中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1460-1471 DOI: 10.7536/PC190809 Previous Articles   Next Articles

The Total Synthesis of ent-Kaurane Diterpenoids

Wu Li, Junjie Wang, Dawei Ma*()   

  1. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received: Online: Published:
  • Contact: Dawei Ma
  • About author:
Richhtml ( 57 ) PDF ( 1409 ) Cited
Export

EndNote

Ris

BibTeX

The ent-kaurane diterpenoids, widely distributed in terrestrial plants, represent an important group of tetracyclic diterpenes with diverse scaffolds and varied bioactivities. More and more studies have revealed that these compounds possess potent antitumor, antibacterial and anti-inflammatory activities. The tetracyclic ent-kaurane diterpenoids have attractive structural diversity owing to intramolecular cyclization, oxidative cleavage and rearrangements of their parent compounds. As a result, the total synthesis of ent-kaurane diterpenoids has received great attention from synthetic community during the past decades. This review describes the recent progress in this field, which includes total synthesis of C-20 non-oxygenated ent-kauranes such as(+)-lungshengenin D and pharicins A-C; total synthesis of C-20 oxygenated ent-kauranes such as maoecrystal P, eriocalyxin B, neolaxiflorin L and xerophilusin I; total synthesis of seco-ent-kauranes such as sculpomeatin N, trichorabdal A, maoecrystal Z, enmein, isodocarpin, sculponin R, londirabdiol, longirabdolactone and effusin; and total synthesis of nor or rearranged-ent-kauranes such as jungermannenones B and C, maoecrystal V, jungermatrobrunin A and kauradienone.

Scheme. 1 Skelton of ent-Kaurene
Scheme. 2 Biosynthesis of ent-kaurene
Scheme. 3 Structures of some ent-kaurenes
Scheme. 4 The first asymmetric total synthesis of 1α,6α-diacetoxy-ent-kaura-9(11),16-dien-12,15-dione by Ma group
Scheme. 5 The first asymmetric total synthesis of lungshengenin D by Ma group
Scheme. 6 The first asymmetric total synthesis of pharicins A~C and(+)-7-O-acetylpharicin C by Ding group
Scheme. 7 Luo’s first total synthesis of maoecrystal P
Scheme. 8 The first total synthesis of(±)-eriocalyxin B,(±)-neolaxiflorin L and(±)-xerophilusin I by the Lee group
Scheme. 9 Biosynthesis of enmein type and spiro-lactone type diterpenoids
Scheme. 10 The first total synthesis of(±)-sculpomeatin N by the Zhai group
Scheme. 11 The total synthesis of(±)-sculpomeatin N by Thomson group
Scheme. 12 The total synthesis of(±)-trichorabdal A and(±)- maoecrystal Z by Liang group
Scheme. 13 The asymmetric total synthesis of(-)-enmein,(-)-isodocarpin and(-)-sculponin R by Dong group
Scheme. 14 The asymmetric total synthesis of(+)-londirabdiol,(-)-longirabdolactone and(-)-effusin by Li group
Scheme. 15 The total synthesis of(±)-jungermannenones B and(±)-jungermannenones C by Lei group
Scheme. 16 The asymmetric total synthesis of(-)-maoecrystal V by Baran group
Scheme. 17 Lei’s asymmetric total synthesis of(+)-jungermatrobrunin A
Scheme. 18 The asymmetric total synthesis of(+)-ent-kauradienone and(+)-jungermannenones C by the Lei group
[1]
Quitt P, Mosettig E, Cambie R C, Rutledge P S, Briggs L H . J. Am. Chem. Soc., 1961,83:3720. https://pubs.acs.org/doi/abs/10.1021/ja01478a040

doi: 10.1021/ja01478a040
[2]
(a) Sun H D, Huang S X, Han Q B . Nat. Prod. Rep., 2006,23:673.
(b) Sun H D, Xu Y L, Jiang B . Diterpenoids from Isodon Species; Science Press: Beijing, 2001.
[3]
García P A, De Oliveira A B, Batista R . Molecules, 2007,12:455. https://www.ncbi.nlm.nih.gov/pubmed/17851404

doi: 10.3390/12030455 pmid: 17851404
[4]
Bohlmann J, Meyer-Gauen G, Croteau R . Proc. Natl. Acad. Sci. U. S. A., 1998,95:4126. https://www.ncbi.nlm.nih.gov/pubmed/9539701

doi: 10.1073/pnas.95.8.4126 pmid: 9539701
[5]
杜明军(Du M J), 雷晓光(Lei X G) . 有机化学(Youji Huaxue), 2015,35:2447.
[6]
Zhao X B, Li W, Wang J J, Ma D W . J. Am. Chem. Soc., 2017,139:2932. https://www.ncbi.nlm.nih.gov/pubmed/28186744

doi: 10.1021/jacs.7b00140 pmid: 28186744
[7]
(a) Levine S R, Krout M R, Stoltz B M . Org. Lett., 2009,11:289. https://www.ncbi.nlm.nih.gov/pubmed/19093809

doi: 10.1021/ol802409h pmid: 19093809
(b) Mohr J T D, Behenna C, Harned A M, Stoltz B M . Angew. Chem., Int. Ed., 2005,44:6924.;

pmid: 19093809
(c) Behenna D C, Stoltz B M . J. Am. Chem. Soc., 2004,126:15044.;

pmid: 19093809
(d) Hong A Y, Stoltz B M . Eur. J. Org. Chem, 2013,2013:2745.

pmid: 19093809
[8]
Trost B M, Bream R N, Xu J . Angew. Chem., Int. Ed., 2006,45:3109. https://www.ncbi.nlm.nih.gov/pubmed/16596689

doi: 10.1002/anie.200504421 pmid: 16596689
[9]
(a) Hoppe D, Hense T . Angew. Chem., Int. Ed., 1997,36:2282. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
(b) Hoppe D . Synthesis, 2009,2009:43.
[10]
He C, Hu J L, Wu Y B, Ding H F . J. Am. Chem. Soc., 2017,139:6098. https://www.ncbi.nlm.nih.gov/pubmed/28426216

doi: 10.1021/jacs.7b02746 pmid: 28426216
[11]
(a) Ylijoki K E O, Stryker J M . Chem. Rev., 2013,113:2244. https://www.ncbi.nlm.nih.gov/pubmed/23153111

doi: 10.1021/cr300087g pmid: 23153111
(b) Green J C, Pettus T R R . J. Am. Chem. Soc., 2011,133:1603.

pmid: 23153111
[12]
(a) Bach R D, Domagala J M . J. Org. Chem., 1984,49:4181. https://pubs.acs.org/doi/abs/10.1021/jo00196a016

doi: 10.1021/jo00196a016
(b) Bach R D, Klix R C . J. Org. Chem., 1985,50:5438.
(c) Crane S N, Burnell D J . J. Org. Chem., 1998,63:5708.
[13]
Su F, Lu Y D, Kong L R, Liu J J, Luo T P . Angew. Chem., Int. Ed., 2018,57, 760. https://www.ncbi.nlm.nih.gov/pubmed/29205726

doi: 10.1002/anie.201711084 pmid: 29205726
[14]
Szostak M, Fazakerley N J, Parmar D, Procter D J . Chem. Rev., 2014,114:5959. https://www.ncbi.nlm.nih.gov/pubmed/24758360

doi: 10.1021/cr400685r pmid: 24758360
[15]
Zhu L Z, Ma W J, Zhang M X, Lee M M, Wong W Y, Chan B D, Yang Q Q, Wong W T, Tai W C, Lee C S . Nature Communications, 2018,9, 1283. https://www.ncbi.nlm.nih.gov/pubmed/29599469

doi: 10.1038/s41467-018-03546-9 pmid: 29599469
[16]
(a) Zhu L Z, Zhou C S, Yang W, He S Z, Cheng G J, Zhang X H, Lee C S . J. Org. Chem., 2013,78:7912. https://www.ncbi.nlm.nih.gov/pubmed/23859063

doi: 10.1021/jo401105q pmid: 23859063
(b) Du G Y, Wang G P, Ma W J, Yang Q Q, Bao W L, Liang X F, Zhu L Z, Lee C S . Synlett, 2017,28:1394.

pmid: 23859063
[17]
Pan Z Q, Zheng C Y, Wang H Y, Chen Y H, Li Y, Cheng B, Zhai H B . Org. Lett., 2014,16:216. https://www.ncbi.nlm.nih.gov/pubmed/24295285

doi: 10.1021/ol403208g pmid: 24295285
[18]
(a) Brieger G, Bennett J N . Chem. Rev. 1980,80:63. https://pubs.acs.org/doi/abs/10.1021/cr60323a004

doi: 10.1021/cr60323a004
(b) Craig D . Chem. Soc. Rev., 1987,16:187.;
(c) Thomas E J . Acc. Chem. Res., 1991,24:229.
(d) Nicolaou K C, Snyder S A, Montagnon T, Vassilikogiannakis G, Angew . Chem., Int. Ed., 2002,41:1668.
(e) Takao K I, Munakata R, Tadano K I . Chem. Rev., 2005,105:4779.;
(f) Juhl M, Tanner D . Chem. Soc. Rev., 2009,38:2983.;
(13)(a) Horner L, Hoffmann H, Wippel H G . Chem. Ber., 1958,91:61.;
(b) Horner L, Hoffmann H, Wippel H G, Klahre G . Chem. Ber., 1959,92:2499.;
(c) Wadsworth W S, Emmons W D . J. Am. Chem. Soc., 1961,83:1733.;
(d) Wadsworth D H, Schupp O E, Seus E J, Ford J A . J. Org. Chem., 1965,30:680.;
(e) Arndt M, Hilt G, Khlebnikov A F, Kozhushkov S I, de Meijere A . Eur. J. Org. Chem., 2012,3112.
[19]
Moritz B J, Mack D J, Tong L, Thomson R J . Angew. Chem., Int. Ed, 2014,53:2988. https://www.ncbi.nlm.nih.gov/pubmed/24519748

doi: 10.1002/anie.201310060 pmid: 24519748
[20]
Lazarski K E, Hu D X, Stern C L, Thomson R J . Org. Lett., 2010,12:3010. https://www.ncbi.nlm.nih.gov/pubmed/20521835

doi: 10.1021/ol101025r pmid: 20521835
[21]
Scholl M, Ding S, Lee C W, Grubbs R H . Org. Lett., 1999,1:953. https://www.ncbi.nlm.nih.gov/pubmed/10823227

doi: 10.1021/ol990909q pmid: 10823227
[22]
Lv Z, Chen B L, Zhang C, Liang G X . Chem. Eur. J., 2018,24:9773. https://www.ncbi.nlm.nih.gov/pubmed/29702738

doi: 10.1002/chem.201802083 pmid: 29702738
[23]
(a) Renaud P, Salom-Roig X, Dénès F . Synthesis, 2004,1903.
(b) Bian M, Wang Z, Xiong X C, Sun Y, Matera C, Nicolaou K C, Li A . J. Am. Chem. Soc., 2012,134:8078.
(c) Li H L, Chen Q F, Lu Z H, Li A . J. Am. Chem. Soc. 2016,138:15555.
[24]
Pan S Y, Chen S C, Dong G B . Angew. Chem. Int. Ed. 2018,57:6333. https://www.ncbi.nlm.nih.gov/pubmed/29644802

doi: 10.1002/anie.201803709 pmid: 29644802
[25]
Zhang J P, Li Z J, Zhuo J M, Cui Y, Han T, Li C . J. Am. Chem. Soc. 2019,141:8372. https://www.ncbi.nlm.nih.gov/pubmed/31060356

doi: 10.1021/jacs.9b03978 pmid: 31060356
[26]
Huihui K M M, Caputo J A, Melchor Z, Oliveres A M, Spiewak A M, Johnson K A, DiBenedetto T A, Kim S, Ackerman L K G, Weix D J . J. Am. Chem. Soc. 2016,138:5016. https://www.ncbi.nlm.nih.gov/pubmed/27029833

doi: 10.1021/jacs.6b01533 pmid: 27017436
(b) Johnson K A, Biswas S, Weix D J . Chem. Eur. J., 2016,22:7399. https://www.ncbi.nlm.nih.gov/pubmed/27017436

doi: 10.1002/chem.201601320 pmid: 27017436
[27]
(a) Okada K, Okamato K, Morita N, Okubo K, Oda Masaji . J. Am. Chem. Soc. 1991,113:9401. https://pubs.acs.org/doi/abs/10.1021/ja00024a074

doi: 10.1021/ja00024a074
(b) Chu L L, Ohta C, Zuo Z W, Macmillan D W C . J. Am. Chem. Soc., 2014,136:10886.;
(c) Pratsch G, Lackner G L, Overman L E . J. Org. Chem., 2015,80:6025.;
(d) Overman L E, Jamison C R . Acc. Chem. Res., 2016,49:1578.;
(e) Qin T, Malins L R, Edwards J T, Merchant R R, Novak A J, Zhong J Z, Mills L R, Yan M, Yuan C, Eastgate M D, Baran P S . Angew. Chem. Int. Ed., 2017,56:260.;
[28]
Liu W L, Li H H, Cai P J, Wang Z, Yu Z X, Lei X G . Angew. Chem. Int. Ed., 2016,55:3112. https://www.ncbi.nlm.nih.gov/pubmed/26823176

doi: 10.1002/anie.201511659 pmid: 26823176
[29]
Youn S W, Pastine S J, Sames D . Org. Lett, 2004,6:581. https://www.ncbi.nlm.nih.gov/pubmed/14961628

doi: 10.1021/ol036385i pmid: 14961628
[30]
Cernijenko A, Risgaard R, Baran P S . J. Am. Chem. Soc., 2016,138:9425. https://www.ncbi.nlm.nih.gov/pubmed/27457680

doi: 10.1021/jacs.6b06623 pmid: 27457680
[31]
Han Q B, Cheung S, Tai J, Qiao C F, Song J Z, Tso T F, Sun H D, Xu H X . Org. Lett., 2006,8:4727. https://www.ncbi.nlm.nih.gov/pubmed/17020288

doi: 10.1021/ol061757j pmid: 17020288
[32]
Wu J B, Kadonaga Y, Hong B K, Wang J, Lei X G . Angew. Chem. Int. Ed., 2019,131:10995. https://onlinelibrary.wiley.com/toc/15213757/131/32

doi: 10.1002/ange.v131.32
[33]
(a) Ponce M A, Ramirez J A, Galagovsky L R, Gros E G, Erra-Balsells R . J. Chem. Soc., Perkin Trans. 2., 2000: 2351.
(b) Yadav J S, Thirupathaiah B, Srihari P A . Tetrahedron., 2010,66:2005.;
(c) Han J G, Li X, Guan Y, Zhao W J, Wulff W D, Lei X G . Angew. Chem. Int. Ed. 2014,53:9257.
[34]
Hong B K, Liu W L, Wang J, Wu J B, Kadonaga Y, Cai P J, Lou H X, Yu Z X, Li H H, Lei X G . Chem., 5:1671. https://linkinghub.elsevier.com/retrieve/pii/S2451929419301810

doi: 10.1016/j.chempr.2019.04.023
[1] Xiaoxiao Wu, Kaiqing Ma. Total Synthesis of Stemona Alkaloids [J]. Progress in Chemistry, 2020, 32(6): 752-760.
[2] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[3] Xiaoyu Liu, Tao Xiao, Yong Qin. Total Synthesis of the Akuammiline Alkaloid Strictamine [J]. Progress in Chemistry, 2018, 30(5): 578-585.
[4] Shi Haiming1|Min Zhida2|Tu Pengfei3|Li Xiaobo1*. Chemistry and Biological Activity of Diterpenoids from Genus Euphorbia in China [J]. Progress in Chemistry, 2008, 20(0203): 375-385.
[5] Wu Yikang,Wu Yulin. A New Era for Organic Synthesis Highlights of the Recent Progress [J]. Progress in Chemistry, 2007, 19(01): 6-34.
[6] Zhao Baoxiang. Application of Nitrones in Total Synthesis of Natural Products [J]. Progress in Chemistry, 2000, 12(01): 77-.
[7] Xu Rui,Bai Donglu. Chemistry and Pharmacology of New Potent Analgesic Epibatidine [J]. Progress in Chemistry, 1999, 11(03): 313-.