中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 467-480 DOI: 10.7536/PC190721 Previous Articles   Next Articles

Special Issue: 锂离子电池

Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries

Jinglun Wang1,**(), Qin Ran1, Chongyu Han1, Zilong Tang1, Qiduo Chen2, Xueying Qin2,**()   

  1. 1. Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
    2. Highpower International Inc., Huizhou 516000, China
  • Received: Revised: Online: Published:
  • Contact: Jinglun Wang, Xueying Qin
  • Supported by:
    the National Natural Science Foundation of China(21202165); the Doctoral Foundation of Hunan University of Science and Technology(E518B1)
Richhtml ( 48 ) PDF ( 1163 ) Cited
Export

EndNote

Ris

BibTeX

The development of electrolyte with high-safety and high-voltage is of significant importance for high performance lithium-ion batteries. Recently, organosilicon electrolytes with unique physicochemical properties have become one of the choices. In this review, the advances of organosilicon compounds both as electrolyte solvents and additives are reviewed from the viewpoint of molecular engineering. The design and performance of organosilicon compounds with carbonate group, carbamate group, nitrile group, ionic liquids group and fluoro substitute as high-voltage and high-safety solvent are described in detail. The versatile organosilicon compounds evaluated as high voltage additive, high safety additive, high/low temperature additive, suppression self discharge additive and acid/water scavenger additive are introduced based on their functional group and reaction mechanism. Research trend and prospects of organosilicon electrolyte are presented finally.

Contents

1 Introduction

2 Progress of organosilicon electrolyte solvent

2.1 Organosilicon functionalized carbonate/carbamate

2.2 Organosilicon functionalized nitrile

2.3 Organosilicon functionalized ionic liquid

2.4 Fluorosilane electrolytes

3 Progress of organosilicon electrolyte additive

3.1 Organosilicon based high-voltage additive

3.2 Organosilicon based high-safety additive

3.3 Organosilicon based high/low temperature additive

3.4 Organosilicon based self-discharge suppression additive

3.5 Organosilicon based acid/water scavenger

4 Conclusion and outlook

Fig. 1 Chemical structures of orgaosilicon functionalized carbonate/carbamate
Fig. 2 Cycling performance of 4.4 V graphite/LiCoO2 cell with 0.4 M LiODFB+0.6 M LiPF6 in TMGC[20]
Fig. 3 Chemical structures of nitrile functionalized organosilicon electrolyte
Fig. 4 Cycling performance of 4.4 V LiCoO2/(0.4 M LiODFB+0.6 M LiPF6) in SN1/graphite full cell[26]
Fig. 5 Chemical structures of organosilicon functionalized ionic liquids
Fig. 6 The electrochemical performance of LiFePO4/Li in the electrolyte of 0.6 M LiTFSI/Si-IL4[34]
Fig. 7 Chemical structures of fluorosilane electrolytes
Fig. 8 The performance of 4.4 V graphite/LiCoO2 in the electrolyte of 1 M LiPF6 EC/DFSM2 /EMC[36]
Fig. 9 Chemical structures of organosilicon based additive for high-voltage application
Table 1 TMSB、TMSP and TMSPi as high voltage electrolyte additive for lithium ion batteries
Fig. 10 Chemical structure of organosilicon compounds for high-safety additive
Fig. 11 Two fundamentally different mechanisms for SEI-forming additives[67]
Fig. 12 Chemical structure of organosilicon compounds for low temperature additive
Fig. 13 Chemical structure of organosilicon compounds for acid and water scavenger additive
Fig. 14 Cycling performance of the cells that cycled with 1000 ppm water controlled electrolyte[77]
Fig. 15 Schematic illustration of the fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 (E-NCM) microsphere[79]
Fig. 16 Scheme showing the formation of irregular and ionically insulating SEI on the MCMB electrode induced by trace water in bare electrolyte and effective suppression of these phenomena by 1-TMSI additive[80]
[1]
(a) Lu Y, Zhang Q, Chen J . Sci. China Chem., 2019,62(5):533. https://doi.org/10.1007/s11426-018-9410-0

doi: 10.1007/s11426-018-9410-0
(b) 吴宇平(Wu Y P), 袁翔云(Yuan X Y), 董超(Dong C), 段冀渊(Duan J Y). 锂离子电池——应用与实践(第二版)(Lithium-ion Batteries Application and Practice (Second Edition)). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2012.
[2]
Xu K .Chem. Rev., 2014,114(23):11503.
[3]
Rodrigues M T F, Babu G, Gullapalli H, Kalaga K, Sayed F N, Kato K, Joyner J, Ajayan P M . Nat Energy, 2017,2:17108.
[4]
(a) Tan S, Ji Y J, Zhang Z R, Yang Y . ChemPhysChem, 2014,15:1956.
(b) 夏兰(Xia L), 余林颇(Yu L P), 胡笛(Hu D), 陈政(Chen Z). 化学学报(Acta Chimica Sinica), 2017,75(12):1183. http://sioc-journal.cn/Jwk_hxxb/CN/Y2017/V75/I12/1183

doi: 10.6023/A17060284
[5]
Nakajima T . Fluorinated Materials for Energy Conversion Amsterdam: Elsevier, 2005.
[6]
Flamme B, Garcia G. R, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A Green Chem., 2017,19:1828.
[7]
Zhi H Z, Xing L. D, Zheng X. W, Xu K, Li W. S.. Phys. Chem. Lett., 2017,8(24):6048.
[8]
Watanabe M, Thomas M L, Zhang S, Ueno K, Yasuda T, Dokko K . Chem. Rev., 2017,117(10):7190.
[9]
秦雪英(Qin X Y), 汪靖伦(Wang J L), 张灵志(Zhang L Z). 化学进展(Progress in Chemistry), 2012,24(5):155. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/Y2012/V24/I05/810
[10]
常增花(Chang T H), 王建涛(Wang J T), 武兆辉(Wu Z H), 赵金玲(Zhao J L), 卢世刚(Lu S G) 化学进展(Progress in Chemistry), 2018,30(12):1960. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC180344

doi: 10.7536/PC180344
[11]
(a) Zhang Z C, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K . Energy Environ. Sci., 2013,6:1806.
(b) Ryou M H, Han G B, Lee Y M, Lee J N, Lee D J, Yoon Y O, Park J K . Electrochim. Acta, 2010,55:2073.
(c) Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H . [J]. Electrochem. Soc., 2010,157:A707.
(d) Zhu Y, Casselman M D, Li Y, Wei A, Abraham D P . J. Power Sources, 2014,246:184.
[12]
(a) Ouatani L E, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P, Gonbeau D . [J]. Electrochem. Soc., 2009,156:A103.
(b) Martin F, Morales J, Sanchez L . ChemPhysChem, 2008,9:2610.
(c) Shim E G, Nam T H, Kim J G, Kim H S, Moon S I . Electrochim. Acta, 2007,53:650.
(d) Chen G, Zhuang G V, Richardson T J, Liu G, Ross P N . Electrochem. Solid-State Lett., 2005,8:A344.
[13]
Tsuda T, Kondo K, Tomioka T, Takahashi Y, Matsumoto H, Kuwabata S , Hussey C L. Angew. Chem. Int. Ed., 2011,50:1310.
[14]
Koh J H, Ha Y J, Park J H, Lee C H, Lim Y M, Ahn J A, Pogozhev D . WO035928, 2008.
[15]
Zhao H, Park S J, Shi F F, Fu Y B, Battaglia V , Ross Jr P N, Liu G.J. Electrochem. Soc., 2014,161:A194. https://iopscience.iop.org/article/10.1149/2.095401jes

doi: 10.1149/2.095401jes
[16]
Nakanishi T, Kashida M, Miyawaki S, Ichinobe S, Aramata M . US0083992A, 2006.
[17]
Wang X J, Lee H. S, Li H, Yang X Q, Huang X Electrochem. Commun., 2010,12:386.
[18]
Takeuchi T, Noguchi S, Morimoto H, Tobishima S . J. Power Sources, 2010,195:580.
[19]
Takei Y, Takeno K, Morimoto H, Tobishima S . J. Power Sources, 2013,228:32.
[20]
Wang J L, Yong T Q, Yang J W, Ouyang C Y, Zhang L Z . RSC Adv., 2015,5:17660.
[21]
(a) Philipp M, Bernhard R, Gasteiger H A, Rieger B J . Electrochem. Soc., 2015,162(7):A1319.
(b) Philipp M, Bhandary R, Groche F J, Schönhoff M, Rieger B . Electrochim. Acta, 2015,173:687.
[22]
Jeschke S, Gentschev A C , Wiemhöfer H D. Chem. Commun., 2013,49: 1190.
[23]
Jeschke S, Wiemhöfer H D , Muck-Lichtenfeld C. Phys. Chem. Chem., 2014,16:14236.
[24]
Jeschke S, Mutke M, Jiang Z X , Alt B, Wiemhöfer H D. ChemPhysChem, 2014,15:1761.
[25]
Duncan H, Salem N, Abu-Lebdeh Y J . Electrochem. Soc., 2013,160:A838. https://iopscience.iop.org/article/10.1149/2.088306jes

doi: 10.1149/2.088306jes
[26]
Yong T Q, Wang J L, Mai Y J, Zhao X Y, Luo H, Zhang L Z J . Power Sources, 2014,254:29.
[27]
Pohl B, Wiemhöfer H J D . Electrochem. Soc., 2015,162(3):A460.
[28]
Pohl B, Grünebaum M, Drews M, Passerini S, Winter M, Wiemhöfer H D . Electrochim. Acta, 2015,180:795.
[29]
Pohl B, Hiller M M, Seidel S M, Grünebaum M, Wiemhöfer H D J . Power Sources, 2015,274:629.
[30]
Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S J . Electrochem. Soc., 2017,164(1):A6026.
[31]
Weng W, Zhang Z C, Lu J. Amine K. Chem. Commun , 2011,47:11969. http://xlink.rsc.org/?DOI=c1cc15331e

doi: 10.1039/c1cc15331e
[32]
Mai Y J, Luo H, Zhao X Y, Wang J L, Davis J, Leslie L J, Zhang L Z . Ionics, 2014,20:1207.
[33]
Yong T Q, Zhang L Z, Wang J L, Mai Y J, Yan X D, Zhao X Y J . Power Sources, 2016,328:397.
[34]
Chen N, Guan Y B, Shen J R, Guo C, Qu W J, Li Y J, Wu F, Chen R . J. ACS Appl. Mater. Interfaces, 2019,11:12154.
[35]
马国强(Ma G Q), 王莉(Wang L), 张建君(Zhang J J), 陈慧闯(Chen H C), 何向明(He X M), 丁元胜(Ding Y S) 化学进展(Progress in Chemsitry), 2016,28(9):1299. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC151212

doi: 10.7536/PC151212
[36]
Wang J L, Mai Y J, Luo H, Yan X D, Zhang L Z . J Power Sources, 2016,334:58.
[37]
Guillot S L, Pena-Hueso A, Usrey M L, Hamers R J . J. Electrochem. Soc., 2017,164(9):A1907.
[38]
(a) Haregewoin A M, Wotango A S, Hwang B J . Energy Environ. Sci., 2016,9:1955.
(b) 张晓妍(Zhang X Y), 任宇飞(Ren Y F), 高洁(Gao J), 张兰(Zhang L), 张海涛(Zhang H T). 储能科学与技术(Energy Storage Science and Technology), 2018,7(3):404.
[39]
(a) Hu M, Pang X L, Zhou Z . J Power Sources, 2013,237:229.
(b) 邓邦为(Deng BW), 孙大明(Sun DM), 万琦(WanQ), 王昊(WangH), 陈滔(ChenT), 李璇(LiX), 瞿美臻(Qu MZ), 彭工厂(Peng GC). 化学学报(Acta Chimica Sinica), 2018,76:259. http://sioc-journal.cn/Jwk_hxxb/CN/10.6023/A17110517
[40]
Wang K, Xing L D, Zhu Y M, Zheng X W, Cai D D, Li W S . J Power Sources, 2017,342:677.
[41]
Han Y K, Yoo J, Yim T . J. Mater. Chem. A, 2015,3:10900.
[42]
Zuo X X, Fan C J, Liu J S, Xiao X, Wu J H, Nan J M . J Power Sources, 2013,229:308.
[43]
Rong H B, Xu M Q, Xie B Y, Liao X L, Huang W Z, Xing L D, Li W S . Electrochim. Acta, 2014,147:31. https://linkinghub.elsevier.com/retrieve/pii/S0013468614019367

doi: 10.1016/j.electacta.2014.09.105
[44]
Li J H, Xing L D, Zhang R Q, Chen M, Wang Z S, Xu M Q, Li W S . J. Power Sources, 2015,285:360.
[45]
Yan C F, Xu Y, Xia J R, Gong C R, Chen K R . J Energy Chem., 2016,25:659. https://linkinghub.elsevier.com/retrieve/pii/S2095495616300468

doi: 10.1016/j.jechem.2016.04.010
[46]
Wang Y, Ming H, Qiu J Y, Yu Z B, Li M, Zhang S T, Yang Y S . J. Electroanal. Chem., 2017,802:8.
[47]
Zhang J, Wang J L, Yang J , NuLi Y N. Electrochim. Acta, 2014,117:99. https://linkinghub.elsevier.com/retrieve/pii/S0013468613022330

doi: 10.1016/j.electacta.2013.11.024
[48]
Rong H B, Xu M Q, Xing L D, Li W S . J. Power Sources, 2014,261:148.
[49]
Yan G C, Li X H, Wang Z X, Guo H J, Wang C . J. Power Sources, 2014,248:1306.
[50]
Mai S W, Xu M Q, Liao X L, Hu J N, Lin H B, Liao Y H, Li X P, Li W S . Electrochim. Acta, 2014,17:565.
[51]
Song Y M, Han J G, Park S, Lee K, Choi N S . J. Mater. Chem A, 2014,2:9506. http://xlink.rsc.org/?DOI=C4TA01129E

doi: 10.1039/C4TA01129E
[52]
Qi X, Tao L, Hahn H, Schultz C, Gallus D R, Cao X, Nowak S, Röser S, Li J, Cekic-Laskovic I, Rad B R, Winter M. . RSC Adv, 2016,6:38342.
[53]
Peebles C, Sahore R, Gilbert J A, Garcia J C, Tornheim A, Bareño J, Iddir H, Liao C, Abraham D P . J Electrochem. Soc., 2017,164(7):A1579.
[54]
Imholt L, Röser S, Börner M, Streipert B, Rezaei R B, Winter M, Cekic-Laskovic I . Electrochim. Acta, 2017,235:332.
[55]
Wagner R, Streipert B, Kraft V, Jiménez A R, Röser S, Kasnatscheew J, Gallus D R, Börner M, Mayer C, Arlinghaus H F, Korth M, Amereller M, Cekic-Laskovic I, Winter M. Adv. Mater. Interfaces, 2016,3(15):1600096.
[56]
Chen J H, Zhang H, Wang M L, Liu J H, Li C H, Zhang P X . J. Power Sources, 2016,303:41.
[57]
Zheng Q F, Xing L D, Yang X R, Li X F, Ye C C, Wang K, Huang Q M . ACS App. Mater. Interface, 2018,10:16843.
[58]
Wang H, Sun D M, Li X, Ge W J, Deng B W, Qu M Z, Peng G C . Electrochim. Acta, 2017,254:112.
[59]
Zhuang Y, Du F H, Zhu L L, Cao H S, Dai H, Adkins J, Zhou Q, Zheng J W . Electrochim. Acta, 2018,290:220.
[60]
Lyua H L, Li Y C, Jafta C J, Bridges C A , Meyer III H M, Borisevich A, Paranthaman M P, Dai S, Sun X G. J Power Sources, 2019,412:527.
[61]
汪靖伦(Wang J L), 闫晓丹(Yan X D), 雍天乔(Yong T Q), 张灵志(Zhang L Z). 物理化学学报(Acta Physico-Chimica Sinica), 2016,32(9):2293.
[62]
Chen L, Xu M Q, Li B, Xing L D, Wang Y, Li W S . J. Power Sources, 2013,244:499.
[63]
Chen R J, Zhao Y Y, Li Y J, Ye Y S, Li Y J, Wu F, Chen S . J. Mater. Chem. A, 2017,5:5142. http://xlink.rsc.org/?DOI=C6TA10210G

doi: 10.1039/C6TA10210G
[64]
Huang J H, Shkrob L, Wang P Q, Cheng L, Pan B F, He M N, Liao C, Zhang Z C, Curtiss L, Zhang L . J. Mater. Chem. A, 2015,3:7332.
[65]
Cai Z J, Liu Y B, Zhao J H, Li L, Zhang Y M, Zhang J . J. Power Sources, 2012,202:341.
[66]
Liu Y B, Tan L, Li L . J. Power Sources, 2013,221:90.
[67]
Yim T , Han Y K. ACS App. Mater. Interface, 2017,9:32851. https://pubs.acs.org/doi/10.1021/acsami.7b11309

doi: 10.1021/acsami.7b11309
[68]
Ren Y J, Wang M Z, Wang J L , Cui Y L. Inter. J. Electrochem. Sci., 2018,3:664.
[69]
Yamagiwa K, Morita D, Yabuuchi N, Tanaka T, Fukunishi M, Taki T, Watanabe H, Otsuka T, Yano T, Son J Y, Cui Y T, Oji H, Komaba S . Electrochim. Acta, 2015,160:347. https://linkinghub.elsevier.com/retrieve/pii/S0013468615002790

doi: 10.1016/j.electacta.2015.02.004
[70]
Kim K M, Ly N V, Won J H, Lee Y G, Cho W, Ko J M, Kaner R . Electrochim. Acta, 2014,136:182.
[71]
Won J H, Lee H S, Hamenu L, Latifatu M, Lee Y M, Kim K M, Oh J, Cho W, Ko J M . J. Power Sources, 2016,37:325.
[72]
Liao X L, Sun P Y, Xu M Q, Xing L D, Liao Y H, Zhang L P, Yu L, Fan W Z, Li W S . App. Energy, 2016,175:505.
[73]
Liao X L, Huang Q M, Mai S W, Wang X S, Xu M Q, Xing L D, Liao Y H, Li W S . J. Power Sources, 2014,272:501.
[74]
Wu X W, Li X H, Wang Z X, Guo H J, Yue P , Zhang Y H. ACS App. Surface Sci., 2013,268:349.
[75]
Seo H, Na S, Lee B, Yim T, Oh S H . J Ind. Eng. Chem., 2018,64:311.
[76]
Lim S H, Cho W, Kim Y J, Yim T . J. Power Sources, 2016,336:465.
[77]
Jang S H, Yim T . ChemPhysChem, 2017,18(23):3402.
[78]
Deng B W, Wang H, Ge W J, Li X, Yan X X, Chen T, Qu M Z, Peng G C . Electrochim. Acta, 2017,236:61.
[79]
Wang H, Ge W J, Li W. ACS App . ACS App. Mater. Interfaces, 2016,8:18439.
[80]
Wotango A S, Su W N, Leggesse E G, Haregewoin A M, Lin M H, Zegeye T A, Cheng J H , Hwang B J. ACS App. Mater. Interfaces, 2017,9:2410.
[81]
Wang J P, Zhang L, Zhang H T . Ionics, 2018,24:3691.
[82]
Tong B, Wang J W, Liu Z J, Ma L P, Wang P, Feng W F, Peng Z Q, Zhou Z B . J. Power Sources, 2018,400:225.
[83]
Park S J, Hwang J Y, Sun Y K . J. Mater. Chem. A., 2019,7:13441.
[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[3] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[4] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[5] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[6] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[7] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[8] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[9] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[10] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[11] Yongjie Zhang, Mingshuai Fan, Xiaopei Li, Huayi Li, Shuwei Wang, Wenqin Zhu. Silicon-Containing Functionalized Polyolefin: Synthesis and Application [J]. Progress in Chemistry, 2020, 32(1): 84-92.
[12] Dengxu Wang, Jinfeng Cao, Dongdong Han, Wensi Li, Shengyu Feng. Novel Organosilicon Synthetic Methodologies [J]. Progress in Chemistry, 2019, 31(1): 110-120.
[13] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[14] Wuwei Yan, Yongning Liu, Shaokun Chong, Yaping Zhou, Jianguo Liu, Zhigang Zou. Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(2/3): 198-209.
[15] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.