中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 162-178 DOI: 10.7536/PC190711 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts

Xinzhi Wang1,2, Hongli Wang1, Feng Shi1,**()   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Online: Published:
  • Contact: Feng Shi
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21633013)
Richhtml ( 61 ) PDF ( 1529 ) Cited
Export

EndNote

Ris

BibTeX

N-alkyl amines are an important class of molecules in the chemical industry and are extensively applied in the syntheses of dyes, pharmaceuticals, agrochemicals, surfactants, rubber ingredients, and functional materials. Given the importance of N-alkyl amines, the development of efficient synthetic methodologies to synthesize these amines is of broad interest. Among various methods, the catalytic alcohol amination has been viewed as effective and green method for synthesis of N-alkyl amines because alcohol is readily available, and water is generated as the sole by-product. This review describes developments and recent advances in the alcohol amination with different heterogeneous catalyst systems, including nickel, copper, palladium, platinum, cobalt, manganese, iron, gold, ruthenium, silver, and other catalyst systems. The frontiers and future of the topic are also given.

Scheme 1 The alcohol amination with borrowing hydrogen mechanism
Scheme 2 The N-alkylation of aniline and ethanol catalyzed by Ni[25]
Scheme 3 The N-alkylation of indole and secondary alcohol catalyzed by Raney Ni[30]
Scheme 4 N-alkylation of various aniline with various alcohols[31]
Fig.1 Ni precursor in presence of KOH, benzyl alcohol and aniline[31]
Fig.2 (a) XRD patterns of Ni/Al2O3 catalysts with different Ni loadings pre-reduced at 500 ℃.(b) Particle size distribution from TEM analysis.(c) TOF per surface Ni atom for N-alkylation of aniline with(○) 1-octanol or(▼) benzyl alcohol by Ni/θ-Al2O3 at 144 ℃ as a function of mean Ni particle size[32]
Scheme 5 Amination of various alcohols with NH3 catalyzed by Ni / A l 2 O 3 [ 33 ]
Scheme 6 The synthesis of primary amine from alcohol and ammonia catalyzed by NiCuFe O x [ 37 ]
Fig.3 TEM and HR-TEM images of NiCuFeO x (a),(b) before and (c),(d) after use. Scale bars: (a),(c) 50 nm; (b),(d) 2 nm[37]
Fig.4 XRD diffraction patterns of NiCuFe O x [ 37 ]
Scheme 7 N-acetonyl morpholine synthesis with amine and glycerol catalyzed by CuNiAl O x [ 38 ]
Scheme 8 Preparation of pyrazine by ethanolamine [40]
Scheme 9 The N-alkylation of aliphatic amines with aliphatic alcohols catalyzed by CuCr2 O 4 [ 41 ]
Scheme 10 The N-alkylation of dimethylamine with aliphatic alcohols catalyzed by CuO-Cr2O3-Si O 2 [ 43 ]
Fig.5 XPS spectra of CuLLM lines of Cu-ZnO-Al2O3 catalyst: (a) reduced at 500 ℃;(b) exposed to methanol for 10 min after reduction[50]
Scheme 11 The N-alkylation of benzylamine and aniline with benzyl alcohol catalyzed by CuAl-HT[53]
Scheme 12 The synthesis of asymmetrical tertiary amines catalyzed by Cu2Al3 O x [ 54 ]
Scheme 13 The synthesis of NMPD from BDO and MA catalyzed by 3%Cu-3%Ni/ZSM-5[62]
Fig.6 (a)XRD patterns of different catalysts;(b) H2-TPR curves of 3%Cu/ZSM-5, 3%Ni/ZSM-5 and 3%Cu-3%Ni/ZSM-5[62]
Scheme 14 The photocatalyzed N-alkylation of p-Cl-aniline with methanol [63]
Scheme 15 The N-alkylation of amine and alcohol catalyzed by copper powder[64]
Scheme 16 N-alkylation of benzyl alcohol with n-hexylamine[65]
Scheme 17 N-alkylation of aliphatic amines with benzyl alcohols catalyzed by Pd/AlO(OH) [66]
Fig.7 TEM image of Pd/MgO[67]
Scheme 18 One-pot synthesis of piperazine from 1,2-diamine and ethylene glycol catalyzed by Pd/MgO[67]
Scheme 19 N-alkylation of 2-methoxybenzyl alcohol with aniline[68]
Fig.8 Mechanism of palladium catalyzed N-alkylation of amines with alcohols[68]
Fig.9 Typical TEM image of Pd x /TiO2 catalysts and the size distributions of Pd particles on the respective catalysts[69]
Scheme 20 Synthesis of 4-chloro-N,N-dimethylaniline [70]
Scheme 21 N-alkylation of n-octanol and secondary amine using PdZn/Al2O3 catalyst[74]
Scheme 22 N-alkylation of 1-octanol with ammonia[75]
Scheme 23 N-alkylation of p-touidine and benzyl alcohol [76]
Fig.10 (a) XRD patterns of Pd@MIL-100(Fe), MIL-100(Fe), and calculated MIL-100(Fe);(b) XPS spectrum of Pd@MIL-100(Fe) in Pd 3d region;(c) TEM and (d) HRTEM images of Pd@MIL-100(Fe);(e) TEM and (f) HRTEM images of Pd/MIL-100(Fe)[76]
Fig.11 (a) TEM and (b) HRTEM images of Pd1Au1@MIL-100(Fe);(c) and (d) STEM-EDS mapping of Pd1Au1@MIL-100(Fe); (e) and (f) line-scanning profile across a PdAu nanocluster in Pd1Au1@MIL-100(Fe)[77]
Scheme 24 Synthesis of tertiary amines from piperidine and methanol [78,79]
Scheme 25 Synthesis of diamines from the reactions of diols and aniline[81,82]
Scheme 26 OABCO synthesis via aminocyclization of THFDM [83]
Scheme 27 N-alkylation of butanediamine and benzyl alcohol[84]
Scheme 28 N-alkylation of 1-phenylethan-1-amines and benzyl alcohol[85]
Scheme 29 N-alkylation of dibutylamine and benzyl alcohol catalyzed by Mn O 2 [ 87 ]
Scheme 30 N-alkylation of sulfonamide and benzyl alcohol catalyzed by Mn O 2 [ 89 ]
Scheme 31 N-alkylation of benzyl alcohol and aromatic heterocyclic amine catalyzed by Fe3 O 4 [ 90 ]
Scheme 32 Au-catalyzed N-alkylation of benzyl alcohol with aniline[94]
Fig.12 (a) HAADF-STEM images and(b) the size distributions of 2 wt% Au/Al-MIL53[94]
Scheme 33 N-alkylation of aniline with myrtenol catalyzed by Au/Zr O 2 [ 96 ]
Scheme 34 N-alkylation of amines with alcohols catalyzed by Au/TiO2-VS[101]
Fig.13 Representative TEM image and size distribution of (a) 0.5 wt% Au/TiO2-VS; (b) 0.5 wt% Au/TiO2-VS after three runs[101]
Scheme 35 Gold-catalysed alkylation of amine by alcohol[102]
Scheme 36 N-alkylation of aniline with primary alcohols catalyzed by Au/Ti O 2 [ 104 ]
Scheme 37 N-Alkylation of synergistic Cu-Au photocatalysis[105]
Fig.14 Representative BFTEM image of the mixed photocatalyst system after reaction for 20 h on a lacey carbon Cu grid(scale bar: 10 nm; ○Cu NPs and□Au NPs)[105]
Scheme 38 N-Alkylation of isopropylamine with benzyl alcohol catalyzed by Au/NiO[106]
Scheme 39 N-alkylation of aromatic amine with aromatic alcohol catalyzed by TTA-Au-NG[107]
Fig.15 SEM images of (a,b) NG and TEM images of(c,d) TTA-Au-NG[107]
Scheme 40 The N-alkylation of sulfonamides with alcohols[108]
Fig.16 TEM pictures of Ru/Fe3O4 (a) before and (b) after 5 runs[108]
Scheme 41 N-alkylation of heteroaromatic amines and benzyl alcohol[109]
Scheme 42 N-monoalkylation catalyzed by Ru(OH)3-Fe3 O 4 [ 111 ]
Scheme 43 N-alkylation of benzyl alcohol and aniline catalyzed by Ag/Al2 O 3 [ 115 ]
Fig.17 (a) Fourier transforms of Ag K-edge EXAFS for Ag foil and Cu0.95Ag0.05/Al2O3(Cu + Ag=10 wt%);(b) Ag K-edge XANES spectra;(c) The inverse Fourier transform of k3-weighted Ag K-edge EXAFS spectrum of(solid line) Cu0.95Ag0.05/Al2O3(Cu+Ag=10 wt%) and (·) its best fit derived from curve-fitting analysis[49]
Fig.18 (a) SEM and TEM images and selected-area electron diffraction patterns of Ag-Mo-22 catalyst;(b) XRD diffraction patterns of prepared catalysts[118]
Scheme 44 N-alkylation of benzyl alcohol and sulfonamide catalyzed by Ag6Mo10 O 33 [ 118 ]
Scheme 45 N-alkylation of aniline and ethanol catalyzed by silica gel[122]
Scheme 46 Carbon-catalyzed N-alkylation of amines with alcohols[124]
Fig.19 FT-IR spectra. FT-IR spectra of C-0 to C-5(a~f), 0.18 wt% Ni/C-1(g), 0.07 wt% Pd/C-1(h) and C-1 treated with oxygen and alcohol(a’: C-1; b’: C-1-O and C-1/KOH were treated with oxygen at 150 ℃ for 24 h; c’: C-1-O-R and C-1-O/KOH were treated with isopropanol at 150 ℃ for 24 h; d’:C-1-U and C-1 were reused for five runs in the coupling reaction of aniline and benzyl alcohol)[124]
Fig.20 SEM images of the carbon materials.(a) C-0,(b) C-1[124]
Scheme 47 Carbon-catalyzed N-alkylation of(E)-1,3-diphenylprop-2-en-1-ol with 4-methyl benzenesul-fonamide[125]
[1]
Lawrence S A . Amines: Synthesis, Properties and Applications. Cambridge: Cambridge University Press, 2004. 1.
[2]
Von H A . Eur. J. Org. Chem., 1851,78(3):253.
[3]
Magano J, Dunetz J R . Chem. Rev., 2011,111(3):2177. https://www.ncbi.nlm.nih.gov/pubmed/21391570

doi: 10.1021/cr100346g pmid: 21391570
[4]
Jiang D S, Fu H, Jiang Y Y, Zhao Y F . J. Org. Chem., 2007,72(2):672. https://www.ncbi.nlm.nih.gov/pubmed/17221996

doi: 10.1021/jo062060e pmid: 17221996
[5]
Alex K, Tillack A, Schwarz N, Beller M . ChemSusChem, 2008,1(4):333. https://www.ncbi.nlm.nih.gov/pubmed/18605099

doi: 10.1002/cssc.200700160 pmid: 18605099
[6]
Crozet D, Urrutigoïty M, Kalck P . ChemCatChem, 2011,3(7):1102. accf61c0-1392-4981-b7d2-2a1f0385a0e1 http://dx.doi.org/10.1002/cctc.201000411

doi: 10.1002/cctc.201000411
[7]
Steinhuebel D, Sun Y K, Matsumura K, Sayo N, Saito T . J. Am. Chem. Soc., 2009,131(32):11316. https://www.ncbi.nlm.nih.gov/pubmed/19637921

doi: 10.1021/ja905143m pmid: 19637921
[8]
Nef J U . Eur. J. Org. Chem., 1901,318(2/3):137.
[9]
Hamid M H S A, Slatford P A, Williams J M J . Adv. Synth. Catal., 2007,349(10):1555.
[10]
Hamid M, Haniti S A, Allen C L, Lamb G W, Maxwell A C, Maytum H C, Watson A J A, Williams J M J . J. Am. Chem. Soc., 2009,131(5):1766. https://www.ncbi.nlm.nih.gov/pubmed/19191700

doi: 10.1021/ja807323a pmid: 19191700
[11]
Mutti F G, Knaus T, Scrutton N S, Breuer M, Turner N J . Science, 2015,349(6255):1525. https://www.ncbi.nlm.nih.gov/pubmed/26404833

doi: 10.1126/science.aac9283 pmid: 26404833
[12]
Obora Y . ACS Catal., 2014,4(11):3972.
[13]
Nixon T D, Whittlesey M K, Williams J M J. Dalton Trans., 2009,40(23):753.
[14]
Irrgang T, Kempe R . Chem. Rev., 2019,119(4):2524. https://www.ncbi.nlm.nih.gov/pubmed/30457320

doi: 10.1021/acs.chemrev.8b00306 pmid: 30457320
[15]
Corma A, Navas J, Sabater M J. Chem. Rev., 2018,118(4):1410.
[16]
Dai X C Dai X C, Shi F . Org. Biomol. Chem., 2019,17(8):2044. https://www.ncbi.nlm.nih.gov/pubmed/30656316

doi: 10.1039/c8ob03091j pmid: 30656316
[17]
Sundararaju B, Achard M, Bruneau C . Chem. Soc. Rev., 2012,41(12):4467. https://www.ncbi.nlm.nih.gov/pubmed/22576362

doi: 10.1039/c2cs35024f pmid: 22576362
[18]
Emer E, Sinisi R, Capdevila M G, Petruzziello D, De Vincentiis F, Cozzi P G . Eur. J. Org. Chem., 2011,2011(4):647.
[19]
Biannic B, Aponick A . Eur. J. Org. Chem., 2011,2011(33):6605.
[20]
Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M . ChemCatChem, 2011,3(12):1853.
[21]
Wu H, Wu J C, Du Z Y . Chin. J. Org. Chem., 2017,37(5):1127.
[22]
Shimizu K I . Catal. Sci. Technol., 2015,5(3):1412.
[23]
Pelckmans M, Renders T, Van V S, Sels B F . Green Chem., 2017,19(22):5303.
[24]
白国义( Bai G Y), 陈立功 (Chen L G) . 化学进展( Progress in Chemistry), 2005,17(2):293.
[25]
Adkins H, Cramer H I . J. Am. Chem. Soc., 1930,52:4349.
[26]
Winans C F, Adkins H . J. Am. Chem. Soc., 1932,54(1):306.
[27]
Pratt E F, Frazza E J . J. Am. Chem. Soc., 1954,76(23):6174.
[28]
Rice R G, Kohn E J . J. Am. Chem. Soc., 1955,77(15):4052.
[29]
Rice R G, Kohn E J, Daasch L W . J. Org. Chem., 1958,23(9):1352.
[30]
De Angelis F, Grasso M, Nicoletti R . Synthesis, 1977,1977(5):335.
[31]
Afanasenko A, Elangovan S, Stuart M C. A, Bonura G, Frusteri F, Barta K . Catal. Sci. Technol., 2018,8(21):5498.
[32]
Shimizu K I, Imaiida N, Kon K, Siddiki S, Satsuma A . ACS Catal., 2013,3(5):998.
[33]
Shimizu K I, Kon K, Onodera W, Yamazaki H, Kondo J N . ACS Catal., 2013,3(1):112.
[34]
Dumon A S, Wang T, Ibanez J, Tomer A, Yan Z, Wischert R, Sautet P, Pera-Titus M, Michel C . Catal. Sci. Technol., 2018,8(2):611. http://xlink.rsc.org/?DOI=C7CY02208E

doi: 10.1039/C7CY02208E
[35]
Garcia R J L, Parra A, Aleman J, Yuste F, Mastranzo V M . Chem. Commun., 2009,4:404.
[36]
Sun J, Jin X D, Zhang F W, Hu W Q, Liu J T, Li R . Catal. Commun., 2012,24:30.
[37]
Cui X J, Dai X C, Deng Y Q, Shi F . Chem. Eur. J., 2013,19(11):3665. https://www.ncbi.nlm.nih.gov/pubmed/23417959

doi: 10.1002/chem.201203417 pmid: 23417959
[38]
Dai X C, Rabeah J, Yuan H K, Brückner A, Cui X J, Shi F . ChemSusChem, 2016,9(22):3133. https://www.ncbi.nlm.nih.gov/pubmed/27781411

doi: 10.1002/cssc.201600972 pmid: 27781411
[39]
Wu Y J, Yuan H K, Shi F . ACS Sustain. Chem. Eng., 2018,6(1):1061. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b03373

doi: 10.1021/acssuschemeng.7b03373
[40]
Aston J G, Peterson T E, Holowchak J . J. Am. Chem. Soc., 1934,56(1):153.
[41]
Schwoegler E J, Adkins H . J. Am. Chem. Soc., 1939,61(12):3499.
[42]
Schneider H J, Adkins H, McElvain S M . J. Am. Chem. Soc., 1952,74(17):4287.
[43]
Baiker A, Richarz W . Tetrahedron Lett., 1977,18(22):1937.
[44]
Baiker A, Richarz W . Synth. Commun., 1978,8(1):27.
[45]
Runeberg J, Baiker A, Kijenski J . Appl. Catal., 1985,17(2):309.
[46]
Hammerschmidt W, Baiker A, Wokaun A, Fluhr W . Appl. Catal., 1986,20(1/2):305.
[47]
Kijeński J, Niedzielski P J, Baiker A . Appl. Catal., 1989,53(1):107.
[48]
Card R J, Schmitt J L . J. Org. Chem., 1981,46(4):754.
[49]
Shimizu K I, Shimura K, Nishimura M, Satsuma A . RSC Adv., 2011,1(7):1310.
[50]
Göbölös S, Hegedüs M, Kolosova I, Maciejewski M, Margitfalvi J L . Appl. Catal. A: Gen., 1998,169(2):201.
[51]
Yamakawa T, Tsuchiya I, Mitsuzuka D, Ogawa T . Catal. Commun., 2004,5(6):291. https://www.ncbi.nlm.nih.gov/pubmed/14565056

doi: 10.2298/mpns0306291m pmid: 14565056
[52]
He J L, Yamaguchi K, Mizuno N . Chem. Lett., 2010,39(11):1182. http://www.journal.csj.jp/doi/10.1246/cl.2010.1182

doi: 10.1246/cl.2010.1182
[53]
Likhar P R, Arundhathi R, Kantam M L, Prathima P S . Eur. J. Org. Chem., 2009,2009(31):5383.
[54]
Pang S F, Deng Y Q, Shi F . Chem. Commun., 2015,51(46):9471. https://www.ncbi.nlm.nih.gov/pubmed/25959718

doi: 10.1039/c5cc02205c pmid: 25959718
[55]
Abe H, Yokota Y, Okabe K . Appl. Catal., 1989,52(3):171.
[56]
Kimura H, Taniguchi H . Catal. Lett., 1996,40(1/2):123.
[57]
Kimura H, Taniguchi H . Appl. Catal. A: Gen., 2005,287(2):191.
[58]
Imabeppu M, Kiyoga K, Okamura S, Shoho H, Kimura H . Catal. Commun., 2009,10(6):753.
[59]
Kimura H, Tsutsumi S I, Tsukada K . Appl. Catal. A: Gen., 2005,292:281.
[60]
Chen X Z, Luo H, Qian C, He C H . React. Kinet. Mech. Catal., 2011,104(1):163.
[61]
Nagaraju M B R R, Khagga M . Der Pharma Chemica., 2011,3(4):180.
[62]
Long Y, Wang P X, Fei Y Q, Zhou D W, Liu S M, Deng Y Q . Green Chem., 2019,21(1):141.
[63]
Zhang L N, Zhang Y, Deng Y Q, Shi F . Catal. Sci. Technol., 2015,5(6):3226.
[64]
Wu Y J, Huang Y J, Dai X C, Shi F . ChemSusChem, 2018,6(1):1061.
[65]
Murahashi S I, Shimamura T, Moritani I . J. Chem. Soc. Chem. Commun., 1974, ( 22):931.
[66]
Kwon M S, Kim S, Park Su, Bosco W, Chidrala R K, Park J . J. Org. Chem., 2009,74(7):2877. https://www.ncbi.nlm.nih.gov/pubmed/19265414

doi: 10.1021/jo8026609 pmid: 19265414
[67]
Corma A, Ródenas T, Sabater M J . Chem. Eur. J., 2010,16(1):254. https://www.ncbi.nlm.nih.gov/pubmed/19904774

doi: 10.1002/chem.200901501 pmid: 19904774
[68]
Zhang Y, Qi X J, Cui X J, Shi F, Deng Y Q . Tetrahedron Lett., 2011,52(12):1334.
[69]
Shiraishi Y, Fujiwara K, Sugano Y, Ichikawa S, Hirai T . ACS Catal., 2013,3(3):312.
[70]
Zhang L N, Zhang Y, Deng Y Q, Shi F . RSC Adv., 2015,5(19):14514.
[71]
Xu C P, Xiao Z H, Zhuo B Q, Wang Y H, Huang P Q . Chem. Commun., 2010,46(41):7834. https://www.ncbi.nlm.nih.gov/pubmed/20830335

doi: 10.1039/c0cc01487g pmid: 20830335
[72]
Liu X, Hermange P, Ruiz J, Astruc D . ChemCatChem, 2016,8(6):1043.
[73]
Ousmane M, Perrussel G, Yan Z, Clacens J M, De C F, Pera-Titus M . J. Catal., 2014,309:439.
[74]
Furukawa S, Suzuki R, Komatsu T . ACS Catal., 2016,6(9):5946. https://pubs.acs.org/doi/10.1021/acscatal.6b01677

doi: 10.1021/acscatal.6b01677
[75]
Fang L, Yan Z, Vits K, Southward B, Pera-Titus M . Catal. Sci. Technol., 2019,9(5):1215.
[76]
Wang D K, Li Z H . J. Catal., 2016,342:151.
[77]
Wang D K, Pan Y T, Xu L Z, Li Z H . J. Catal., 2018,361:248.
[78]
Nishimoto S, Ohtani B, Yoshikawa T, Kagiya T . J. Am. Chem. Soc., 1983,105(24):7180.
[79]
Ohtani B, Osaki H, Nishimoto S, Kagiya T . J. Am. Chem. Soc., 1986,108(2):308.
[80]
He W, Wang L D, Sun C L, Wu K K, He S B, Chen J P, Wu P, Yu Z K . Chem. Eur. J., 2011,17(47):13308. https://www.ncbi.nlm.nih.gov/pubmed/21997929

doi: 10.1002/chem.201101725 pmid: 21997929
[81]
Wang L D, He W, Wu K K, He S B, Sun C L, Yu Z K . Tetrahedron Lett., 2011,52(52):7103.
[82]
Wu K K, He W, Sun C L, Yu Z K . Tetrahedron, 2016,72(51):8516.
[83]
Cui X J, Yuan H K, Li J P, De C F, Pera-Titus M, Deng Y Q, Shi F . Catal. Commun., 2015,58:195.
[84]
Fischer A, Maciejewski M, Buergi T, Mallat T, Baiker A . J. Catal., 1999,183(2):373. https://www.ncbi.nlm.nih.gov/pubmed/29300639

doi: 10.1086/BBLv183n2p373 pmid: 29300639
[85]
Chung H, Chung Y K . J. Org. Chem., 2018,83(15):8533. https://www.ncbi.nlm.nih.gov/pubmed/30016101

doi: 10.1021/acs.joc.8b01109 pmid: 30016101
[86]
Ibanez J, Kusema B T, Paul S, Pera-Titus M . Catal. Sci. Technol., 2018,8(22):5858.
[87]
Blackburn L, Taylor R J K . Org. Lett., 2001,3(11):1637. https://www.ncbi.nlm.nih.gov/pubmed/11405674

doi: 10.1021/ol015819b pmid: 11405674
[88]
Kanno H, Taylor R J K . Tetrahedron Lett., 2002,43(41):7337.
[89]
Yu X C, Liu C Z, Jiang L, Xu Q . Org. Lett., 2011,13(23):6184. https://www.ncbi.nlm.nih.gov/pubmed/22040008

doi: 10.1021/ol202582c pmid: 22040008
[90]
Martinez R, Ramon D J, Yus M . Org. Biomol. Chem., 2009,7(10):2176. https://www.ncbi.nlm.nih.gov/pubmed/19421457

doi: 10.1039/b901929d pmid: 19421457
[91]
Gonzalez-Arellano C, Yoshida K, Luque R, Gai P L . Green Chem., 2010,12(7):1281.
[92]
Li L J, Zhu A L, Zhang Y Q, Fan X C, Zhang G S . RSC Adv., 2014,4(9):4286.
[93]
Ghanimati M, Senejani M A, Isfahani T M, Bodaghifard M A . Appl. Organomet. Chem., 2018,32:e4591.
[94]
Ishida T, Kawakita N, Akita T, Haruta M . Gold Bulletin, 2009,42(4):267.
[95]
Ishida T, Takamura R, Takei T, Akita T, Haruta M . Appl. Catal. A: Gen., 2012,413/414:261.
[96]
Demidova Y S, Simakova I L, Estrada M, Beloshapkin S, Suslov E V, Korchagina D V, Volcho K P, Salakhutdinov N F, Simakov A V, Murzin D Y . Appl. Catal. A: Gen., 2013,464/465:348.
[97]
Demidova Y, Simakova I L, Wärnå J, Simakov A, Murzin D Y . Chem. Eng. J., 2014,238:164.
[98]
Demidova Y S, Suslov E V, Simakova I L, Mozhajcev E S, Korchagina D V, Volcho K P, Salakhutdinov N F, Simakov A, Murzin D Y . J. Mol. Catal. A: Chem., 2017,426:60.
[99]
Demidova Y S, Suslov E V, Simakova I L, Volcho K P, Smolentseva E, Salakhutdinov N F, Simakov A, Murzin D Y . Mol. Catal., 2017,433:414.
[100]
Simakova I L, Demidova Y S, Estrada M, Beloshapkin S, Suslov E V, Volcho K P, Salakhutdinov N F, Murzin D Yu, Simakov A . Catal. Today, 2017,279:63.
[101]
He L, Lou X B, Ni J, Liu Y M, Cao Y, He H Y, Fan K N . Chem. Eur. J., 2010,16(47):13965. https://www.ncbi.nlm.nih.gov/pubmed/21104710

doi: 10.1002/chem.201001848 pmid: 21104710
[102]
Zotova N, Roberts F J, Kelsall G H, Jessiman A S, Hellgardt K, Hii K K . Green Chem., 2012,14(1):226.
[103]
Corma A, Navas J, Sabater M J . Chem. Eur. J., 2012,18(44):14150. https://www.ncbi.nlm.nih.gov/pubmed/22996294

doi: 10.1002/chem.201201837 pmid: 22996294
[104]
Stibal D, Sa J, van B J A . Catal. Sci. Technol., 2013,3(1):94. http://xlink.rsc.org/?DOI=C2CY20511D

doi: 10.1039/C2CY20511D
[105]
Wang L M, Morioka Y, Jenkinson K, Wheatley A E H, Saito S, Naka H . Sci. Rep., 2018,8(1):6391. https://www.ncbi.nlm.nih.gov/pubmed/29686429

doi: 10.1038/s41598-018-24889-9 pmid: 29686429
[106]
Chan T C E, Chinchilla L E, Trujillo F J S, Dimitratos N, Botton G A, Prati L, Villa A . Materials, 2017,10(12):1435.
[107]
Ye D D, Huang R H, Zhu H Y, Zou L H, Wang D W . Org. Chem. Front., 2019,6(1):62.
[108]
Shi F, Tse M K, Zhou S L, Pohl M M, Radnik J, Hübner S, Jähnisch K, Brückner A, Beller M . J. Am. Chem. Soc., 2009,131(5):1775. https://www.ncbi.nlm.nih.gov/pubmed/19191701

doi: 10.1021/ja807681v pmid: 19191701
[109]
Kim J W, Yamaguchi K, Mizuno N . J. Catal., 2009,263(1):205.
[110]
Yamaguchi K, He J, Oishi T, Mizuno N . Chemistry, 2010,16(24):7199. https://www.ncbi.nlm.nih.gov/pubmed/20468035

doi: 10.1002/chem.201000149 pmid: 20468035
[111]
Cano R, Ramon D J, Yus M . J. Org. Chem. 2011,76(14):5547. https://www.ncbi.nlm.nih.gov/pubmed/21615080

doi: 10.1021/jo200559h pmid: 21615080
[112]
Du F, Jin X, Yan W J, Zhao M, Thapa P S, Chaudhari R V . Catal. Today, 2017,302:227. https://linkinghub.elsevier.com/retrieve/pii/S0920586117301761

doi: 10.1016/j.cattod.2017.03.028
[113]
Niemeier J, Engel R V, Rose M . Green Chem., 2017,19(12):2839.
[114]
Ruiz D, Aho A, Saloranta T, Eränen K, Wärnå J, Leino R, Murzin D Y . Chem. Eng. J., 2017,307:739. https://linkinghub.elsevier.com/retrieve/pii/S1385894716311573

doi: 10.1016/j.cej.2016.08.083
[115]
Shimizu K I, Nishimura M, Satsuma A . ChemCatChem, 2009,1(4):497.
[116]
Liu H H, Chuah G K, Jaenicke S . J. Catal., 2012,292:130.
[117]
Paul P, Bhanja P, Salam N, Mandi U, Bhaumik A, Alam S M, Islam S M . J. Colloid Interface Sci., 2017,493:206. https://www.ncbi.nlm.nih.gov/pubmed/28092819

doi: 10.1016/j.jcis.2016.12.072 pmid: 28092819
[118]
Cui X J, Zhang Y, Shi F, Deng Y Q . Chem. Eur. J., 2011,17(3):1021. https://www.ncbi.nlm.nih.gov/pubmed/21226120

doi: 10.1002/chem.201001915 pmid: 21226120
[119]
Tsarev V N, Morioka Y, Caner J, Wang Q, Ushimaru R, Kudo A, Naka H, Saito S . Org. Lett., 2015,17(10):2530. https://www.ncbi.nlm.nih.gov/pubmed/25915546

doi: 10.1021/acs.orglett.5b01063 pmid: 25915546
[120]
Mandi U, Kundu S K, Salam N, Bhaumik A, Islam S M . J. Colloid Interface Sci., 2016,467:291. https://www.ncbi.nlm.nih.gov/pubmed/26809107

doi: 10.1016/j.jcis.2016.01.017 pmid: 26809107
[121]
Bayat A, Shakourian-Fard M, Nouri P, Hashemi M M . Appl. Organomet. Chem., 2017,31(10):1
[122]
Brown A B, Reid E E . J. Am. Chem. Soc., 1924,46(8):1836.
[123]
Reddy M M, Kumar M A, Swamy P, Naresh M, Srujana K, Satyanarayana L, Venugopal A, Narender N . Green Chem., 2013,15(12):3474.
[124]
Yang H M, Cui X J, Dai X C, Deng Y Q, Shi F . Nat. Commun., 2015,6:6478. https://www.ncbi.nlm.nih.gov/pubmed/25832812

doi: 10.1038/ncomms7478 pmid: 25832812
[125]
Gómez-Martínez M, Baeza A, Alonso D A . ChemCatChem, 2017,9(6):1032.
[1] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[2] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[3] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[4] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[5] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[6] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[7] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
[8] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[9] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[10] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[11] Ruipu Zhang, Runze Zhang, Sanzhong Luo. Bio-Inspired ortho-Quinone Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1753-1765.
[12] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[13] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[14] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[15] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.