0708): 1050-1056.
[11] Xiuju Zhang1,2**,Yunhu Xu1,Huahong Shi1. Organic Phosphorescent Electroluminescent Materials with Iridium Core [J]. Progress in Chemistry, 2006, 18(0708): 870-882.
[12] Chuanming Wang Quli Fan Yanli Huo Wei Huang . Molecular Design of Organic Electrophosphorescent Materials: from Host Materials to Guest Materials [J]. Progress in Chemistry, 2006, 18(05): 519-525.
[13] Qiang Zhao Fuyou Li Chunhui Huang . Advances in White Organic Light Emitting Devices Using Phosphorescent Emitters [J]. Progress in Chemistry, 2006, 18(05): 526-532.
[14] Zhen Hongyu,Yang Wei**,Zhu Weiguo,Cao Yong. Improve the Quantum Efficiency in O/PLED Using Triplet Exciton* [J]. Progress in Chemistry, 2004, 16(01): 99-.
[15] Wu Shikang,Zhang Xiaohong, Li Shutang. Problems in the Study of Electro-Lum inescence Devices Based on Phosphorescent Dyes [J]. Progress in Chemistry, 2001, 13(06): 413-.