中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 320-330 DOI: 10.7536/PC190629 Previous Articles   Next Articles

Effects of Superhydrophobic Surface on Tribological Properties: Mechanism, Status and Prospects

Yonggang Guo**(), Yachao Zhu, Xin Zhang, Bingpeng Luo   

  1. School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
  • Received: Online: Published:
  • Contact: Yonggang Guo
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(51775169); National Natural Science Foundation of China(U1404516); National Natural Science Foundation of China(U1604253); Natural Science Foundation of Henan Province(162300410053); Training Program of Young Key Teachers in Henan University of Technology, Training Program of Young Key Teachers in Colleges and Universities in Henan Province(2016GGJS-067); Key Scientific Research Projects of Henan Colleges and Universities(17A430014); Henan Province Science and Technology Research Projects(142102210413)
Richhtml ( 57 ) PDF ( 1494 ) Cited
Export

EndNote

Ris

BibTeX

Due to its extreme non-wetting properties, superhydrophobic surface has a wide range of potential applications in the fields of drag reduction, wear resistance, anti-corrosion, anti-icing, self-cleaning, etc. Surface roughness and low surface free energy are the two determinants of forming superhydrophobic surface and the main reasons of excellent tribological properties of superhydrophobic surface. In this paper, the research on superhydrophobic surface in the field of tribology in recent years is summarized. Firstly, the related theories of the tribology of superhydrophobic surface are analyzed. Then the research status of superhydrophobic surface in the field of tribology is emphatically expounded, and the factors affecting the tribological properties of superhydrophobic surface and its mechanism are discussed. In addition, the tribological study of wear-resistant superhydrophobic surface and slippery liquid infused porous surface(SLIPS) are also analyzed. Finally, the paper puts forward the focus and direction of tribology research on superhydrophobic surface. This review, which has important theoretical and practical significance for expanding the application field of superhydrophobic surface, aims to attract more scholars’ attention to the tribological study of superhydrophobic surface.

Fig.1 Diagram of meniscus formation[45]
Fig.2 Contact between elastic medium and rough rigid plane[48]
Fig.3 The illustration of superhydrophobic surface that can reduce abrasive wear[49]
Fig.4 Wear morphologies of smooth samples and microstructural samples[53](The scales in the figure are all 100 μm)
Fig.5 Surface roughness measurement(a) and friction coefficient variation with silica concentration(b) of HIPS nanocomposite coating[55]
Fig.6 The friction coefficient curves of samples:(a) bare steel,(b) textured steel,(c) modified bare steel and(d) modified textured steel[57]
Fig.7 Friction coefficient curves of blank, grid microstructure and dot microstructure titanium alloy specimens in pure water lubrication(a) and sea water lubrication(b)[63]
Fig.8 SEM images(a),(b),(c) of PI/FG nanocomposite coating with FG content of 0, 50% and 100% after wear, and histogram of friction coefficient and wear rate of all coatings under oil lubrication conditions(d)[65]
Fig.9 The friction coefficient of tin bronze and bearing steel samples varies with loading(a, b) and sliding speed(c, d). Where, 1 representing smooth surface, 2, 3 and 4 representing surface whose ratio of microstructure diameter to the center distance of adjacent microstructures is 1∶3, 1∶2 and 1∶4, respectively[53]
Fig.10 The friction coefficient curve of superhydrophobic surface varying with time[66]
Fig.11 Wear morphology of magnesium alloy substrate(a), micro-arc oxide layer(b) and micro-arc oxide layer modified by self-assembled molecular film(c)[72]
Fig.12 Wear pattern(①, ②, ③) of smooth surface, grid surface and dot surface treated by three modification methods: untreated(a), low surface energy solution(b) and coated SiO2 (c)[73]
Fig.13 Schematic diagram of sandpaper wear test[77]
Fig.14 The superhydrophobicity of coated glass slides is verified by knife scratch test(b1~b8): pre-test(a1) and post-test(a2), and water contact angle diagram after each knife scratch test(c)[79]
Table 1 Experimental conditions commonly used for testing the tribological properties of superhydrophobic surfaces
Fig.15 Lotus leaf surface and schematic diagram of superhydrophobic surface(a) and pitcher grass leaf blade and schematic diagram of SLIPS(b)[81]
[1]
邵静静(Shao J J), 蔺存国(Lin C. G), 张金伟(Zhang J W), 张桂玲(Zhang G L) . 涂料工业 (Paint & Coatings Industry), 2008,38(10):39.
[2]
高雪峰(Gao X F), 江雷(Jiang L) . 物理 (Physics), 2006,35(7):559.
[3]
王政(Wang Z), 李田(Li T), 李明(Li M), 张继业(Zhang J Y) . 河北科技大学学报 (Journal of Hebei University of Science and Technology), 2017,38(4):325.
[4]
Bhushan B . Phil. Trans. R. Soc. A, 2009,367:1445. https://www.ncbi.nlm.nih.gov/pubmed/19324719

doi: 10.1098/rsta.2009.0011 pmid: 19324719
[5]
Neinhuis W B . Planta, 1997,202(1):1.
[6]
Neinhuis C, Barthlott W . Annals of Botany(London), 1997,79(6):0.
[7]
Bai X G, Shen Y Q, Tian H F, Yang Y X, Feng H, Li J . Separation and Purification Technology, 2019,210:402.
[8]
Mahdi S S S, Brant J A . Separation and Purification Technology, 2019,210:587.
[9]
Wang J T, Han F L, Chen Y H, Wang H F . Separation and Purification Technology, 2019,209:119.
[10]
Wang J T, Wang H F . Journal of Colloid and Interface Science, 2019,534:228. https://www.ncbi.nlm.nih.gov/pubmed/30227379

doi: 10.1016/j.jcis.2018.09.028 pmid: 30227379
[11]
Lin B, Chen J, Li Z T, He F A, Li D H . Surface & Coatings Technology, 2019,359:216.
[12]
Wang H C, Yang J B, Liu X P, Tao Z G., Wang Z W, Yue R R . J. Mater. Sci., 2019,54:1255.
[13]
Zhou Q Q, Yan B B, Xing T L, Chen G Q . Carbohydrate Polymers, 2019,203:1. https://www.ncbi.nlm.nih.gov/pubmed/30318191

doi: 10.1016/j.carbpol.2018.09.025 pmid: 30318191
[14]
Sun X, Xue B, Tian Y Z, Qin S H, Xie L . Applied Surface Science, 2018,462:633.
[15]
Liu H, Xie W Y, Song F, Wang X L, Wang Y Z . Chemical Engineering Journal, 2019,369:1040.
[16]
Wang X K, Zeng J, Yu X Q, Liang C H, Zhang Y F . Applied Surface Science, 2019,465:986.
[17]
Foorginezhad S, Zerafat M M . Applied Surface Science, 2019,464:458.
[18]
Chen H, Jin Y Y, Lei L, Ding X X, Li X, Wang Y Q, Sun L, Shen L Y, Yang M, Wang B L . Applied Surface Science, 2018,462:149.
[19]
Jiang C, Liu W Q, Yang M P, Liu C H, He S, Xie Y K, Wang Z F . Colloids and Surfaces A, 2018,559:235.
[20]
Li H, Yu S R, Hu J H, Liu E Y . Thin Solid Films, 2018,666:100.
[21]
Yao W H, Li L, Li O L, Cho Y W, Jeong M Y, Cho Y R . Chemical Engineering Journal, 2018,352:173.
[22]
Zhang B B, Zhu Q J, Li Y T, Hou B R . Chemical Engineering Journal, 2018,352:625.
[23]
Wang Q, Chen G X, Tian J F, Yu Z H, Deng Q J, Yu M G . Materials Letters, 2018,230:84. https://linkinghub.elsevier.com/retrieve/pii/S0167577X18311327

doi: 10.1016/j.matlet.2018.07.090
[24]
Qu M N, Ma X R, Hou L G, Yuan M J, He J, Xue M H, Liu X R, He J M . Applied Surface Science, 2018,456:737.
[25]
Zhu X, Zhang Z, Song Y . Journal of the Taiwan Institute of Chemical Engineers, 2017,71:421.
[26]
Sehati S, Kouhi M, Mosayebi J, Rezaei T, Mosayebi V . Journal of Building Engineering, 2017,13:305.
[27]
Tong W, Xiong D S, Wang N, Yan C Q, Tian T . Surface & Coatings Technology, 2018,352:609.
[28]
Liu Y B, Gu H M, Jia Y, Liu J, Zhang H, Wang R M, Zhang B L, Zhang H P, Zhang Q Y . Chemical Engineering Journal, 2019,356:318.
[29]
Wang N, Tang L L, Cai Y F, Tong W, Xiong D S . Colloids and Surfaces A, 2018,555:290.
[30]
Ren W W, Chen Yu, Mu X J, Khoo B C, Zhang F, Xu Y . International Journal of Thermal Sciences, 2018,130:240.
[31]
Tuo Y J, Chen W P, Zhang H F, Li P J, Liu X W . Applied Surface Science, 2018,446:230.
[32]
Li D K, Guo Z G . Applied Surface Science, 2018,443:548.
[33]
Dilip D, Kumar S V, Bobji M S, Govardhan R N . International Journal of Heat and Mass Transfer, 2018,119:551.
[34]
Aziz H, Tafreshi H V . International Journal of Multiphase Flow, 2018,98:128.
[35]
Zhai M J, Gong Y F, Chen X Y, Xiao T H, Zhang G P, Xu L H, Li H . Surface & Coatings Technology, 2017,328:115.
[36]
Modak C D, Bhaumik S K . Colloids and Surfaces A, 2017,529:998.
[37]
Wang C Z, Tang F, Hao P F, Li Q, Wang X H . Microsyst. Technol., 2017,23:3033.
[38]
Qin L G, Zhao W J, Hou H, Jin Y C, Zeng Z X, Wu X D, Xue Q J . RSC Adv., 2014,4:60307.
[39]
Webb H K, Crawford R J, Ivanova E P . Advances in Colloid and Interface Science, 2014,210(8):58.
[40]
Holmberg K, Andersson P, Erdemir A . Tribology International, 2012,47:221. https://linkinghub.elsevier.com/retrieve/pii/S0301679X11003501

doi: 10.1016/j.triboint.2011.11.022
[41]
Elkhyat A, Courderot-Masuyer C, Gharbi T, Humbert P . Skin Research & Technology, 2010,10(4):215. https://www.ncbi.nlm.nih.gov/pubmed/15536654

doi: 10.1111/j.1600-0846.2004.00085.x pmid: 15536654
[42]
万轶(Wan Y), 李建亮(Li J L), 熊党生(Xiong D S) . 表面技术 (Surface Technology), 2018,47(6):0195.
[43]
万勇(Wan Y), 王中乾(Wang Z Q), 刘义芳(Liu Y F) . 无机材料学报 (Journal of Inorganic Materials), 2012,27(4):390.
[44]
Johnson K L, Kendall K, Roberts A D . Proceedings of The Royal Society A, 1971,324(1558):301.
[45]
Jung Y C, Bhushan B . Nanotechnology, 2006,17(19):4970.
[46]
温诗铸(Wen S Z), 黄平(Huang P) . 摩擦学原理(Principles of Tribology). 北京: 清华大学出版社 (Beijing: Tsinghua University Press), 2002. 256.
[47]
钱林茂(Qian L M), 田煜(Tian W), 温诗铸(Wen S Z) . 纳米摩擦学(Nano Tribology). 北京: 科学出版社 (Beijing: Science Press), 2013. 69.
[48]
瓦伦丁·波波夫(Popov V L) . 接触力学与摩擦学的原理及其应用 (Physical principles and applications of contact mechanics and friction). 北京: 清华大学出版社 (Beijing: Tsinghua University Press), 2011. 25.
[49]
Zhong Y H, Zheng L, Gao Y H, Liu Z N . Tribology International, 2019,129:151.
[50]
Lin N M, Li D L, Zou J J, Xie R Z, Wang Z H, Tang B . Materials, 2018,11(4):487.
[51]
Moravcikova J, Moravcik R, Kusy M, Necpal M . JMEPEG, 2018,27:5417.
[52]
Bonse J, Kirner S V, Griepentrog M, Spaltmann D, Kruger J . Materials, 2018,11(5):801.
[53]
王莉(Wang L), 严诚平(Yan C P), 王权岱(Wang Q D), 郭方亮(Guo F L), 郝秀清(Hao X Q) . 华中科技大学学报 (J. Huazhong Univ. of Sci. & Tech.), 2012,40:21.
[54]
Sarbada S. Shin Y C . Applied Surface Science. 2017,405, 465.
[55]
Masood M T, Heredia-Guerrero J A, Ceseracciu L, Palazon F, Athanassiou A, Bayer I S . Chemical Engineering Journal, 2017,322:10. https://linkinghub.elsevier.com/retrieve/pii/S1385894717305351

doi: 10.1016/j.cej.2017.04.007
[56]
Wan Y, Wang Z Q, Xu Z, Liu C S, Zhang J Y . Applied Surface Science, 2011,257:7486. 77979ef3-b0b7-443b-b8d0-df18b6c432a9 http://dx.doi.org/10.1016/j.apsusc.2011.03.060

doi: 10.1016/j.apsusc.2011.03.060
[57]
Zhang H M, Yang J, Chen B B, Liu C, Zhang M S, Li C S . Applied Surface Science, 2015,359:905.
[58]
Wang Y, Wang L P, Wang S C, Wood R J K, Xue Q J . Surface & Coatings Technology, 2012,206:2258.
[59]
Yang G B, Chen X H, Ma K D, Yu L G, Zhang P Y . Surface & Coatings Technology, 2011,205:3365.
[60]
王峰(Wang F), 孙士飞(Sun S F), 杨霞(Yang X), . 材料保护 (Material Protection), 2015,48(1):0054.
[61]
莫梦婷(Mo M T), 赵文杰(Zhao W J), 陈子飞(Chen Z F), 曾志翔(Zeng Z X), 乌学东(Wu X d), 薛群基(Xue Q J) . 摩擦学学报 (Tribology), 2015,35(4):0505.
[62]
顾长捷(Gu C J) . 数字海洋与水下攻防 (Digital Ocean & Underwater Warfare), 2018,1(03):3.
[63]
连峰(Lian F), 臧路苹(Zang L P), 项秋宽(Xiang Q K), 张会臣(Zhang H C) . 金属学报 (Acta Metallurgica Sinica), 2016,52(5):592.
[64]
连峰(Lian F), 王增勇(Wang Z Y), 张会臣(Zhang H C) . 机械工程学报 (Journal of Mechanical Engineering), 2016,52(11):115.
[65]
Ye X Y, Liu X H, Yang Z G, Wang Z F, Wang H D, Wang J Q, Yang S R . Composites Part A: Applied Science and Manufacturing, 2016,81:282.
[66]
张倩倩(Zhang Q Q), 漆雪莲(Qi X C), 张会臣(Zhang H C) . 表面技术 (Surface Technology), 2018,47(11):112.
[67]
Zhang F, Qian H C, Wang L T, Wang Z, Du C W, Li X G, Zhang D W . Surface and Coatings Technology, 2018,341:15.
[68]
Zhang Y, Ren F, Liu Y . Applied Surface Science, 2018,436:405.
[69]
郭永刚(Guo Y G), 张鑫(Zhang X), 耿铁(Geng T),吴海宏(Wu H H), 徐琴(Xu Q), 王迎春(Wang Y C), 栗正新(Li Z X) . 中国表面工程 (China Surface Engineering), 2018,31(5):0063.
[70]
万勇(Wan Y), 张泉(Zhang Q), 李杨(Li, Y) . 无机材料学报 (Journal of Inorganic Materials), 2015,30(3):299.
[71]
Young T J, Jackson J, Roy S, Ceylan H, Sundararajan S . Wear, 2017,376:1713.
[72]
李杰(Li J), 张会臣(Zhang H C), 高玉周(Gao Y Z) . 功能材料 (Functional Materials), 2012,43(22):3063.
[73]
连峰(Lian F), 任洪梅(Ren H M), 管善堃(Guan S K), 张会臣(Zhang H C) . 中国有色金属学报 (The Chinese Journal of Nonferrous Metals), 2015,25(9):2421.
[74]
汪怀远(Wang H Y), 王恩群(Wang E Q), 孟旸(Meng W), 朱艳吉(Zhu Y J) . 材料工程 (Journal of Materials Engineering), 2017,45(1):38.
[75]
Tang Y C, Yang J, Yin L T, Chen B B, Tang H, Liu C, Li C S . Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014,459:261.
[76]
Cheng Y Y, Lu S X, Xu W G, Boukherroub R, Szunerits S, Liang W . Journal of Alloys and Compounds, 2017,723:225.
[77]
Qu M N, Liu S S, He J M, Feng J, Yao Y L, Ma X R, Hou L G, Liu X R . Applied Surface Science, 2017,410:299.
[78]
Huang Q Z, Fang Y Y, Liu P Y, Zhu Y Q, Shi J F, Xu Gang . Chemical Physics Letters, 2018,692:33.
[79]
Cao W T, Liu Y J, Ma M G, Zhu J F . Colloids and Surfaces A, 2017,529:18.
[80]
贺胤(He Y), 胡永茂(Hu Y M), 孙淑红(Sun S H),朱艳(Zhu Y) . 材料科学 (Material Sciences), 2018,8(5):438.
[81]
吴德权(Wu D Q), 张达威(Zhang D W), 刘贝(Liu B), 李晓刚(Li X G) . 表面技术 (Surface Technology), 2019,48(1):0090.
[82]
安光明(An G M), 凌世全(Ling S Q), 王智伟(Wang Z W), 栾琳(Yan L), 吴天准(Wu T Z) . 化学进展 (Progress in Chemistry), 2015,27(12):1705.
[83]
王玉娟(Wang Y J), 宋小闯(Song X C), 陈云飞(Chen Y F) . 东南大学学报 (Journal of Southeast University), 2017,47(2):0259.
[1] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[2] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[3] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[4] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[7] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[8] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[9] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[10] Ning Qi, Bing Zhao*, Ning Qi. Electronic Textiles Based on Silver Nanowire Conductive Network [J]. Progress in Chemistry, 2017, 29(8): 892-901.
[11] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[12] Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong. Research and Development of Functional Superhydrophobic Materials [J]. Progress in Chemistry, 2016, 28(12): 1774-1787.
[13] Tian Miaomiao, Li Xuemei, Yin Yong, He Tao, Liu Jindun. Preparation of Superhydrophobic Membranes and Their Application in Membrane Distillation [J]. Progress in Chemistry, 2015, 27(8): 1033-1041.
[14] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[15] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.