中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1615-1622 DOI: 10.7536/PC190808 Previous Articles   

External Field Enhanced Environmental Responsive Solid Extraction Technology

Liangrong Yang1,3, Huifang Xing1,3, Hongnan Qu1,3, Jiemiao Yu1,3, Huizhou Liu1,2,3,**()   

  1. 1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. National Science Library, Chinese Academy of Sciences, Beijing 100190, China
    3. College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Online: Published:
  • Contact: Huizhou Liu
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21922814); National Natural Science Foundation of China(21676273); National Natural Science Foundation of China(U1507203); National Natural Science Foundation of China(31961133019); National Natural Science Foundation of China(21921005); Chinese Academy of Sciences Youth Innovation Promotion Talent Project(2016043); Beijing Natural Science Foundation Project(2194086)
Richhtml ( 18 ) PDF ( 604 ) Cited
Export

EndNote

Ris

BibTeX

Efficient, precise and controllable separation of target compounds in low concentration and large volume complex solutions is a world frontier in the field of chemical separation science. Solid phase extraction technology currently faces two challenges in industrial separation of low-concentration complex systems. On the one hand, it is difficult to give consideration to both of the high selective precision capture and the mild green desorption. On the other hand, solid phase extraction technology lacks efficient separation process and equipment for large scaled continuous separation. This review summarizes the research progress of new environmental responsive solid phase extraction technology, magnetic field responsive solid phase extraction technology, electric field- and ultrasound field- assisted solid phase extraction technology in order to solve the problems of current solid phase extraction technology, and achieve the efficient and precise separation for low concentration complex systems. Finally, the research and development direction of solid phase extraction technology in this application field is prospected. In this review, the key scientific issues of external field enhanced environmental responsive solid phase extraction technology, including environmental responsive problems, controllable separation problems and process amplification problems, are further discussed. Besides, measures and suggestions are proposed for the development of related fields.

Fig. 1 Schematic diagram of solid phase extraction
Fig. 2 The challenges of solid phase extraction applied in complex industrial separation systems with low concentrations
Fig. 3 Schematic diagram of novel environmental responsive solid phase extraction technology and magnetic field responsive solid phase extraction technology
Fig. 4 Two-dimensional infrared synchronization correlation spectrum(a) and asynchronous correlation spectrum(b)[12]
Fig. 5 Temperature /pH responsive magnetic nanoparticle and interface regulated aggregation and depolymerization behavior[14]
Fig. 6 Temperature responsive aptamer solid phase extraction adsorbent and interface regulated separation of thrombin
Fig. 7 Light responsive aptamer solid phase extraction adsorbent and interface regulated separation of thrombin
Fig. 8 The comparation between novel solid phase extraction technology and the traditional method
Fig. 9 Magnetic responsive solid phase extraction technology
Fig. 10 Analysis of reasons for slow adsorption rate
Table 1 Comparison of domestic and foreign counterparts
Fig. 11 Difficulties in continuous amplification of magnetic separation devices
Fig. 12 Novel gas-assisted superparamagnetic continuous extraction technology and equipment
Fig. 13 Gas-assisted magnetic separation used for continuous separation and purification of protein[46]
[1]
(a) 陈家镛(Chen J Y) . 湿法冶金手册(Handbook of Hydrometallurgy). 北京: 冶金工业出版社 (Beijing: Metallurgical Industry Press), 2008.;
(b) 孙彦(Sun Y) . 生物分离工程(Bioseparation Engineering). 北京: 化学工业出版社 (Beijing: Chemical Industry Press), 2005.;
[2]
Sholl D S, Lively R P . Nature, 2016,533, 316. https://www.ncbi.nlm.nih.gov/pubmed/27193663

doi: 10.1038/533316a pmid: 27193663
[3]
分析化学手册-第6册(Handbook of Analytical Chemistry)(Vol.6). 北京: 化学工业出版社 (Beijing: Chemical Industry Press), 1997.
[4]
Gil E S, Hudson S M . Progress in Polymer Science, 2004,29, 1173.
[5]
(a) Bai G, Yuan P Y, Cai B L, Qiu X Y, Jin R H, Liu S Y, Li Y, Chen X . Adv. Funct. Mater., 2019,29:1904401.; https://onlinelibrary.wiley.com/toc/16163028/29/36

doi: 10.1002/adfm.v29.36 pmid: 31219018
(b) Nosrati H, Mojtahedi A, Danafar H, Manjili H K . J. Biomed. Mater. Res. Part A, 2019,107:2115.; https://www.ncbi.nlm.nih.gov/pubmed/31301222

doi: 10.1002/jbm.a.36736 pmid: 31219018
(c) Wan N, Zhang Y X, Hu L Z, Ma X X, Jia Y Y, Ma Y T, He W, Zhou S Y, Zhang B L . J. Biomed. Nanotechnol., 2019,15:1654. https://www.ncbi.nlm.nih.gov/pubmed/31219018

doi: 10.1166/jbn.2019.2799 pmid: 31219018
[6]
Cao P, Muller T K H, Ketterer B, Ewert S, Theodosiou E, Thomas O R T, Franzreb M . J. Chromatogr. A, 2015,1403:118. https://www.ncbi.nlm.nih.gov/pubmed/26051083

doi: 10.1016/j.chroma.2015.05.039 pmid: 26051083
[7]
(a) Sepehrifar R, Boysen R I, Danylec B, Yang Y Z, Saito K, Hearn M T W . Anal. Chim. Acta, 2017,963:153.; https://www.ncbi.nlm.nih.gov/pubmed/28335969

doi: 10.1016/j.aca.2017.01.061 pmid: 29549873
(b) Tan S N, Saito K, Hearn M T W . Curr. Opin. Biotechnol, 2018,53:209. https://www.ncbi.nlm.nih.gov/pubmed/29549873

doi: 10.1016/j.copbio.2018.02.011 pmid: 29549873
[8]
(a) Stayton P S, Shimoboji T, Long C, Chilkoti A, Chen G H, Harris J M, Hoffman A S . Nature, 1995,378:472.; https://www.ncbi.nlm.nih.gov/pubmed/7477401

doi: 10.1038/378472a0 pmid: 10346869
(b) Ding Z L, Long C J, Hayashi Y, Bulmus E V, Hoffman A S, Stayton P S . Bioconjugate. Chem., 1999,10:395. https://www.ncbi.nlm.nih.gov/pubmed/10346869

doi: 10.1021/bc980108s pmid: 10346869
[9]
(a) Liu Z, Wang W, Xie R, Ju X J, Chu L Y . Chem. Soc. Rev., 2016,45:460.; https://www.ncbi.nlm.nih.gov/pubmed/26595416

doi: 10.1039/c5cs00692a pmid: 26595416
(b) Luo T, Lin S O, Xie R Ju X J, Liu Z, Wang W, Mou C L, Zhao C S, Chen Q M, Chu L Y . J. Membr. Sci., 2014,450:162. https://linkinghub.elsevier.com/retrieve/pii/S0376738813007187

doi: 10.1016/j.memsci.2013.09.002 pmid: 26595416
[10]
(a) Ding Z Y, Li S P, Cao X J . Sep. Purif. Technol., 2014,138:153. 15be7770-032b-4dbe-8044-f9f59997372fhttp://dx.doi.org/10.1016/j.seppur.2014.10.021

doi: 10.1016/j.seppur.2014.10.021 pmid: 26245259
(b) Ding Z Y, Li S P, Cao X J . Appl. Biochem. Biotechnol., 2015,177:253. https://www.ncbi.nlm.nih.gov/pubmed/26245259

doi: 10.1007/s12010-015-1742-8 pmid: 26245259
[11]
Xiao F, Chen L, Xing R F, Zhao Y P, Dong J, Guo G, Zhang R . Colloid Surf. B-Biointerfaces, 2009,71:13. https://www.ncbi.nlm.nih.gov/pubmed/19181494

doi: 10.1016/j.colsurfb.2008.12.040 pmid: 19181494
[12]
Jia L W, Guo C, Yang L R, Xiang J F, Tang Y L, Liu C Z, Liu H Z . J. Colloid Interface Sci., 2010,345:332. https://www.ncbi.nlm.nih.gov/pubmed/20156625

doi: 10.1016/j.jcis.2010.01.060 pmid: 20156625
[13]
Yang L R, Guo C, Jia L W, Liang X F, Liu C Z, Liu H Z . J. Colloid Interface Sci., 2010,350:22. https://www.ncbi.nlm.nih.gov/pubmed/20621304

doi: 10.1016/j.jcis.2010.04.023 pmid: 20621304
[14]
(a) Yang L R, Liu H Z . Powder Technol, 2013,240:54.; https://linkinghub.elsevier.com/retrieve/pii/S0032591012004779

doi: 10.1016/j.powtec.2012.07.007
(b) Yang L R, Guo C, Jia L W, Xie K, Shou Q H, Liu H Z . Ind. Eng. Chem. Res., 2010,49:8518. https://pubs.acs.org/doi/10.1021/ie100587e

doi: 10.1021/ie100587e
[15]
Yang L R, Guo C, Chen S, Wang F, Wang J, An Z T, Liu C Z, Liu H Z . Ind. Eng. Chem. Res., 2009,48:944. https://pubs.acs.org/doi/10.1021/ie800969q

doi: 10.1021/ie800969q
[16]
(a) Connor A C, McGown L B . Journal of Chromatography A, 2006,1111:115.; https://www.ncbi.nlm.nih.gov/pubmed/16569569

doi: 10.1016/j.chroma.2005.05.012 pmid: 16569569
(b) Romig T S, Bell C, Drolet D W . Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1999,731:275.

pmid: 16569569
[17]
Yu J M, Yang L R, Liang X F, Dong T T, Qu H N, Rong M, Liu H Z . Talanta, 2016,159:47. https://www.ncbi.nlm.nih.gov/pubmed/27474278

doi: 10.1016/j.talanta.2016.05.077 pmid: 27474278
[18]
Yu J M, Yang L R, Liang X F, Dong T T, Liu H Z . Talanta, 2015,144:312. https://www.ncbi.nlm.nih.gov/pubmed/26452827

doi: 10.1016/j.talanta.2015.06.053 pmid: 26452827
[19]
(a) Wang Y Q, Zou B F, Gao T, Wu X P, Lou S Y, Zhou S M . J. Mater. Chem., 2012,22:9034.; http://xlink.rsc.org/?DOI=c2jm30440f

doi: 10.1039/c2jm30440f pmid: 21684304
(b) Huang G L, Zhang H Y, Shi J X, Langrish T A G . Ind. Eng. Chem. Res., 2009, 48: 2646.;, 2009,48:2646.

pmid: 21684304
(c) Abou El-Reash Y G, Otto M, Kenawy I M, Ouf A M . Int. J. Biol. Macromol., 2011,49:513. https://www.ncbi.nlm.nih.gov/pubmed/21684304

doi: 10.1016/j.ijbiomac.2011.06.001 pmid: 21684304
[20]
(a) Sun X T, Yang L R, Li Q, Liu Z N, Dong T T, Liu H Z . Chem. Eng. J., 2015,262:101.; https://linkinghub.elsevier.com/retrieve/pii/S1385894714012315

doi: 10.1016/j.cej.2014.09.045
(b) Sun X T, Yang L R, Xing H F, Zhao J M, Li X P, Huang Y B, Liu H Z . Chem. Eng. J., 2013,234:338. https://linkinghub.elsevier.com/retrieve/pii/S1385894713011352

doi: 10.1016/j.cej.2013.08.082
[21]
Sun X T, Yang L R, Xing H F, Zhao J M, Li X P, Huang Y B, Liu H Z . Colloid Surf. A-Physicochem. Eng. Asp., 2014,457:160. https://linkinghub.elsevier.com/retrieve/pii/S0927775714005214

doi: 10.1016/j.colsurfa.2014.05.061
[22]
Sun X T, Yang L R, Li Q, Zhao J M, Li X P, Wang X Q, Liu H Z . Chem. Eng. J., 2014,241:175. https://linkinghub.elsevier.com/retrieve/pii/S138589471301632X

doi: 10.1016/j.cej.2013.12.051
[23]
Sun X T, Li Q, Yang L R, Liu H Z . RSC Adv., 2016,6:18471. http://xlink.rsc.org/?DOI=C5RA27028F

doi: 10.1039/C5RA27028F
[24]
Sun X T, Yang L R, Dong T T, Liu Z N, Liu H Z . J. Appl. Polym. Sci., 2016,133:11.
[25]
Hu J, Lo I M C, Chen G . Separation and Purification Technology, 2007,56:249. https://linkinghub.elsevier.com/retrieve/pii/S1383586607001062

doi: 10.1016/j.seppur.2007.02.009
[26]
Huang S H, Chen D H . Journal of Hazardous Materials, 2009,163:174. https://www.ncbi.nlm.nih.gov/pubmed/18657903

doi: 10.1016/j.jhazmat.2008.06.075 pmid: 18657903
[27]
Wei L S, Yang G, Wang R, Ma W J . Hazard. Mater., 2009,164:1159. https://www.ncbi.nlm.nih.gov/pubmed/18954940

doi: 10.1016/j.jhazmat.2008.09.016 pmid: 18954940
[28]
Larraza I, López-Gónzalez M, Corrales T, Marcelo G . Journal of Colloid and Interface Science, 2012,385:24. https://www.ncbi.nlm.nih.gov/pubmed/22841705

doi: 10.1016/j.jcis.2012.06.050 pmid: 22841705
[29]
Burks T, Uheida A, Saleemi M, Eita M, Toprak M S, Muhammed M . Separation Science and Technology, 2013,48:1243. http://www.tandfonline.com/doi/abs/10.1080/01496395.2012.734364

doi: 10.1080/01496395.2012.734364
[30]
Kuai S, Zhang Z, Nan Z . Journal of Hazardous Materials, 2013,250/251:229. https://www.ncbi.nlm.nih.gov/pubmed/23454462

doi: 10.1016/j.jhazmat.2013.01.074 pmid: 23454462
[31]
(a) Zhao Y G, Shen H Y, Pan S D, Hu M Q J . Hazard. Mater., 2010,182:295.; https://www.ncbi.nlm.nih.gov/pubmed/20621418

doi: 10.1016/j.jhazmat.2010.06.029 pmid: 20621418
(b) Zhao Y G, Shen H Y, Pan S D, Hu M Q, Xia Q H J . Mater. Sci., 2010,45:5291. http://link.springer.com/10.1007/s10853-010-4574-5

doi: 10.1007/s10853-010-4574-5 pmid: 20621418
[32]
Bhaumik M, Maity A, Srinivasu V V, Onyango M S J . Hazard. Mater., 2011,190:381. https://www.ncbi.nlm.nih.gov/pubmed/21497438

doi: 10.1016/j.jhazmat.2011.03.062 pmid: 21497438
[33]
Bayramoğlu, G, Arıca M Y . Chem. Eng. J., 2008,143:133. https://linkinghub.elsevier.com/retrieve/pii/S1385894708000168

doi: 10.1016/j.cej.2008.01.002
[34]
Wang Q, Guan Y, Liu X, Yang M, Ren X . Chinese Journal of Chemical Engineering, 2012,20:105. 80826a34-6f3e-4c2f-87a7-3fa72aeabb97http://www.cjche.com.cn/EN/abstract/abstract12206.shtml
[35]
Hu X J, Wang J S, Liu Y G, Li X, Zeng G M, Bao Z L, Zeng X X, Chen A W, Long F . J. Hazard. Mater., 2011,185:306. https://www.ncbi.nlm.nih.gov/pubmed/20889258

doi: 10.1016/j.jhazmat.2010.09.034 pmid: 20889258
[36]
Chen D M, Li W, Wu Y R, Zhu Q, Lu Z J, Du G X . Chem. Eng. J., 2013,221:8. https://linkinghub.elsevier.com/retrieve/pii/S1385894713001356

doi: 10.1016/j.cej.2013.01.089
[37]
Thinh N N, Hanh P T, Ha le T T, Anh le N, Hoang T V, Hoang V D, Dang le H, Khoi N V, Lam T D . Mater. Sci. Eng. C: Mater. Biol. Appl., 2013,33:1214. https://www.ncbi.nlm.nih.gov/pubmed/23827563

doi: 10.1016/j.msec.2012.12.013 pmid: 23827563
[38]
(a) Li L L, Luo C A, Li X J, Duan H M, Wang X J . Int. J. Biol. Macromol., 2014,66:172.; https://www.ncbi.nlm.nih.gov/pubmed/24560948

doi: 10.1016/j.ijbiomac.2014.02.031 pmid: 23466545
(b) Li L L, Fan L L, Sun M, Qiu H M, Li X J, Duan H M, Luo C N . Colloids Surf. B: Biointerfaces, 2013,107:76. https://www.ncbi.nlm.nih.gov/pubmed/23466545

doi: 10.1016/j.colsurfb.2013.01.074 pmid: 23466545
[39]
Xiao Y Z, Liang H F, Wang Z C . Mater. Res. Bull., 2013,48:3910. https://linkinghub.elsevier.com/retrieve/pii/S0025540813004789

doi: 10.1016/j.materresbull.2013.05.099
[40]
Li H, Li Z, Liu T, Xiao X, Peng Z, Deng L . Bioresour. Technol, 2008,99:6271. https://www.ncbi.nlm.nih.gov/pubmed/18221868

doi: 10.1016/j.biortech.2007.12.002 pmid: 18221868
[41]
Sun X, Yang L, Li Q, Liu Z, Dong T, Liu H . Chemical Engineering Journal, 2015,262:101. https://linkinghub.elsevier.com/retrieve/pii/S1385894714012315

doi: 10.1016/j.cej.2014.09.045
[42]
Sun X, Yang L, Xing H, Zhao J, Li X, Huang Y, Liu H . Chemical Engineering Journal, 2013,234:338. 79eb92c9-b967-44e8-ac8e-1a4ee408da99http://dx.doi.org/10.1016/j.cej.2013.08.082

doi: 10.1016/j.cej.2013.08.082
[43]
Sun X, Li Q, Yang L, Liu H . RSC Advances, 2016,6:18471. http://xlink.rsc.org/?DOI=C5RA27028F

doi: 10.1039/C5RA27028F
[44]
Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H . Chemical Engineering Journal, 2014,241:175. https://linkinghub.elsevier.com/retrieve/pii/S138589471301632X

doi: 10.1016/j.cej.2013.12.051
[45]
Sun X, Yang L, Dong T, Liu Z, Liu H . Journal of Applied Polymer Science, 2016,133.
[46]
(a) Li W, Yang L, Dong T, Xing H, Wang W, Yang Y, Liu H . AICHE J., 2019,65:175.; http://doi.wiley.com/10.1002/aic.v65.1

doi: 10.1002/aic.v65.1
(b) Dong T T, Yang L R, Zhu M H, Liu Z N, Sun X T, Yu J M, Liu H Z . Chem. Eng. J., 2015, 280: 426.;, 2015,280:426.;
(c) Li W S, Yang L R, Liu H Z, Li X P, Liu Z N, Wang F C, Sui N, Xiao C . X. AICHE J., 2014,60:3101.;
(d) Li W S, Yang L R, Zhou H C, Li X P, Wang F C, Yang X F, Liu H Z . Ind. Eng. Chem. Res., 2013,52:16314.; https://pubs.acs.org/doi/10.1021/ie401012c

doi: 10.1021/ie401012c
(e) Li W S, Yang L R, Wang F C, Zhou H C, Xing H F, Li X P, Liu H Z . Ind. Eng. Chem. Res., 2013,52:4290.; https://pubs.acs.org/doi/10.1021/ie3031696

doi: 10.1021/ie3031696
[47]
Su X, Kulik H J, Jamison T F, Hatton T A . Adv. Funct. Mater., 2016,26:3394. http://doi.wiley.com/10.1002/adfm.v26.20

doi: 10.1002/adfm.v26.20
[48]
Bagheri H, Piri-Moghadam H, Rastegar S . RSC Adv, 2014,4:52590. http://xlink.rsc.org/?DOI=C4RA04097J

doi: 10.1039/C4RA04097J
[49]
Orlando R M, Rohwedder J J R, Rath S . Chromatographia, 2014,77:133. 82badb94-f0b2-4af3-8474-97a365cc25ebhttp://dx.doi.org/10.1007/s10337-013-2565-9

doi: 10.1007/s10337-013-2565-9
[50]
Orlando R M, Rohwedder J J R, Rath S J . Braz. Chem. Soc., 2015,26:310.
[51]
Ribeiro C C, Orlando R M, Rohwedder J J R, Reyes F G R, Rath S . Talanta, 2016,152:498. https://www.ncbi.nlm.nih.gov/pubmed/26992547

doi: 10.1016/j.talanta.2016.02.047 pmid: 26992547
[52]
Ahmadi F, Mahmoudi-Yamchi T, Azizian H . J. Chromatogr. B, 2018,1077:52.
[53]
Sereshti H, Khosraviani M, Samadi S, Amini-Fazl M S . RSC Adv., 2014,4:47114. http://xlink.rsc.org/?DOI=C4RA06412G

doi: 10.1039/C4RA06412G
[1] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[2] Yang Yukun, Wang Xiaomin, Fang Guozhen, Yun Yaguang, Guo Ting, Wang Shuo. Electrochemiluminescence Analysis Based on Molecular Imprinting Technique [J]. Progress in Chemistry, 2016, 28(9): 1351-1362.
[3] Pan Dengfang, Ye Gang, Wang Fang, Chen Jing. Trivalent Actinides/Lanthanides Separation by Nitrogen Heterocyclic Ligands [J]. Progress in Chemistry, 2012, 24(11): 2167-2176.
[4] Xu Zhigang, Liu Zhimin, Yang Baomin, Zi Futing. Development of Dummy Template Molecularly Imprinted Techniques in Sample Pretreatment [J]. Progress in Chemistry, 2012, 24(08): 1592-1598.
[5] Chen Jing, Wang Fang, He Xihong, Pan Dengfang. Studies on Separating Trivalent Actinides from Lanthanides by Dialkyldithiophosphinic Acid Extraction [J]. Progress in Chemistry, 2011, 23(7): 1338-1344.
[6] Zilai Zhao,Zhengyun Bian,Langxing Chen**,Xiwen He,Yanfen Wang. Synthesis and Surface-Modifications of Iron Oxide Magnetic Nanoparticles and Applications on Separation and Analysis [J]. Progress in Chemistry, 2006, 18(10): 1288-1297.
[7] Hu Shuguo,Li Li,He Xiwen**. Molecularly Imprinted Polymers: A New Kind of Sorbent with High Selectivity in Solid Phase Extraction [J]. Progress in Chemistry, 2005, 17(03): 531-543.
[8] Shi Ruixue,Guo Chenghai,Zou Xiaohong,Zhu Chunye,Zuo Yanjun,Deng Yundu. The Development of Research in Molecular Imprinting Technique [J]. Progress in Chemistry, 2002, 14(03): 182-.
[9] Huang Junxiong. The Progress of Sample Preparation and Treatment Solvent-Free Extraction Technologies [J]. Progress in Chemistry, 1997, 9(02): 179-.