中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1509-1527 DOI: 10.7536/PC190734 Previous Articles   Next Articles

Fluorescent Polymer Materials for Detection of Explosives

Xiaofu Wu, Hui Tong**(), Lixiang Wang**()   

  1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Online: Published:
  • Contact: Hui Tong, Lixiang Wang
  • About author:
    ** E-mail: (Hui Tong);
    (Lixiang Wang)
  • Supported by:
    National Natural Science Foundation of China(51833009); National Natural Science Foundation of China(21574131); National Natural Science Foundation of China(91333205); National Natural Science Foundation of China(21674111); National Natural Science Foundation of China(21322403)
Richhtml ( 34 ) PDF ( 1150 ) Cited
Export

EndNote

Ris

BibTeX

As fluorescent sensing materials, fluorescent polymers not only have many sensing units, high brightness and good light stability, but also facilitate the fabrication of fluorescent sensing films, which are easy to implement devices. Therefore, fluorescent polymers have been widely studied and applied in fluorescence detection of explosives. In recent years, a large number of fluorescent polymers with various functional units have been developed, and their structures have evolved from common linear structures to branched and porous network structures, which have effectively improved the sensitivity, selectivity and response rate of explosive detection. This review is aimed to summarize the research progress on fluorescent polymers used for detection of explosives, including linear polymers, branched polymers and porous polymers. The emphasis of this review is especially focused on the structure design strategies, functional characteristics and sensing performances of typical linear conjugated and non-conjugated polymers, dendrimers and hyperbranched polymers and amorphous and crystalline porous polymers. Finally, the future opportunities and challenges of fluorescent polymers in application of explosive detection are presented.

Fig. 1 Conjugated polymers with pentiptycene and polycyclic polycyclic aromatic hydrocarbons in the backbones[14, 17~20]
Fig. 2 Conjugated polymers containing aggregation-induced emission(AIE) units in the backbones[21, 22, 28]
Fig. 3 Conjugated polymers with bulky side chains[29,30,31,32,33]
Fig. 4 Conjugated polymers with calix[4]arene as side chains[34,35]
Fig. 5 Conjugated polymers with ionic side chains[36,38,39]
Fig. 6 Nonconjugated polymers with fluorophores in side chains[40,45]
Fig. 7 Nonconjugated polymers with fluorophores in backbones and without fluorophores[46,47,48,49,50,51]
Fig. 8 Conjugated dendrimers based on fluorene dendrons and thiophene-benezene dendrons[53, 55~57]
Fig. 9 Conjugated dendrimers based on carbazole dendrons[59. 60]
Fig. 10 Nonconjugated dendrimers containing fluorophores[61. 62]
Fig. 11 Nonconjugated dendrimers without fluorophores[64. 65]
Fig. 12 AIE-type hyperbranched polymers based on silole units[68. 69]
Fig. 13 AIE-type hyperbranched polymers based on tetraphenylethylene units[70, 71, 74, 76]
Fig. 14 NonAIE-type fluorescent hyperbranched polymers[77,78,79,80]
Fig. 15 Fluorescent hyperbranched conjugated polymer nanoparticles[81,82,83,84]
Fig. 16 Fluorescent hyperbranched nonconjugated polymers[85,86,87,88]
Fig. 17 Conjugated porous polymers prepared by Yamamoto coupling reaction[97,98,99]
Fig. 18 Conjugated porous polymers prepared by Heck coupling reaction[100,101]
Fig. 19 Conjugated porous polymers prepared by Friedel-Crafts coupling reaction[102,103,104]
Fig. 20 Conjugated porous polymers prepared by oxidation coupling reaction[105, 106]
Fig. 21 Solution-processable conjugated porous polymer nanoparticles prepared by Suzuki coupling reaction in miniemulsion[108, 109]
Fig. 22 Conjugated porous polymer films prepared by olefin metathesis reaction on alylsilane-functionalized SiO2 substrates[112]
Fig. 23 Conjugated porous polymers prepared by Sonogashira coupling reaction[111, 113, 114]
Fig. 24 Conjugated porous polymers prepared by electrochemical polymerization[115. 116]
Fig. 25 Nonconjugated porous polymers[118,119,120]
Fig. 26 Three demensional crystalline porous polymers prepared by boronic acid condensation reaction[123, 124]
Fig. 27 Covalent organic frameworks(COFs) prepared by Schiff-base condensation reaction[125,126,127,128]
Fig. 28 COFs prepared by imidization reaction and Michael addition-elimination reaction[129, 130]
[1]
Juhasz A L, Naidu R . Rev. Environ. Contam. Toxicol., 2007,191:163. https://www.ncbi.nlm.nih.gov/pubmed/17708075

doi: 10.1007/978-0-387-69163-3_6 pmid: 17708075
[2]
Ewing R G, Waltman M J, Atkinson D A, Grate J W, Hotchkiss P J . TrAC Trend Anal. Chem., 2013,42:35. https://linkinghub.elsevier.com/retrieve/pii/S0165993612002828

doi: 10.1016/j.trac.2012.09.010
[3]
Germain M E, Knapp M J . Chem. Soc. Rev., 2009,38:2543. https://www.ncbi.nlm.nih.gov/pubmed/19690735

doi: 10.1039/b809631g pmid: 19690735
[4]
Salinas Y, Martinez-Manez R, Marcos M D, Sancenon F, Costero A M, Parra M, Gil S . Chem. Soc. Rev., 2012,41:1261. https://www.ncbi.nlm.nih.gov/pubmed/21947358

doi: 10.1039/c1cs15173h pmid: 21947358
[5]
Sun X, Wang Y, Lei Y . Chem. Soc. Rev., 2015,44:8019. https://www.ncbi.nlm.nih.gov/pubmed/26335504

doi: 10.1039/c5cs00496a pmid: 26335504
[6]
Minei P, Pucci A . Polym. Int, 2016,65:609. http://doi.wiley.com/10.1002/pi.2016.65.issue-6

doi: 10.1002/pi.2016.65.issue-6
[7]
McQuade D T, Pullen A E, Swager T M . Chem. Rev., 2000,100:2537. https://www.ncbi.nlm.nih.gov/pubmed/11749295

doi: 10.1021/cr9801014 pmid: 11749295
[8]
Toal S J, Trogler W C . J. Mater. Chem., 2006,16:2871. http://xlink.rsc.org/?DOI=b517953j

doi: 10.1039/b517953j
[9]
Thomas III S W, Joly G D, Swager T M . Chem. Rev., 2007,107:1339. https://www.ncbi.nlm.nih.gov/pubmed/17385926

doi: 10.1021/cr0501339 pmid: 17385926
[10]
Rochat S, Swager T M . ACS Appl. Mater. Interfaces, 2013,5:4488. https://www.ncbi.nlm.nih.gov/pubmed/23682919

doi: 10.1021/am400939w pmid: 23682919
[11]
Zhou Q, Swager T M . J. Am. Chem. Soc., 1995,117:12593. https://pubs.acs.org/doi/abs/10.1021/ja00155a023

doi: 10.1021/ja00155a023
[12]
Zhou Q, Swager T M . J. Am. Chem. Soc., 1995,117:7017. https://pubs.acs.org/doi/abs/10.1021/ja00131a031

doi: 10.1021/ja00131a031
[13]
Swager T M . Acc. Chem. Res., 1998,31:201. https://pubs.acs.org/doi/10.1021/ar9600502

doi: 10.1021/ar9600502
[14]
Yang J S, Swager T M . J. Am. Chem. Soc., 1998,120:5321. 2d8931b5-3967-494d-a262-25ebb5669d18https://pubs.acs.org/doi/10.1021/ja9742996

doi: 10.1021/ja9742996
[15]
Xue W, Lin J Y, Liu B, Shi N E, Yu M N, Wu W D, Zhu W S, Xie L H, Wang L H, Huang W . Polymer, 2018,153:338. https://linkinghub.elsevier.com/retrieve/pii/S0032386118304191

doi: 10.1016/j.polymer.2018.05.025
[16]
Liping L, Shanghui Y, Wei H . Chinese J. Appl. Chem., 2017,34:1.
[17]
He G, Yan N, Yang J, Wang H, Ding L, Yin S, Fang Y . Macromolecules, 2011,44:4759. https://pubs.acs.org/doi/10.1021/ma200953s

doi: 10.1021/ma200953s
[18]
Jagtap S B, Potphode D D, Ghorpade T K, Palai A K, Patri M, Mishra S P . Polymer, 2014,55:2792. 5262dbb3-fe4d-47d3-86a6-5d16eb5de671http://dx.doi.org/10.1016/j.polymer.2014.04.028

doi: 10.1016/j.polymer.2014.04.028
[19]
Ghorpade T K, Palai A K, Rath S K, Sharma S K, Sudarshan K, Pujari P K, Patri M, Mishra S P . Sens. Actuators B, 2017,252:901. https://linkinghub.elsevier.com/retrieve/pii/S0925400517310808

doi: 10.1016/j.snb.2017.06.059
[20]
Zhou L L, Li M, Lu H Y, Chen C F . Polym. Chem., 2016,7:310. http://xlink.rsc.org/?DOI=C5PY01794G

doi: 10.1039/C5PY01794G
[21]
Wu Y W, Qin A J, Tang B Z . Chinese J. Polym. Sci., 2016,35:141. http://link.springer.com/10.1007/s10118-017-1882-0

doi: 10.1007/s10118-017-1882-0
[22]
Ghosh K R, Saha S K, Wang Z Y . Polym. Chem., 2014,5:5638. http://xlink.rsc.org/?DOI=C4PY00673A

doi: 10.1039/C4PY00673A
[23]
Zhou H, Wang X B, Lin T T, Song J, Tang B Z, Xu J W . Polym. Chem., 2016,7:6309. http://xlink.rsc.org/?DOI=C6PY01358A

doi: 10.1039/C6PY01358A
[24]
Dineshkumar S, Laskar I R . Polym. Chem., 2018,9:5123. http://xlink.rsc.org/?DOI=C8PY01153B

doi: 10.1039/C8PY01153B
[25]
Gao M, Wu Y, Chen B, He B, Nie H, Li T, Wu F, Zhou W, Zhou J, Zhao Z . Polym. Chem, 2015,6:7641. http://xlink.rsc.org/?DOI=C5PY01458A

doi: 10.1039/C5PY01458A
[26]
Adil L R, Gopikrishna P, Iyer P K . ACS Appl. Mater. Interfaces, 2018,10:27260. https://www.ncbi.nlm.nih.gov/pubmed/30022660

doi: 10.1021/acsami.8b07019 pmid: 30022660
[27]
Zhang L H, Jiang T, Wu L B, Wan J H, Chen C H, Pei Y B, Lu H, Deng Y, Bian G F, Qiu H Y, Lai G Q . Chem. Asian J., 2012,7:1583. https://www.ncbi.nlm.nih.gov/pubmed/22529046

doi: 10.1002/asia.201200070 pmid: 22529046
[28]
Xu B, Wu X, Li H, Tong H, Wang L . Macromolecules, 2011,44:5089. https://pubs.acs.org/doi/10.1021/ma201003f

doi: 10.1021/ma201003f
[29]
Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Muellen K . Chem. Commun, 2011,47:1234. https://www.ncbi.nlm.nih.gov/pubmed/21103499

doi: 10.1039/c0cc03659e pmid: 21103499
[30]
Nie H, Sun G, Zhang M, Baumgarten M, Muellen K . J. Mater. Chem., 2012,22:2129. http://xlink.rsc.org/?DOI=C1JM14691B

doi: 10.1039/C1JM14691B
[31]
Dong W, Fei T, Palma-Cando A, Scherf U . Polym. Chem, 2014,5:4048. http://xlink.rsc.org/?DOI=c4py00251b

doi: 10.1039/c4py00251b
[32]
Dong W, Pan Y, Fritsch M, Scherf U . J. Polym. Sci. Part A: Polym. Chem., 2015,53:1753. http://doi.wiley.com/10.1002/pola.27631

doi: 10.1002/pola.27631
[33]
Xu B, Xu Y, Wang X, Li H, Wu X, Tong H, Wang L . Polym. Chem, 2013,4:5056. http://xlink.rsc.org/?DOI=c3py00806a

doi: 10.1039/c3py00806a
[34]
Costa A I, Pinto H D, Ferreira L F V, Prata J V. Sens . Actuators B, 2012,161:702. https://linkinghub.elsevier.com/retrieve/pii/S0925400511010148

doi: 10.1016/j.snb.2011.11.017
[35]
Barata P D, Prata J V . Chempluschem, 2014,79:83. https://www.ncbi.nlm.nih.gov/pubmed/31986770

doi: 10.1002/cplu.201300280 pmid: 31986770
[36]
Malik A H, Hussain S, Kalita A, Iyer P K . ACS Appl. Mater. Interfaces, 2015,7:26968. https://www.ncbi.nlm.nih.gov/pubmed/26580229

doi: 10.1021/acsami.5b08068 pmid: 26580229
[37]
Tanwar A S, Adil L R, Afroz M A, Iyer P K . ACS Sens., 2018,3:1451. https://www.ncbi.nlm.nih.gov/pubmed/30039698

doi: 10.1021/acssensors.8b00093 pmid: 30039698
[38]
Tanwar A S, Iyer P K . ACS Omega, 2017,2:4424. https://www.ncbi.nlm.nih.gov/pubmed/31457734

doi: 10.1021/acsomega.7b00765 pmid: 31457734
[39]
Wang B H, Han J S, Bender M, Seehafer K, Bunz U H F . Macromolecules, 2017,50:4126. https://pubs.acs.org/doi/10.1021/acs.macromol.7b00738

doi: 10.1021/acs.macromol.7b00738
[40]
Burattini S, Colquhoun H M, Greenland B W, Hayes W, Wade M . Macromol. Rapid Commun., 2009,30:459. https://www.ncbi.nlm.nih.gov/pubmed/21706625

doi: 10.1002/marc.200800630 pmid: 21706625
[41]
Hu H Z, Wang F Y, Yu L S, Sugimura K, Zhou J P, Nishio Y . ACS Sustain. Chem. Eng., 2018,6:1436. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b03855

doi: 10.1021/acssuschemeng.7b03855
[42]
Kumar V, Maiti B, Chini M K, De P, Satapathi S . Sci. Rep, 2019,9:7269. https://www.ncbi.nlm.nih.gov/pubmed/31086230

doi: 10.1038/s41598-019-43836-w pmid: 31086230
[43]
Zhou H, Ye Q, Neo W T, Song J, Yan H, Zong Y, Tang B Z, Hor T S, Xu J . Chem. Commun, 2014,50:13785. https://www.ncbi.nlm.nih.gov/pubmed/25252003

doi: 10.1039/c4cc06559j pmid: 25252003
[44]
Li Q S, Yang Z M, Ren Z J, Yan S K . Macromol. Rapid Commun., 2016,37:1772. https://www.ncbi.nlm.nih.gov/pubmed/27611625

doi: 10.1002/marc.201600378 pmid: 27611625
[45]
Chua M H, Zhou H, Lin T T, Wu J S, Xu J W . J. Polym. Sci. Part A: Polym. Chem., 2017,55:672. http://doi.wiley.com/10.1002/pola.28382

doi: 10.1002/pola.28382
[46]
Jiang N, Li G F, Che W L, Zhu D X, Su Z M, Bryce M R . J. Mater. Chem. C, 2018,6:11287. http://xlink.rsc.org/?DOI=C8TC04250K

doi: 10.1039/C8TC04250K
[47]
Shin S, Lim J, Gu M L, Yu C Y, Hong M, Char K, Choi T L . Polym. Chem., 2017,8:7507. http://xlink.rsc.org/?DOI=C7PY01582H

doi: 10.1039/C7PY01582H
[48]
Li H, Mei J, Wang J, Zhang S, Zhao Q, Wei Q, Qin A, Sun J, Tang B Z . Sci. China Chem., 2011,54:611. http://link.springer.com/10.1007/s11426-011-4235-9

doi: 10.1007/s11426-011-4235-9
[49]
Li H, Wang J, Sun J Z, Hu R, Qin A, Tang B Z . Polym. Chem., 2012,3:1075. http://xlink.rsc.org/?DOI=c2py00586g

doi: 10.1039/c2py00586g
[50]
He B Z, Wu Y W, Qin A J, Tang B Z . Macromolecules, 2017,50:5719. https://pubs.acs.org/doi/10.1021/acs.macromol.7b00992

doi: 10.1021/acs.macromol.7b00992
[51]
Bauri K, Saha B, Mahanti J, De P . Polym. Chem, 2017,8:7180. http://xlink.rsc.org/?DOI=C7PY01579H

doi: 10.1039/C7PY01579H
[52]
Lo S C, Burn P L . Chem. Rev., 2007,107:1097. https://www.ncbi.nlm.nih.gov/pubmed/17385927

doi: 10.1021/cr050136l pmid: 17385927
[53]
Cavaye H, Shaw P E, Wang X, Burn P L, Lo S C, Meredith P . Macromolecules, 2010,43:10253. https://pubs.acs.org/doi/10.1021/ma102369q

doi: 10.1021/ma102369q
[54]
Hammer B A, Moritz R, Stangenberg R, Baumgarten M, Mullen K . Chem. Soc. Rev., 2015,44:4072. https://www.ncbi.nlm.nih.gov/pubmed/25256012

doi: 10.1039/c4cs00245h pmid: 25256012
[55]
Cavaye H, Shaw P E, Smith A R G, Burn P L, Gentle I R, James M, Lo S C, Meredith P . J. Phys. Chem. C, 2011,115:18366. https://pubs.acs.org/doi/10.1021/jp205586s

doi: 10.1021/jp205586s
[56]
Olley D A, Wren E J, Vamvounis G, Fernee M J, Wang X, Burn P L, Meredith P, Shaw P E . Chem. Mater., 2011,23:789. https://pubs.acs.org/doi/10.1021/cm1020355

doi: 10.1021/cm1020355
[57]
Vamvounis G, Shaw P E, Burn P L . J. Mater. Chem. C, 2013,1:1322. http://xlink.rsc.org/?DOI=C2TC00541G

doi: 10.1039/C2TC00541G
[58]
Geng Y, Ali M A, Clulow A J, Fan S, Burn P L, Gentle I R, Meredith P, Shaw P E . Nat. Commun., 2015,6:8240. https://www.ncbi.nlm.nih.gov/pubmed/26370931

doi: 10.1038/ncomms9240 pmid: 26370931
[59]
Tang G, Chen S S Y, Shaw P E, Hegedus K, Wang X, Burn P L, Meredith P . Polym. Chem., 2011,2:2360. http://xlink.rsc.org/?DOI=c1py00222h

doi: 10.1039/c1py00222h
[60]
Ding Z, Zhao Q, Xing R, Wang X, Ding J, Wang L, Han Y . J. Mater. Chem. C, 2013,1:786. http://xlink.rsc.org/?DOI=C2TC00125J

doi: 10.1039/C2TC00125J
[61]
Narayanan A, Varnavski O, Mongin O, Majoral J P, Blanchard-Desce M, Goodson Ⅲ T . Nanotechnology, 2008,19:115502. https://iopscience.iop.org/article/10.1088/0957-4484/19/11/115502

doi: 10.1088/0957-4484/19/11/115502
[62]
Guo M, Varnavski O, Narayanan A, Mongin O, Majoral J P, Blanchard-Desce M, Goodson Ⅲ T . J. Phys. Chem. A, 2009,113:4763. https://www.ncbi.nlm.nih.gov/pubmed/19317441

doi: 10.1021/jp8112123 pmid: 19317441
[63]
Bragança A M, Araújo M, Bonifácio V D B . Part. Part. Syst. Charact., 2015,32:98. http://doi.wiley.com/10.1002/ppsc.201400120

doi: 10.1002/ppsc.201400120
[64]
Koley S, Ghosh S . Phys. Chem. Chem. Phys., 2016,18:24830. https://www.ncbi.nlm.nih.gov/pubmed/27711522

doi: 10.1039/c6cp05054a pmid: 27711522
[65]
Bagul R S, Rajesh Y B R D, Jayamurugan G, Bera A, Sood A K, Jayaraman N . J. Photochem. Photobiol. A: Chem., 2013,253:1. https://linkinghub.elsevier.com/retrieve/pii/S1010603012005692

doi: 10.1016/j.jphotochem.2012.12.011
[66]
Caminade A M, Yan D, Smith D K . Chem. Soc. Rev., 2015,44:3870. https://www.ncbi.nlm.nih.gov/pubmed/26024369

doi: 10.1039/c5cs90049b pmid: 26024369
[67]
Wu W, Tang R, Li Q, Li Z . Chem. Soc. Rev., 2015,44:3997. https://www.ncbi.nlm.nih.gov/pubmed/25170592

doi: 10.1039/c4cs00224e pmid: 25170592
[68]
Liu J, Zhong Y, Lam J W Y, Lu P, Hong Y, Yu Y, Yue Y, Faisal M, Sung H H Y, Williams I D, Wong K S, Tang B Z . Macromolecules, 2010,43:4921. https://pubs.acs.org/doi/10.1021/ma902432m

doi: 10.1021/ma902432m
[69]
Zhao Z, Guo Y, Jiang T, Chang Z, Lam J W, Xu L, Qiu H, Tang B Z . Macromol. Rapid Commun., 2012,33:1074. https://www.ncbi.nlm.nih.gov/pubmed/22431373

doi: 10.1002/marc.201200085 pmid: 22431373
[70]
Lu P, Lam J W, Liu J, Jim C K, Yuan W, Xie N, Zhong Y, Hu Q, Wong K S, Cheuk K K, Tang B Z . Macromol. Rapid Commun., 2010,31:834. https://www.ncbi.nlm.nih.gov/pubmed/21590975

doi: 10.1002/marc.200900794 pmid: 21590975
[71]
Wu W, Ye S, Huang L, Xiao L, Fu Y, Huang Q, Yu G, Liu Y, Qin J, Li Q, Li Z . J. Mater. Chem., 2012,22:6374. http://xlink.rsc.org/?DOI=c2jm16514g

doi: 10.1039/c2jm16514g
[72]
Hu R, Lam J W Y, Liu J, Sung H H Y, Williams I D, Yue Z, Wong K S, Yuen M M F, Tang B Z . Polym. Chem., 2012,3:1481. http://xlink.rsc.org/?DOI=c2py20057k

doi: 10.1039/c2py20057k
[73]
Hu R, Lam J W Y, Li M, Deng H, Li J, Tang B Z . J. Polym. Sci. Part A: Polym. Chem., 2013,51:4752. https://www.ncbi.nlm.nih.gov/pubmed/23761950

doi: 10.1002/pola.26646 pmid: 23761950
[74]
Wang J, Mei J, Yuan W, Lu P, Qin A, Sun J, Ma Y, Tang B Z . J. Mater. Chem., 2011,21:4056. http://xlink.rsc.org/?DOI=c0jm04100a

doi: 10.1039/c0jm04100a
[75]
Yao B, Hu T, Zhang H, Li J, Sun J Z, Qin A, Tang B Z . Macromolecules, 2015,48:7782. https://pubs.acs.org/doi/10.1021/acs.macromol.5b01868

doi: 10.1021/acs.macromol.5b01868
[76]
Chi W, Yuan W, Du J, Han T, Li H, Li Y, Tang B Z . Macromol. Rapid Commun., 2018,39:e1800604. https://www.ncbi.nlm.nih.gov/pubmed/30252976

doi: 10.1002/marc.201800604 pmid: 30252976
[77]
Ma X S, Cui Y Z, Ding Y Q, Tao F R, Zheng B, Yu R H, Huang W . Sens. Actuators B, 2017,238:48. https://linkinghub.elsevier.com/retrieve/pii/S0925400516310590

doi: 10.1016/j.snb.2016.07.025
[78]
Zheng B, Li Y, Tao F, Cui Y, Li T . Sens. Actuators B, 2017,241:357. https://linkinghub.elsevier.com/retrieve/pii/S0925400516316859

doi: 10.1016/j.snb.2016.10.057
[79]
Huang W, Smarsly E, Han J, Bender M, Seehafer K, Wacker I, Schroder R R, Bunz U H . ACS Appl. Mater. Interfaces, 2017,9:3068. https://www.ncbi.nlm.nih.gov/pubmed/28051292

doi: 10.1021/acsami.6b12419 pmid: 28051292
[80]
Chen L, Gao Y, Fu Y, Zhu D, He Q, Cao H, Cheng J . RSC Adv, 2015,5:29624. http://xlink.rsc.org/?DOI=C5RA02472B

doi: 10.1039/C5RA02472B
[81]
Li H, Wu X, Xu B, Tong H, Wang L . RSC Adv, 2013,3:8645. http://xlink.rsc.org/?DOI=c3ra40901e

doi: 10.1039/c3ra40901e
[82]
Xu Y, Wu X, Chen Y, Hang H, Tong H, Wang L . Polym. Chem, 2016,7:4542. http://xlink.rsc.org/?DOI=C6PY00930A

doi: 10.1039/C6PY00930A
[83]
Wu X, Hang H, Li H, Chen Y, Tong H, Wang L . Mater. Chem. Front., 2017,1:1875. http://xlink.rsc.org/?DOI=C7QM00173H

doi: 10.1039/C7QM00173H
[84]
Li H, Wu X, Hang H, Chen Y, Tong H, Wang L . Acta Polym. Sin., 2018,2:248.
[85]
Ma X, Tao F, Zhang Y, Li T, Raymo F M, Cui Y . J. Mater. Chem. A, 2017,5:14343. http://xlink.rsc.org/?DOI=C7TA04351A

doi: 10.1039/C7TA04351A
[86]
Wu H T, Xu H, Tao F R, Su X, Yu W W, Li T D, Cui Y Z . New J. Chem., 2018,42:12802. http://xlink.rsc.org/?DOI=C8NJ01881B

doi: 10.1039/C8NJ01881B
[87]
Wang Y, La A, Bruckner C, Lei Y . Chem. Commun, 2012,48:9903. http://xlink.rsc.org/?DOI=c2cc34492k

doi: 10.1039/c2cc34492k
[88]
Liu S G, Luo D, Li N, Zhang W, Lei J L, Li N B, Luo H Q . ACS Appl. Mater. Interfaces, 2016,8:21700. https://www.ncbi.nlm.nih.gov/pubmed/27471907

doi: 10.1021/acsami.6b07407 pmid: 27471907
[89]
Chen D, Liu C, Tang J, Luo L, Yu G . Polym. Chem, 2019,10:1168. http://xlink.rsc.org/?DOI=C8PY01620H

doi: 10.1039/C8PY01620H
[90]
Suresh V M, Scherf U . Macromol. Chem. Phys., 2018,219:1800207. http://doi.wiley.com/10.1002/macp.v219.18

doi: 10.1002/macp.v219.18
[91]
Zhang C, Che Y, Zhang Z, Yang X, Zang L . Chem. Commun, 2011,47:2336. https://www.ncbi.nlm.nih.gov/pubmed/21165504

doi: 10.1039/c0cc04836d pmid: 21165504
[92]
Naddo T, Che Y, Zhang W, Balakrishnan K, Yang X, Yen M, Zhao J, Moore J S, Zang L . J. Am. Chem. Soc., 2007,129:6978. https://www.ncbi.nlm.nih.gov/pubmed/17500522

doi: 10.1021/ja070747q pmid: 17500522
[93]
Chen Q, Han B H . Macromol. Rapid Commun., 2018,39:1800040. https://www.ncbi.nlm.nih.gov/pubmed/29575467

doi: 10.1002/marc.201800040 pmid: 29575467
[94]
Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K . Chem. Rev, 2012,112:3959. https://www.ncbi.nlm.nih.gov/pubmed/22594539

doi: 10.1021/cr200440z pmid: 22594539
[95]
Patra A, Scherf U . Chem. Eur. J., 2012,18:10074. https://www.ncbi.nlm.nih.gov/pubmed/22736336

doi: 10.1002/chem.201200804 pmid: 22736336
[96]
Wong Y L, Tobin J M, Xu Z, Vilela F . J. Mater. Chem. A, 2016,4:18677. http://xlink.rsc.org/?DOI=C6TA07697A

doi: 10.1039/C6TA07697A
[97]
Xiang Z, Cao D . Macromol. Rapid Commun., 2012,33:1184. https://www.ncbi.nlm.nih.gov/pubmed/22508391

doi: 10.1002/marc.201100865 pmid: 22508391
[98]
Sang N, Zhan C, Cao D . J. Mater. Chem. A, 2015,3:92. http://xlink.rsc.org/?DOI=C4TA04903A

doi: 10.1039/C4TA04903A
[99]
Liu X, Xu Y, Jiang D . J. Am. Chem. Soc., 2012,134:8738. https://www.ncbi.nlm.nih.gov/pubmed/22587302

doi: 10.1021/ja303448r pmid: 22587302
[100]
Sun L, Liang Z, Yu J, Xu R . Polym. Chem, 2013,4:1932. http://xlink.rsc.org/?DOI=c2py21034g

doi: 10.1039/c2py21034g
[101]
Sun L, Zou Y, Liang Z, Yu J, Xu R . Polym. Chem, 2014,5:471. http://xlink.rsc.org/?DOI=C3PY00980G

doi: 10.1039/C3PY00980G
[102]
Krishnan S, Suneesh C V . J. Photochem. Photobiol. A: Chem., 2019,371:414. https://linkinghub.elsevier.com/retrieve/pii/S1010603018311985

doi: 10.1016/j.jphotochem.2018.11.044
[103]
Geng T, Zhu Z, Zhang W, Wang Y . J. Mater. Chem. A, 2017,5:7612. http://xlink.rsc.org/?DOI=C7TA00590C

doi: 10.1039/C7TA00590C
[104]
Geng T, Ye S, Zhu Z, Zhang W . J. Mater. Chem. A, 2018,6:2808. http://xlink.rsc.org/?DOI=C7TA08251G

doi: 10.1039/C7TA08251G
[105]
Zhang Y, A S, Zou Y, Luo X, Li Z, Xia H, Liu X, Mu Y . J. Mater. Chem. A, 2014,2:13422. http://xlink.rsc.org/?DOI=C4TA01871K

doi: 10.1039/C4TA01871K
[106]
Wei F, Cai X, Nie J, Wang F, Lu C, Yang G, Chen Z, Ma C, Zhang Y . Polym. Chem, 2018,9:3832. http://xlink.rsc.org/?DOI=C8PY00702K

doi: 10.1039/C8PY00702K
[107]
Patra A, Koenen J M, Scherf U . Chem. Commun, 2011,47:9612. http://xlink.rsc.org/?DOI=c1cc13420e

doi: 10.1039/c1cc13420e
[108]
Wu X, Li H, Xu Y, Xu B, Tong H, Wang L . Nanoscale, 2014,6:2375. https://www.ncbi.nlm.nih.gov/pubmed/24435090

doi: 10.1039/c3nr05402k pmid: 24435090
[109]
Wu X, Li H, Xu B, Tong H, Wang L . Polym. Chem, 2014,5:4521. http://xlink.rsc.org/?DOI=c4py00305e

doi: 10.1039/c4py00305e
[110]
Gopalakrishnan D, Dichtel W R . J. Am. Chem. Soc., 2013,135:8357. https://www.ncbi.nlm.nih.gov/pubmed/23641956

doi: 10.1021/ja402668e pmid: 23641956
[111]
Novotney J L, Dichtel W R . ACS Macro Lett., 2013,2:423. https://pubs.acs.org/doi/10.1021/mz4000249

doi: 10.1021/mz4000249
[112]
Gopalakrishnan D, Dichtel W R . Chem. Mater., 2015,27:3813. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00857

doi: 10.1021/acs.chemmater.5b00857
[113]
Ko J H, Moon J H, Kang N, Park J H, Shin H W, Park N, Kang S, Lee S M, Kim H J, Ahn T K, Lee J Y, Son S U . Chem. Commun., 2015,51:8781. https://www.ncbi.nlm.nih.gov/pubmed/25912710

doi: 10.1039/c5cc02144h pmid: 25912710
[114]
Kang C W, Lee D H, Shin Y J, Choi J, Ko Y J, Lee S M, Kim H J, Ko K C, Son S U . J. Mater. Chem. A, 2018,6:17312. http://xlink.rsc.org/?DOI=C8TA06744A

doi: 10.1039/C8TA06744A
[115]
Gu C, Huang N, Wu Y, Xu H, Jiang D . Angew. Chem. Int. Ed., 2015,54:11540. https://www.ncbi.nlm.nih.gov/pubmed/26234636

doi: 10.1002/anie.201504786 pmid: 26234636
[116]
Raupke A, Palma-Cando A, Shkura E, Teckhausen P, Polywka A, Gorrn P, Scherf U, Riedl T . Sci. Rep, 2016,6:29118. https://www.ncbi.nlm.nih.gov/pubmed/27373905

doi: 10.1038/srep29118 pmid: 27373905
[117]
Ma H, Li F, Li P, Wang H, Zhang M, Zhang G, Baumgarten M, Müllen K . Adv. Funct. Mater., 2016,26:2025. http://doi.wiley.com/10.1002/adfm.201504692

doi: 10.1002/adfm.201504692
[118]
Wang D, Feng S, Liu H . Chem. Eur. J., 2016,22:14319. https://www.ncbi.nlm.nih.gov/pubmed/27533795

doi: 10.1002/chem.201602688 pmid: 27533795
[119]
Wang D, Sun R, Feng S, Li W, Liu H . Polymer, 2017,130:218. https://linkinghub.elsevier.com/retrieve/pii/S0032386117309850

doi: 10.1016/j.polymer.2017.10.021
[120]
Gou Z, Zuo Y, Tian M, Lin W . ACS Appl. Mater. Interfaces, 2018,10:28979. https://www.ncbi.nlm.nih.gov/pubmed/30088906

doi: 10.1021/acsami.8b08582 pmid: 30088906
[121]
Dalapati S, Gu C, Jiang D . Small, 2016,12:6513. https://www.ncbi.nlm.nih.gov/pubmed/27740717

doi: 10.1002/smll.201602427 pmid: 27740717
[122]
Babu H V, Bai M G M, Rajeswara Rao M . ACS Appl. Mater. Interfaces, 2019,11:11029. https://www.ncbi.nlm.nih.gov/pubmed/30817118

doi: 10.1021/acsami.8b19087 pmid: 30817118
[123]
Yuan Y, Ren H, Sun F, Jing X, Cai K, Zhao X, Wang Y, Wei Y, Zhu G . J. Mater. Chem., 2012,22:24558. http://xlink.rsc.org/?DOI=c2jm35341e

doi: 10.1039/c2jm35341e
[124]
Yuan Y, Ren H, Sun F, Jing X, Cai K, Zhao X, Wang Y, Wei Y, Zhu G . J. Phys. Chem. C, 2012,116:26431. https://pubs.acs.org/doi/10.1021/jp309068x

doi: 10.1021/jp309068x
[125]
Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D . J. Am. Chem. Soc., 2013,135:17310. https://www.ncbi.nlm.nih.gov/pubmed/24182194

doi: 10.1021/ja4103293 pmid: 24182194
[126]
Gomes R, Bhaumik A . RSC Adv, 2016,6:28047. http://xlink.rsc.org/?DOI=C6RA01717G

doi: 10.1039/C6RA01717G
[127]
Das P, Mandal S K . J. Mater. Chem. A, 2018,6:16246. http://xlink.rsc.org/?DOI=C8TA05070H

doi: 10.1039/C8TA05070H
[128]
Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R . Chem. Sci, 2015,6:3931. https://www.ncbi.nlm.nih.gov/pubmed/29218164

doi: 10.1039/c5sc00512d pmid: 29218164
[129]
Zhang C, Zhang S, Yan Y, Xia F, Huang A, Xian Y . ACS Appl. Mater. Interfaces, 2017,9:13415. https://www.ncbi.nlm.nih.gov/pubmed/28375606

doi: 10.1021/acsami.6b16423 pmid: 28375606
[130]
Rao M R, Fang Y, de Feyter S, Perepichka D F . J. Am. Chem. Soc., 2017,139:2421. https://www.ncbi.nlm.nih.gov/pubmed/28088854

doi: 10.1021/jacs.6b12005 pmid: 28088854
[131]
Zhang W, Qiu L G, Yuan Y P, Xie A J, Shen Y H, Zhu J F . J. Hazard. Mater., 2012,221/222:147. https://linkinghub.elsevier.com/retrieve/pii/S0304389412004165

doi: 10.1016/j.jhazmat.2012.04.025
[1] Li Liangjun, Jianhui Deng, Jianwei Guo, Hangbo Yue. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane [J]. Progress in Chemistry, 2020, 32(2/3): 190-203.
[2] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[3] Zhang Xiacong, Li Wen, Zhang Afang. Thermoresponsive Dendritic Polymers [J]. Progress in Chemistry, 2012, (9): 1765-1775.
[4] Xie Rui, Yang Mei, Cheng Changjing, Jiang Jing, Chu Liangyin. Molecular-Recognition and Thermo-Responsive Composite Smart Polymeric Materials [J]. Progress in Chemistry, 2012, 24(0203): 195-202.
[5] Yao Min, Wang Jiajun, Gu Xueping, Feng Lianfang. Synthesis and Application of Dendrimers Based on Polyhedral Oligomeric Silsesquioxanes [J]. Progress in Chemistry, 2012, 24(0203): 405-413.
[6] Xu Shujun, Liang Liyun, Li Buyi, Luo Yali, Liu Chengmei, Tan Bien. Research Progress on Microporous Organic Polymers [J]. Progress in Chemistry, 2011, 23(10): 2085-2094.
[7] Miao Likun, Liu Xingfen, Fan Quli, Huang Wei. Detection of Metal Ions Based on Conjugated Fluorescent Polymers* [J]. Progress in Chemistry, 2010, 22(12): 2338-2352.
[8] . Photoinduced Intramolecular Energy Transfer in Dendrimers [J]. Progress in Chemistry, 2010, 22(10): 2033-2052.
[9] Liu Ji, Ma Baode, Yang Nianfa, Fan Jinghua. Soluble Polymer-Supported Homogeneous Catalysts [J]. Progress in Chemistry, 2010, 22(07): 1457-1470.
[10] . Cyclodextrin-Based Highly Branched Polymers [J]. Progress in Chemistry, 2010, 22(04): 669-676.
[11] . Nitro-Tetrazole and Its High Nitrogen-Contented Compounds [J]. Progress in Chemistry, 2010, 22(04): 639-647.
[12] . Fluorescence Technique in Studies of Amphiphilic Polymer [J]. Progress in Chemistry, 2010, 22(0203): 458-464.
[13] . Covalent Micelle: the Nature and Role of Functional Groups in the Core [J]. Progress in Chemistry, 2010, 22(0203): 465-471.
[14] Yang Xinguo Zhang Deng Tang Ruiren. Dendrimers with Porphyrin Core [J]. Progress in Chemistry, 2009, 21(12): 2595-2604.
[15] Zhang Tao1,2 Zheng Zhaohui1 Cheng Xu1 Ding Xiaobin1* Peng Yuxing1*. “Click” Chemistry in Fields of Materials Science [J]. Progress in Chemistry, 2008, 20(0708): 1090-1101.