中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 344-360 DOI: 10.7536/PC190628 Previous Articles   

Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors

Lei Zhu1,2, Jianan Wang1,3,**(), Jianwei Liu1, Ling Wang1, Wei Yan1,**()   

  1. 1. Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
    2. School of Mathematics and Physics, Weinan Normal University, Weinan 714099, China
    3. Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China;
  • Received: Online: Published:
  • Contact: Jianan Wang, Wei Yan
  • About author:
    ** e-mail: (Jianan Wang);
  • Supported by:
    Natural Science Foundation of China(51803164); China Postdoctoral Science Foundation(2018M643635); Natural Science Foundation of Shaanxi Province(2019JQ-126); Natural Science Research Project of Shaanxi Provincial Education Department(19JK0293)
Richhtml ( 54 ) PDF ( 1055 ) Cited
Export

EndNote

Ris

BibTeX

Electrospun 1D nanomaterials have the advantages of such as large specific surface area, high porosity, and superior electrochemical properties, which can significantly improve the sensitivity of gas sensors, making them the most widely used materials in the gas sensor field. In this review, the classification of gas sensor, the principle of electrospinning technology and the sensing mechanism of semiconductor metal oxide gas sensor is highlighted. And the research status of different sensing materials, including semiconductor metal oxide, doped semiconducting metal oxide, polymer-metal oxide, graphene-metal oxide composite material that are prepared by electrospinning and applied in gas sensors is reviewed in detail. Finally, the research prospect in this field is presented.

Fig.1 Different morphologies of electrospun fibers (a) beaded[14]; (b) smooth[15];(c) ribbon[16]; (d) multichannel tubular[17]; (e)hollow[18];(f) nanowire-in-microtube[19];(g)brush-like[20];(h)chain-like[21] and (i)nano-net[22]
Fig.2 Smplified gas sensing mechanism of space charged model of (a)n type and(b)p type semiconductor metal oxide[24]
Fig.3 Schematic diagram of the proposed bifunctional sensing mechanism: reducing gas (H2) effect at SnO2 homointerfaces[25]
Table 1 Summary of sensing properties of semiconducting metal oxide nanostructures
Fig.4 (a) Schematic illustration of synthetic process of PdO@ZnO-SnO2 NTs; (b) SEM image of as-spun Pd@ZIF-8/PVP/Sn composite NFs;(c) TEM image of as-spun Pd@ZIF-8/PVP/Sn composite NFs;(d) SEM image of PdO@ZnO-SnO2 NTs;(e) Dynamic acetone response transition in the concentration range of 0.0001‰~0.005‰ at 400 ℃; (f) selective sensing characteristics of PdO@ZnO-SnO2 NTs toward 0.001‰ of various analytes at 400 ℃ [85]
Table 2 Summary of sensors made of metal ion doped semiconducting metal oxide nanostructures and their sensing properties
Fig.5 TEM images of the BW/TiO2 HNFs and dynamic ethanol response-recovery curves of the BW/TiO2 HNFs-based flexible sensing devices under different bent state[104]
Table 3 Sensing properties of composites of semiconducting metal oxide nanostructures
Table 4 Sensing properties of composites of conductive polymer and semiconductor metal oxide nanostructures
Table 5 Sensing properties of composites of graphene and semiconductor metal oxide nanostructures
Table 6 The advantages and disadvantages of gas sensor prepared with different materials
Table 7 Summary of different gas sensors prepared by electrospinning
[1]
Lee J H . Sens. Actuators, B, 2009,140:319. https://linkinghub.elsevier.com/retrieve/pii/S0925400509003499

doi: 10.1016/j.snb.2009.04.026
[2]
Fratoddi I, Venditti I, Cametti C, Russo M V . Sens. Actuators, B, 2015,220:534.
[3]
Wang C, Yin L, Zhang L, Xiang D, Gao R . Sensors (Basel), 2010,10:2088. https://www.ncbi.nlm.nih.gov/pubmed/22294916

doi: 10.3390/s100302088 pmid: 22294916
[4]
Gupta C S, Chatterjee S, Ray A K, Chakrabortym A K . Sens. Actuators, B, 2015,221:1170.
[5]
Seung Y B, Hee W S, Jeunghee P J . Chem. Phys., 2004,108:5206.
[6]
Xu X X, Wang X . Inorg. Chem., 2009,48:3890. https://www.ncbi.nlm.nih.gov/pubmed/19326893

doi: 10.1021/ic802449w pmid: 19326893
[7]
Cao G, Liu D . Adv. Colloid Interface Sci., 2008,136:45. https://www.ncbi.nlm.nih.gov/pubmed/17870042

doi: 10.1016/j.cis.2007.07.003 pmid: 17870042
[8]
Qin C, Wang Y, Gong Y, Zhang Z, Cao J J . Alloys Compd., 2019,770:972.
[9]
Yu Q, Wang M, Chen H . Mater. Lett., 2010,64:428.
[10]
Ding B, Wang M, Yu J, Sun G . Sensors., 2009,9:1609. https://www.ncbi.nlm.nih.gov/pubmed/22573976

doi: 10.3390/s90301609 pmid: 22573976
[11]
Imran M, Motta N, Shafiei M . Beilstein J. Nanotechnol, 2018,9:2128. https://www.ncbi.nlm.nih.gov/pubmed/30202686

doi: 10.3762/bjnano.9.202 pmid: 30202686
[12]
Greiner A, Wendorff J H . Angew. Chem. Int. Ed., 2007,46:5670. https://www.ncbi.nlm.nih.gov/pubmed/17585397

doi: 10.1002/anie.200604646 pmid: 17585397
[13]
Tiwari J N, Tiwari R N, Kim K S . Prog. Mater. Sci., 2012,57:724.
[14]
Zhang C, Wang X, Lin J, Ding B, Yu J, Pan N . Sens. Actuators, B, 2011,152:316.
[15]
Lin J, Ding B, Yu J . ACS Appl. Mater. Interfaces, 2010,2:521. https://www.ncbi.nlm.nih.gov/pubmed/20356200

doi: 10.1021/am900736h pmid: 20356200
[16]
Koombhongse S, Liu W, Reneker D H . J. Polym. Sci., Part B:Polym. Phys., 2001,39:2598.
[17]
Zhao Y, Cao X Y, Jiang L J . Amer. Chem. Soc., 2007,129:764. https://pubs.acs.org/doi/10.1021/ja068165g

doi: 10.1021/ja068165g
[18]
Dror Y, Salalha W, Avrahami R, Zussman E, Yarin A L, Dersch R, Greiner A, Wendorff J H . Small, 2007,3:1064. https://www.ncbi.nlm.nih.gov/pubmed/17315262

doi: 10.1002/smll.200600536 pmid: 17315262
[19]
Chen H, Wang N, Di J, Zhao Y, Song Y, Jiang L . Langmuir, 2010,26:11291. https://www.ncbi.nlm.nih.gov/pubmed/20337483

doi: 10.1021/la100611f pmid: 20337483
[20]
Deng J, Yu B, Lou Z, Wang L, Wang R, Zhang T . Sens. Actuators, B, 2013,184:21. https://linkinghub.elsevier.com/retrieve/pii/S0925400513004528

doi: 10.1016/j.snb.2013.04.020
[21]
Cao J, Zhang H, Yan X . Mater. Lett., 2016,185:40.
[22]
Wang X, Si Y, Wang J, Ding B, Yu J, AlDeyab S S . Sens. Actuators, B, 2012,163:186.
[23]
Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H . Senors(Basel), 2012,12:9635. https://www.ncbi.nlm.nih.gov/pubmed/23012563

doi: 10.3390/s120709635 pmid: 23012563
[24]
Kim H J, Lee J H . Sens. Actuators, B, 2014,192:607.
[25]
Katoch A, Kim J H, Kwon Y J, Kim H W, Kim S S . ACS Appl. Mater. Interfaces, 2015,7:11351. https://www.ncbi.nlm.nih.gov/pubmed/25950738

doi: 10.1021/acsami.5b01817 pmid: 25950738
[26]
Bian H, Ma S, Sun A, Xu X, Yang G, Gao J, Zhang Z, Zhu H . Superlattices Microstruct., 2015,81:107.
[27]
Katoch A, Abideen Z U, Kim J H, Kim S S . Sens. Actuators, B, 2016,232:698.
[28]
Wei S, Zhao G, Du W, Tian Q . Vac., 2016,124:32. https://linkinghub.elsevier.com/retrieve/pii/S0042207X15301226

doi: 10.1016/j.vacuum.2015.11.010
[29]
Li T, Zeng W, Zhao W . Mater. Lett., 2016,167:230.
[30]
Fan H, Zhang T, Xu X, Lv N . Sens. Actuators, B, 2011,153:83.
[31]
Wang L, Cao J, Qian X, Zhang H . Mater. Lett., 2016,171:30.
[32]
Can N . Mater. Chem. Phys., 2018,213:6.
[33]
Choi J M, Byun J H, Kim S S . Sens. Actuators, B, 2016,227:149.
[34]
Xu J M, Cheng J P . J. Alloys Compd., 2016,686:753.
[35]
Zheng W, Lu X, Wang W, Li Z, Zhang H, Wang Y, Wang Z, Wang C . Sens. Actuators, B, 2009,142:61.
[36]
Wang L L, Luo X J, Zheng X J, Wang R, Zhang T . RSC Adv., 2013,3:9723.
[37]
Aziz A, Tiwale N, Hodge S A, Attwood S, Divitini G, Welland M E . ACS Appl. Mater. Interfaces, 2018,10:43817. https://www.ncbi.nlm.nih.gov/pubmed/30475575

doi: 10.1021/acsami.8b17149 pmid: 30475575
[38]
Dey A . Mater. Sci. Eng., B, 2018,229:206. https://linkinghub.elsevier.com/retrieve/pii/S0921510717303574

doi: 10.1016/j.mseb.2017.12.036
[39]
Rothschild A, Komem Y J . Appl. Phys., 2004,95:6374.
[40]
Bai S, Fu H, Zhao Y, Tian K, Luo R, Li D, Chen A . Sens. Actuators, B, 2018,266:692.
[41]
Park J Y, Asokan K, Choi S W, Kim S S . Sens. Actuators, B, 2011,152:254.
[42]
Khalil A, Kim J J, Tuller H L, Rutledge G C, Hashaikeh R . Sens. Actuators, B, 2016,227:54.
[43]
Choi S W, Park J Y, Kim S S . Chem. Eng. J., 2011,172:550.
[44]
Yoon J W, Kim H J, Jeong H M, Lee J H . Sens. Actuators, B, 2014,202:263. https://linkinghub.elsevier.com/retrieve/pii/S0925400514006108

doi: 10.1016/j.snb.2014.05.081
[45]
Yoon J W, Choi J K, Lee J H . Sens. Actuators, B, 2012,161:570.
[46]
Dario Z V G, Navpreet K, Hashitha M M, Munasinghe A, Orhan S, Elisabetta C . Anal. Chim. Acta., 2018,1039:1. https://www.ncbi.nlm.nih.gov/pubmed/30322540

doi: 10.1016/j.aca.2018.09.020 pmid: 30322540
[47]
Guo X X, Zhang J B, Ni M C, Liu L, Lian H W, Wang H . J. Mater. Sci. Mater. Electron., 2016,27:11262.
[48]
Chiara D P, Maria A S, Antonietta T, Luca F, Antonella M, Joshua A, Pietro S, Simonetta C . IEEE Sensor Journal. 2018,18:7365.
[49]
Xie N, Guo L, Chen F, Kou X, Wang C, Ma J, Sun Y, Liu F, Liang X, Gao Y, Yan X, Lu G . Sens. Actuators, B, 2018,271:44.
[50]
Shankar P, Rayappan J B B . J. Mater. Chem. C, 2017,5:10869.
[51]
Shankar P, Rayappan J B B . ACS Appl. Mat. Interfaces, 2017,9:38135. https://www.ncbi.nlm.nih.gov/pubmed/28990752

doi: 10.1021/acsami.7b11561 pmid: 28990752
[52]
Xu L, Dong B, Wang Y, Bai X, Liu Q, Song H . Sens. Actuators, B, 2010,147:531.
[53]
Xu H, Gao J, Li M, Zhao Y, Zhang M, Zhao T, Wang L, Jiang W, Zhu G, Qian X, Fan Y, Yang J, Luo W . Front. Chem., 2019,7:266. https://www.ncbi.nlm.nih.gov/pubmed/31058141

doi: 10.3389/fchem.2019.00266 pmid: 31058141
[54]
Nikfarjam A, Salehifar N . Sens. Actuators, B, 2015,211:146.
[55]
Trocino S, Frontera P, Donato A, Busacca C, Scarpino L A, Antonucci P, Nei G . Mater. Chem. Phys., 2014,147:35.
[56]
Kim J H, Mirzaei A, Kim H W, Wu P, Kim S S . Sens. Actuators, B, 2019,293:210.
[57]
Jiang Z, Yin M, Wang C . Mater. Lett., 2017,194:209.
[58]
Xu X, Chen Y, Zhang G, Ma S, Lu Y, Bian H, Chen Q J . Alloys Compd., 2017,703:572.
[59]
Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G . Sens. Actuators, B, 2018,256:861.
[60]
Pascariu D P, Airinei A, Olaru N, Fifere N, Doroftei C, Iacomi F . Eur. Polym. J., 2017,91:326.
[61]
Janine M, Walker S A, Patricia A Morris . Sens. Actuators, B, 2019,286:624.
[62]
Xu S, Kan K, Yang Y, Jiang C, Gao J, Jing L, Shen P, Li L, Shi K J . Alloys Compd., 2015,618:240.
[63]
Wang T T, Ma S Y, Cheng L, Luo J, Jiang X H, Jin W X . Sens. Actuators, B, 2015,216:212.
[64]
Mohanapriya P, Segawa H, Watanabe K, Watanabe K, Samitsu S, Natarajan T S, Jaya N V, Ohashi N , Sens. Actuators, B, 2013,188:872.
[65]
Li W Q, Ma S Y, Li Y F, Li X B, Wang C Y, Yang X H, Cheng L, Mao Y Z, Luo J J . Alloys Compd., 2014,605:80.
[66]
Cheng J P, Wang B B, Zhao M G, Liu F, Zhang X B . Sens. Actuators, B, 2014,190:78.
[67]
Choi J K, Hwang I S, Kim S J, Park J S, Park S S, Jeong U, Kang Y C, Lee J H . Sens. Actuators, B, 2010,150:191.
[68]
Xu X, Sun J, Zhang H, Wang Z, Dong B, Jiang T, Wang W, Li Z, Wang C . Sens. Actuators, B, 2011,160:858.
[69]
Ma L, Ma S Y, Kang H, Shen X F, Wang T T, Jiang X H, Chen Q . Mater. Lett., 2017,209:188.
[70]
Katoch A, Byun J H, Choi S W, Kim S S . Sens. Actuators, B, 2014,202:38.
[71]
Xiong Y, Xue Q, Ling C, Lu W, Ding D, Zhu L, Li X . Sens. Actuators, B, 2017,241:725.
[72]
Qin W, Xu L, Song J, Xing R, Song H . Sens. Actuators, B, 2013,185:231.
[73]
Yang D J, Kamienchick I, Youn D Y, Rothschild A, Kim I D . Adv. Funct. Mater., 2010,20:4258.
[74]
Wang W, Huang H, Li Z, Zhang H, Wang Y, Zheng W, Wang C . J. Am. Ceram. Soc., 2008,91:3817.
[75]
Hu J, Gao F, Sang S, Li P, Deng X, Zhang W, Chen Y, Lian K J . Mater. Sci., 2014,50:1935.
[76]
AlHardan N H, Abdullah M J, Aziz A A . Appl. Surf. Sci., 2013,270:480.
[77]
Sun Y, Zhao Z, Li P, Li G, Chen Y, Zhang W, Hu J . Appl. Surf. Sci., 2015,356:73.
[78]
Wan G X, Ma S Y, Li X B, Li F M, Bian H Q, Zhang L P, Li W Q . Mater. Lett., 2014,114:103.
[79]
Wang C, Ma S, Sun A, Qin R, Yang F, Li X, Li F, Yang X . Sens. Actuators, B, 2014,193:326.
[80]
Zhao M, Wang X, Cheng J, Zhang L, Jia J, Li X . Curr. Appl. Phys., 2013,13:403. https://linkinghub.elsevier.com/retrieve/pii/S1567173912003562

doi: 10.1016/j.cap.2012.08.019
[81]
Paraguay D F, Yoshida M M, Morales J, Solis J, Estrada L W . Thin Solid Films, 2000,373:137. https://linkinghub.elsevier.com/retrieve/pii/S0040609000011202

doi: 10.1016/S0040-6090(00)01120-2
[82]
Kim J H, Mirzaei A, Kim H W, Kim S S . Sens. Actuators, B, 2019,284:628.
[83]
Koo W T, Choi S J, Kim N H, Jang J S, Kim I D . Sens. Actuators, B, 2016,223:301.
[84]
Yang X, Salles V, Kaneti Y V, Liu M, Maillard M, Journet C, Jiang X, Brioude A . Sens. Actuators, B, 2015,220:1112.
[85]
Koo W T, Jang J S, Choi S J, Cho H J Kim I D . ACS Appl. Mater. Interfaces, 2017,9:18069. https://www.ncbi.nlm.nih.gov/pubmed/28492302

doi: 10.1021/acsami.7b04657 pmid: 28492302
[86]
Koo W T, Choi S J, Kim S J, Jang J S, Tuller H L, Kim I D . J. Am. Chem. Soc., 2016,138:13431. https://www.ncbi.nlm.nih.gov/pubmed/27643402

doi: 10.1021/jacs.6b09167 pmid: 27643402
[87]
Li Z J, Li H, Wu Z L, Wang M K, Luo J T, Hamdi T, Hu P A, Yang C, Marius G, Liu X T, Fu Y Q . Mater. Horiz., 2019,6:470.
[88]
Huang B, Wang Y, Hu Q, Mu X, Zhang Y, Bai J, Wang Q, Sheng Y, Zhang Z, Xie E . J. Mater. Chem., 2018,6:10935.
[89]
Liu Y, Gao X, Li F, Lu G, Zhang T, Barsan N . Sens. Actuators, B, 2018,260:927.
[90]
Jiang Z, Zhao R, Sun B, Nie G, Ji H, Lei J, Wang C . Ceram. Int., 2016,42:15881.
[91]
Li F, Ruan S, Zhang N, Yin Y, Guo S, Chen Y, Zhang H, Li C . Sens. Actuators, B, 2018,265:355.
[92]
Cui J, Jiang J, Shi L, Zhao F, Wang D, Lin Y, Xie T . RSC Adv., 2016,6:78257.
[93]
Wang Z J, Li Z Y, Sun J H, Zhang H N, Wang W, Zheng W, Wang C . J. Phys. Chem. C, 2010,114:6100.
[94]
Zheng Y, Wang J, Yao P . Sens. Actuators, B, 2011,156:723.
[95]
Wang Y, Zhang H, Sun X . Appl. Surf. Sci., 2016,389:514.
[96]
Yan C, Lu H, Gao J, Zhu G, Yin F, Yang Z, Liu Q, Li G . J. Alloys Compd., 2017,699:567.
[97]
Lee J H, Kim J Y, Kim J H, Kim S S . Sensor, 2019,19:726. http://www.mdpi.com/1424-8220/19/3/726

doi: 10.3390/s19030726
[98]
Zhang R, Zhou T T, Zhang T . Adv. Mater. Interfaces, 2018,5:1800967.
[99]
Yan S H, Ma S Y, Li W Q, Xu X L, Cheng L, Song H S, Liang X Y . Sens. Actuators, B, 2015,221:88.
[100]
Xu S, Gao J, Wang L, Kan K, Xie Y, Shen P, Li L, Shi K . Nanoscale, 2015,7:14643. https://www.ncbi.nlm.nih.gov/pubmed/26265494

doi: 10.1039/c5nr03796d pmid: 26265494
[101]
Zhang X J, Qiao G J . Appl. Surf. Sci., 2012,258:6643.
[102]
Katoch A, Kim J H, Kim S S . ACS Appl. Mater. Interfaces, 2014,6:21494. https://www.ncbi.nlm.nih.gov/pubmed/25379680

doi: 10.1021/am506499e pmid: 25379680
[103]
Wang K, Li J, Li W, Wei W, Zhang H, Wang L L . Adv. Mater. Technol., 2018,4:1800521.
[104]
Wang K, Wei W, Lou Z, Zhang H, Wang L L . Appl. Surf. Sci., 2019,479:209.
[105]
Wang X, Ding B, Sun M, Yu J, Sun G . Sens. Actuators, B, 2010,144:11. https://linkinghub.elsevier.com/retrieve/pii/S0925400509006674

doi: 10.1016/j.snb.2009.08.023
[106]
Manesh K M, Gopalan A I, Lee K P, Santhosh P, Song K D, Lee D D . IEEE T. Nanotechnol., 2007,6:513.
[107]
Li F, Gao X Wang R Zhang T . Appl. Surf. Sci., 2018,442:30. https://linkinghub.elsevier.com/retrieve/pii/S0169433218304665

doi: 10.1016/j.apsusc.2018.02.122
[108]
Huang B, Zhang Z, Zhao C, Cairang L, Bai J, Zhang Y, Mu X, Du J, Wang H, Pan X, Zhou J, Xie E . Sens. Actuators, B, 2018,255:2248.
[109]
Chen K, Chen S, Pi M, Zhang D . Solid State Electron., 2019,157:42.
[110]
Li F, Gao X, Wang R, Zhang T, Lu G . Sens. Actuators, B, 2017,248:812.
[111]
Alali K T, Liu J, Aljebawi K, Liu P, Chen R, Li R, Zhang H, Zhou L, Wang J . J. Alloy. Compd., 2019,793:31.
[112]
Gao X, Li F, Wang R, Zhang T . Sens. Actuators, B, 2018,258:1230. https://linkinghub.elsevier.com/retrieve/pii/S0925400517322190

doi: 10.1016/j.snb.2017.11.088
[113]
Cao J, Wang Z, Wang R, Liu S, Fei T, Wang L, Zhang T . J. Mater. Chem. A, 2015,3:5635. https://www.ncbi.nlm.nih.gov/pubmed/32262534

doi: 10.1039/c5tb00270b pmid: 32262534
[114]
Ji S, Li Y, Yang M . Sens. Actuators, B, 2008,133:644.
[115]
Li Y, Gong J, He G, Deng Y . Mater. Chem. Phys., 2011,129:477.
[116]
Pang Z, Fu J, Luo L, Huang F, Wei Q . Colloids Surf. A, 2014,461:113.
[117]
Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q . Colloids Surf., A, 2016,494:248.
[118]
Li Y, Ban H, Yang M . Sens. Actuators, B, 2016,224:449.
[119]
Liu P H, Wu S H, Zhang Y, Zhang H N, Qin X H . Nanomaterials, 2016,6:121.
[120]
Anju V P, Jithesh P R, Narayanankutty S K . Sens. Actuators, A, 2019,285:35.
[121]
Zhao J, Wu G, Hu Y, Liu Y, Tao X, Chen W . J. Mater. Chem. A, 2015,3:24333.
[122]
Aria M M, Irajizad A, Astaraei F R, Shariatpanahi S P, Sarvari R . Measurement, 2016,78:283.
[123]
Sharma H J, Jamkar D V, Kondawar S B . Procedia Materials Science, 2015,10:186.
[124]
Hu W, Chen S, Liu L, Ding B, Wang H . Sens. Actuators, B, 2011,157:554.
[125]
Hu Y, Yu H, Yan Z, Ke Q . RSC Adv., 2018,8:8747.
[126]
Jia Y, Yu H, Zhang Y, Chen L, Dong F . Sens. Actuators, B, 2015,212:273.
[127]
Yuan W, Huang L, Zhou Q, Shi G . ACS Appl. Mater. Interfaces, 2014,6:17003. https://www.ncbi.nlm.nih.gov/pubmed/25208097

doi: 10.1021/am504616c pmid: 25208097
[128]
Kim J H, Zheng Y, Mirzaei A, Kim H W, Kim S S . J. Electron. Mater., 2017,46:3531.
[129]
Abideen Z U, Katoch A, Kim J H, Kwon Y J, Kim H W, Kim S S . Sens. Actuators, B, 2015,221:1499.
[130]
Reddy S C, Zhang L W, Qiu Y J, Chen Y N, Reddy A S . J. Ind. Eng., 2018,63:411.
[131]
Kim J H, Mirzaei A, Zheng Y, Lee J H, Kim J Y, Kim H W, Kim S S . Sens. Actuators, B, 2019,281:453.
[132]
Zhang J, Lu H, Yan C, Yang Z, Zhu G, Gao J, Yin F, Wang C . Sens. Actuators, B, 2018,264:128.
[133]
Yan C, Lu H, Gao J, Zhang Y, Guo Q, Ding H, Wang Y, Wei F, Zhu G, Yang Z, Wang C . J. Alloys Compd., 2018,741:908.
[134]
Feng Q, Li X, Wang J, Gaskov A M . Sens. Actuators, B, 2016,222:864.
[135]
Abideen Z U, Kim J H, Mirzaei A, Kim H W, Kim S S . Sens. Actuators, B, 2018,255:1884.
[136]
Guo L, Kou X, Ding M, Wang C, Dong L, Zhang H, Feng C, Sun Y, Gao Y, Sun P, Lu G . Sens. Actuators, B, 2017,244:233.
[137]
Mauro D A, Zimbone M, Fragalà M E, Impellizzeri G . Mat. Sci. Semicon. Proc., 2016,42:98.
[138]
Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S . Sens. Actuators, B, 2012,162:237.
[139]
Landau O, Rothschild A J . Electroceram., 2015,35:148. http://link.springer.com/10.1007/s10832-015-0007-9

doi: 10.1007/s10832-015-0007-9
[140]
Sungpanich J, Thongtem T, Thongtem S . Mater. Lett., 2011,65:3000.
[141]
Tanguy N R, Thompson M, Yan N . Sens. Actuators, B, 2018,257:1044.
[142]
Li X, Zhao Y, Wang X, Wang J, Gaskov A M, Akbar S A . Sens. Actuators, B, 2016,230:330.
[143]
Su P G, Yang L Y . Sens. Actuators, B, 2016,223:202.
[144]
Chen Y, Zhang W, Wu Q . Sens. Actuators, B, 2017,242:1216.
[145]
Yan S, Wu Q . Sens. Actuators, B, 2014,205:329.
[146]
Khorami H A, Keyanpour Rad M, Vaezi M R . Appl. Surf. Sci., 2011,257:7988.
[147]
Nie Q, Pang Z, Li D, Zhou H, Huang F, Cai Y, Wei Q . Colloids Surf. A, 2018,537:532.
[148]
Jaroenapibal P, Boonma P, Saksilaporn N, Horprathum M, Amornkitbamrung V, Triroj N . Sens. Actuators, B, 2018,255:1831. https://linkinghub.elsevier.com/retrieve/pii/S0925400517316362

doi: 10.1016/j.snb.2017.08.199
[149]
Wang X, Zhang J, He Y, Wang L, Liu L, Wang H, Guo X, Lian H . Chem. Phys. Lett., 2016,658:319.
[150]
Bai S L, Gao W, Sun J H, Li J, Tian Y, Chen A F, Luo R X, Li D Q . Sens. Actuators, B, 2016,226:96.
[151]
Lim S K, Hwang S H, Chang D, Kim S . Sens. Actuators, B, 2010,149:28.
[152]
Feng C, Li X, Ma J, Sun Y, Wang C, Sun P, Zheng J, Lu G . Sens. Actuators, B, 2015,209:622.
[153]
Lee C S, Kim I D, Lee J H . Sens. Actuators, B, 2013,181:463
[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[4] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[5] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[6] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[7] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[8] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[9] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[10] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[11] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[12] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[13] Meng Depeng, Wu Juntao. Adsorption and Separation Materials Produced by Electrospinning [J]. Progress in Chemistry, 2016, 28(5): 657-664.
[14] Wang Zhenqiang, Yang Mingqing, He Junhui, Yang Qiaowen. Progress of Different Sensing Materials Modified QCM Gas Sensors [J]. Progress in Chemistry, 2015, 27(2/3): 251-266.
[15] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.