中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 309-319 DOI: 10.7536/PC190618 Previous Articles   Next Articles

Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System

Tianxi He1,2,**(), Wenbin Wang1, Jiu Wang1, Boshui Chen1, Qionglin Liang2,**()   

  1. 1. Chongqing Chemical Industry Vocational College, Chongqing 401228, China
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Online: Published:
  • Contact: Tianxi He, Qionglin Liang
  • About author:
    ** e-mail: (Tianxi He);
    (Qionglin Liang)
  • Supported by:
    National Major Special Project of Science and Technology(2013ZX09507005); National Natural Science Foundation of China(21305074); Chongqing Natural Science Foundation(cstc2019jcyj-msxmX0611)
Richhtml ( 15 ) PDF ( 962 ) Cited
Export

EndNote

Ris

BibTeX

Mesoporous carbon spheres are a new type of porous spherical carbon materials. They are promising in many fields such as biomedicine, energy storage/conversion, environmental treatment, and catalysis, thanks to their high surface area, good chemical stability, excellent biocompatibility, tunable pore sizes and volume, and controllable particle size distribution. In the present work, recent advances in the preparing methods of mesoporous carbon spheres, including templating methods, St?ber methods, and microfluidic droplets methods, are summarized. Moreover, the applications of mesoporous carbon spheres as drug delivery system(DDS) including controlled surface property release, stimuli-responsive release, targeted delivery, and theranostic delivery, are reviewed. Finally, the main problems and development trends in the synthesis of mesoporous carbon spheres and applications in DDS for cancer therapy are proposed and discussed.

Fig.1 Primary methods for synthesizing mesoporous carbon spheres(meso-CS) or microspheres carbon spheres(micro-CS)[17,46]. (a)Templating methods: Hard templating process(i); soft templating process(ii). (b) St?ber method; (c) Droplet based microfluidics[17,46].Copyright 2015, Nature Publishing Group, Copyright 2016, Elsevier.
Fig.2 SEM images showing the interior structural evolution of MCMs as a function of (a) base concentration, and (b) temperature and amount of phenol. Scale bar=10 μm[33]. Copyright 2018, Wiley-VCH
Fig.3 Cytotoxicity of cisplatin and PTX-loaded MC@MS nanospheres, cisplatin-loaded MC@MS nanospheres, and mesoporous MC@MS nanospheres at the same dose in different human ovarian cancer cells:(a) normal ovarian cancer cells SKOV3 for 3 h, and (b) drug-resistant A2780(CP70) cells for 24 h[47]. Copyright 2014, Wiley-VCH
Fig.4 (a) Illustration of the MCM-based system for targeted cellular uptake and combined chemo-photothermal therapy.(b) Release profiles of the MCM in integrating chemotherapy with photothermal therapy for targeted cellular uptake under different conditions[60]. Copyright 2018, American Chemical Society
Fig.5 (a) Illustration of the preparation of DOPPT/pDNA and PA imaging-guided trimodal chemo-gene-thermo synergistic targeting therapy of breast cancer.(b)Cell viability to MCF-7 cells after different treatments. Data are presented as the mean ± SD, n=4. *p < 0.05; **p < 0.01[65]. Copyright 2018, American Chemical Society
[1]
Shi J J, Kantoff P W, Wooster R, Farokhzad O C . Nat. Rev. Cancer, 2017,17(1):20. https://www.ncbi.nlm.nih.gov/pubmed/27834398

doi: 10.1038/nrc.2016.108 pmid: 27834398
[2]
Byrne J D, Betancourt T, Brannon-Peppas L . Adv. Drug Deliver. Rev., 2008,60(15):1615. https://www.ncbi.nlm.nih.gov/pubmed/18840489

doi: 10.1016/j.addr.2008.08.005 pmid: 18840489
[3]
Gabizon A, Shmeeda H, Barenholz Y . Clin. Pharmacokinet., 2003,42(5):419. https://www.ncbi.nlm.nih.gov/pubmed/12739982

doi: 10.2165/00003088-200342050-00002 pmid: 12739982
[4]
Wang J, Hu Z B, Xu J X, Zhao Y L . NPG Asia Mater., 2014,6(2):1.
[5]
Vivero-Escoto J L, Slowing I I, Trewyn B G, Lin V S Y . Small, 2010,6(18):1952. https://www.ncbi.nlm.nih.gov/pubmed/20690133

doi: 10.1002/smll.200901789 pmid: 20690133
[6]
袁丽(Yuan L), 王蓓娣(Wang B D), 唐倩倩(Tang Q Q), 张晓鸿(Zhang X H), 张晓环(Zhang X H), 杨东(Yang D), 胡建华(Hu J H) . 有机化学 (Chinese J. Org. Chem.), 2010,30(5):640.
[7]
Ma T Y, Liu L, Yuan Z Y . Chem. Soc. Rev., 2013,42(9):3977. https://www.ncbi.nlm.nih.gov/pubmed/23132523

doi: 10.1039/c2cs35301f pmid: 23132523
[8]
张凌峰(Zhang L F), 胡忠攀(Hu Z P), 高泽敏(Gao Z M), 刘亚录(Liu Y L), 袁忠勇(Yuan Z Y) . 化学进展 (Progress in Chemistry), 2015,27(8):1042.
[9]
Zhai Y P, Dou Y Q, Zhao D Y, Fulvio P F, Mayes R T, Dai S . Adv. Mater., 2011,23(42):4828. https://www.ncbi.nlm.nih.gov/pubmed/21953940

doi: 10.1002/adma.201100984 pmid: 21953940
[10]
Wang C H, Li X F, Xi X L, Zhou W, Lai Q Z, Zhang H M . Nano Energy, 2016,21:217.
[11]
Nieto-Marquez A, Romero R, Romero A, Valverde J L . J Mater. Chem., 2011,21(6):1664. http://xlink.rsc.org/?DOI=C0JM01350A

doi: 10.1039/C0JM01350A
[12]
Kim T W, Chung P W, Slowing I I, Tsunoda M, Yeung E S, Lin V S Y . Nano Lett., 2008,8(11):3724. https://www.ncbi.nlm.nih.gov/pubmed/18954128

doi: 10.1021/nl801976m pmid: 18954128
[13]
Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y . Angew. Chem. Int. Edit., 2010,49(43):7987. https://www.ncbi.nlm.nih.gov/pubmed/20839199

doi: 10.1002/anie.201002849 pmid: 20839199
[14]
Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z . Nat. Commun., 2013,4:2798.
[15]
Choma J, Jamiola D, Augustynek K, Marszewski M, Gao M, Jaroniec M . J. Mater. Chem., 2012,22(25):12636.
[16]
Qiao Z A, Guo B K, Binder A J, Chen J H, Veith G M, Dai S . Nano Lett., 2013,13(1):207. https://www.ncbi.nlm.nih.gov/pubmed/23256449

doi: 10.1021/nl303889h pmid: 23256449
[17]
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M . Nat. Mater., 2015,14(8):763. https://www.ncbi.nlm.nih.gov/pubmed/26201892

doi: 10.1038/nmat4317 pmid: 26201892
[18]
Ryoo R, Joo S H, Kruk M, Jaroniec M . Adv. Mater., 2001,13(9):677.
[19]
Hampsey J E, Hu Q Y, Wu Z W, Rice L, Pang J B, Lu Y F . Carbon, 2005,43(14):2977.
[20]
Hampsey J E, Hu Q Y, Rice L, Pang J B, Wu Z W, Lu Y F . Chem. Commun., 2005,28:3606. https://www.ncbi.nlm.nih.gov/pubmed/16010339

doi: 10.1039/b502866c pmid: 16010339
[21]
Sun Z K, Liu Y, Li B, Wei J, Wang M H, Yue Q, Deng Y H, Kaliaguine S, Zhao D Y . ACS Nano, 2013,7(10):8706. https://www.ncbi.nlm.nih.gov/pubmed/24044674

doi: 10.1021/nn402994m pmid: 24044674
[22]
Schuster J, He G, Mandlmeier B, Yim T, Lee K T, Bein T, Nazar L F . Angew. Chem. Int. Edit., 2012,51(15):3591. https://www.ncbi.nlm.nih.gov/pubmed/22383067

doi: 10.1002/anie.201107817 pmid: 22383067
[23]
Bottger-Hiller F, Kempe P, Cox G, Panchenko A, Janssen N, Petzold A, Thurn-Albrecht T, Borchardt L, Rose M, Kaskel S, Georgi C, Lang H, Spange S . Angew. Chem. Int. Edit., 2013,52(23):6088. https://www.ncbi.nlm.nih.gov/pubmed/23620268

doi: 10.1002/anie.201209849 pmid: 23620268
[24]
Wang Z J, Balkus Jr K J . Mater. Lett., 2017,195:139.
[25]
Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S . Angew. Chem. Int. Edit., 2004,43(43):5785. https://www.ncbi.nlm.nih.gov/pubmed/15523736

doi: 10.1002/anie.200461051 pmid: 15523736
[26]
Tanaka S, Nishiyama N, Egashira Y, Ueyama K . Chem. Commun., 2005,16:2125. https://www.ncbi.nlm.nih.gov/pubmed/15846421

doi: 10.1039/b501259g pmid: 15846421
[27]
Wan Y, Shi Y, Zhao D Y . Chem. Mater., 2008,20(3):932.
[28]
Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y . Angew. Chem. Int. Edit., 2005,44(43):7053. https://www.ncbi.nlm.nih.gov/pubmed/16222652

doi: 10.1002/anie.200501561 pmid: 16222652
[29]
Yan Y, Zhang F G, Meng Y, Tu B, Zhao D Y . Chem. Commun., 2007,27:2867. https://www.ncbi.nlm.nih.gov/pubmed/17609803

doi: 10.1039/b702232h pmid: 17609803
[30]
Wu Z X, Wu W D, Liu W J, Selomuya C, Chen X D, Zhao D Y . Angew. Chem. Int. Edit., 2013,52(51):13764. https://www.ncbi.nlm.nih.gov/pubmed/24222382

doi: 10.1002/anie.201307608 pmid: 24222382
[31]
Li M, Xue J M . J. Colloid Interf. Sci., 2012,377(1):169. https://www.ncbi.nlm.nih.gov/pubmed/22542324

doi: 10.1016/j.jcis.2012.03.085 pmid: 22542324
[32]
Huang W Q, Xie H, Tian Y, Wang X F . ACS Appl. Mater. Inter., 2018,10(23):20073. https://www.ncbi.nlm.nih.gov/pubmed/29856590

doi: 10.1021/acsami.8b02040 pmid: 29856590
[33]
Liu D W, Xue N, Wei L J, Zhang Y, Qin Z F, Li X K, Binks B P, Yang H Q . Angew. Chem. Int. Edit., 2018,57(34):10899. https://www.ncbi.nlm.nih.gov/pubmed/29962066

doi: 10.1002/anie.201805022 pmid: 29962066
[34]
Deshmukh A A, Mhlanga S D, Coville N J . Mater. Sci. Eng. R, 2010,70(1/2):1.
[35]
Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D Y, Lu G Q . Angew. Chem. Int. Edit., 2011,50(26):5947. https://www.ncbi.nlm.nih.gov/pubmed/21630403

doi: 10.1002/anie.201102011 pmid: 21630403
[36]
Lu A H, Hao G P, Sun Q . Angew. Chem. Int. Edit., 2011,50(39):9023. https://www.ncbi.nlm.nih.gov/pubmed/21919134

doi: 10.1002/anie.201103514 pmid: 21919134
[37]
Zhang K, Zhao Q, Tao Z L, Chen J . Nano Res., 2013,6(1):38.
[38]
Fuertes A B, Valle-Vigon P, Sevilla M . Chem. Commun., 2012,48(49):6124. https://www.ncbi.nlm.nih.gov/pubmed/22582187

doi: 10.1039/c2cc32552g pmid: 22582187
[39]
Zhou H H, Xu S, Su H P, Wang M, Qiao W M, Ling L C, Long D H . Chem. Commun., 2013,49(36):3763. https://www.ncbi.nlm.nih.gov/pubmed/23535952

doi: 10.1039/c3cc41109e pmid: 23535952
[40]
Friedel B, Greulich-Weber S . Small, 2006,2(7):859. https://www.ncbi.nlm.nih.gov/pubmed/17193134

doi: 10.1002/smll.200500516 pmid: 17193134
[41]
林炳承(Lin B C), 秦建华(Qin J H) . 图解微流控芯片实验室 (Graphic Laboratory on a Microfluidic Chip). 北京:科学出版社 (Beijing: Science Press), 2008. 264.
[42]
张逢(Zhang F), 高丹(Gao D), 梁琼麟(Liang Q L) . 分析化学 (Chinese J. Anal. Chem.), 2016,44(12):1942.
[43]
何天稀(He T X), 梁琼麟(Liang Q L), 王九(Wang J), 罗国安(Luo G A) . 化学进展 (Progress in Chemistry), 2018,30(11):1734.
[44]
汪伟(Wang W), 谢锐(Xie R), 巨晓洁(Ju X J), 刘壮(Liu Z), 褚良银(Chu L Y) . 化学进展 (Progress in Chemistry), 2018,30(1):44.
[45]
He T X, Liang Q L, Zhang K, Mu X, Luo T T, Wang Y M, Luo G A . Microfluid. Nanofluid., 2011,10(6):1289.
[46]
Ge H, Xu H B, Lu T Y, Li J, Chen H S, Wan J D . J. Colloid Interf. Sci., 2016,461:168. https://www.ncbi.nlm.nih.gov/pubmed/26397924

doi: 10.1016/j.jcis.2015.09.018 pmid: 26397924
[47]
Fang Y, Zheng G F, Yang J P, Tang H S, Zhang Y F, Kong B, Lv Y Y, Xu C J, Asiri A M, Zi J, Zhang F, Zhao D Y . Angew. Chem. Int. Edit., 2014,53(21):5366. https://www.ncbi.nlm.nih.gov/pubmed/24764082

doi: 10.1002/anie.201402002 pmid: 24764082
[48]
Chen Y, Xu P F, Wu M Y, Chen H R, Shu Z, Wang J, Zhang L X, Li Y P, Shi J L . Adv. Mater., 2014,26(25):4294. https://www.ncbi.nlm.nih.gov/pubmed/24687452

doi: 10.1002/adma.201400303 pmid: 24687452
[49]
Gu J L, Su S S, Li Y S, He Q J, Shi J L . Chem. Commun., 2011,47(7):2101. https://www.ncbi.nlm.nih.gov/pubmed/21183990

doi: 10.1039/c0cc04598e pmid: 21183990
[50]
张咚咚(Zhang D D), 刘敬民(Liu J M), 刘瑶瑶(Liu Y Y), 党梦(Dang M), 方国臻(Fang G Z), 王硕(Wang S) . 化学进展( Progress in Chemistry), 2018,30(12):1908.
[51]
Zhu J, Liao L, Bian X J, Kong J L, Yang P Y, Liu B H . Small, 2012,8(17):2715. https://www.ncbi.nlm.nih.gov/pubmed/22674566

doi: 10.1002/smll.201200217 pmid: 22674566
[52]
杨旦(Yang D), 王宇洋(Wang Y Y), 朱树凯(Zhu S K), 陈太军(Chen T J), 武欣(Wu X), 汪建新(Wang J X) . 化学推进剂与高分子材料( Chemical Propellants Polymeric Materials), 2017,15(2):69.
[53]
王欢(Wang H), 佘岚(She L), 王琳召(Wang L Z), 马志强(Ma Z Q), 张欣荣(Zhang X R), 杨峰(Yang F) . 药学实践杂志( Journal of Pharmaceutical Practice), 2015,33(2):114.
[54]
Wang H, Li X G, Ma Z Q, Wang D, Wang L Z, Zhan J Q, She L, Yang F . Int. J. Nanomedicine, 2016,11:1793. https://www.ncbi.nlm.nih.gov/pubmed/27175077

doi: 10.2147/IJN.S103020 pmid: 27175077
[55]
王鑫(Wang X) . 哈尔滨工业大学硕士论文 (Master Dissertations of Harbin Institute of Technology), 2016.
[56]
Li X, Wang X D, Sha L P, Wang D, Shi W, Zhao Q F, Wang S L . ACS Appl. Mater. Inter., 2018,10(31):19386.
[57]
Meng Y, Wang S S, Li C Y, Qian M, Yan X Y, Yao S C, Peng X Y, Wang Y, Huang R Q . Biomaterials, 2016,100:134. https://www.ncbi.nlm.nih.gov/pubmed/27258483

doi: 10.1016/j.biomaterials.2016.05.033 pmid: 27258483
[58]
朱杰(Zhu J), 廖蕾(Liao L), 朱丽娜(Zhu L N), 孔继烈(Kong J L), 刘宝红(Liu B H) . 化学学报 (Acta Chim Sinica), 2013,71(1):69.
[59]
Xu G J, Liu S J, Niu H, Lv W P, Wu R A . RSC Adv., 2014,4(64):33986. https://www.ncbi.nlm.nih.gov/pubmed/26989477

doi: 10.1039/C4RA05256K pmid: 26989477
[60]
Cai X L, Yan H Y, Luo Y N, Song Y, Zhao Y T, Li H, Du D, Lin Y H . ACS Appl. Bio. Mater., 2018,1(4):1165.
[61]
Li C Y, Meng Y, Wang S S, Qian M, Wang J X, Lu W Y, Huang R Q . ACS Nano, 2015,9(12):12096. https://www.ncbi.nlm.nih.gov/pubmed/26575351

doi: 10.1021/acsnano.5b05137 pmid: 26575351
[62]
Kuang Y, Cao Y, Liu M, Zu G Y, Zhang Y J, Zhang Y, Pei R J . ACS Appl. Mater. Inter., 2018,10(31):26099. https://www.ncbi.nlm.nih.gov/pubmed/30016059

doi: 10.1021/acsami.8b09709 pmid: 30016059
[63]
Mohapatra S, Rout S R, Das R K, Nayak S, Ghosh S K . Langmuir, 2016,32(6):1611. https://www.ncbi.nlm.nih.gov/pubmed/26794061

doi: 10.1021/acs.langmuir.5b03898 pmid: 26794061
[64]
Zhang Q Q, Wang P Y, Li X M, Yang Y T, Liu X F, Zhang F, Ling Y, Zhou Y M . J. Mater. Chem. B, 2017,5(20):3765. https://www.ncbi.nlm.nih.gov/pubmed/32264065

doi: 10.1039/c7tb00614d pmid: 32264065
[65]
Wang S S, Li C Y, Meng Y, Qian M, Jiang H L, Du Y L, Huang R Q, Wang Y . ACS Biomater-Sci. Eng., 2017,3(8):1702.
[66]
Wei J, Sun Z K, Luo W, Li Y H, Elzatahry A A, Al-Enizi A M, Deng Y H, Zhao D Y . J. Am. Chem. Soc., 2017,139(5):1706. https://www.ncbi.nlm.nih.gov/pubmed/28085258

doi: 10.1021/jacs.6b11411 pmid: 28085258
[1] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[2] Jie Tang, Renfa Liu, Zhifei Dai*. Multifunctional Liposomal Drug Delivery Technology [J]. Progress in Chemistry, 2018, 30(11): 1669-1680.
[3] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[4] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[5] Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels [J]. Progress in Chemistry, 2015, 27(11): 1591-1603.
[6] Su Dan, Di Feng, Xing Ji, Che Jianfei, Xiao Yinghong. Application of Conducting Polymers in Controlled Drug Delivery System [J]. Progress in Chemistry, 2014, 26(12): 1962-1976.
[7] Chen Mengjie, Yao Jinrong, Shao Zhengzhong, Chen Xin. Biomacromolecule-based Nanoparticle Drug Carriers [J]. Progress in Chemistry, 2011, 23(01): 202-212.
[8] . Covalent Micelle: the Nature and Role of Functional Groups in the Core [J]. Progress in Chemistry, 2010, 22(0203): 465-471.
[9] Sun Jiekan Wang Xuefei Ji Jian. Layer-by-Layer Assembly: the New Approach for Advanced Drug Release System [J]. Progress in Chemistry, 2009, 21(12): 2682-2688.
[10] Zhou Zhijun, Cai Rongxi, Liu Nengjun, Zhang Lin**, Chen Huanlin. Preparation and Application of Membrane with Cyclodextrins [J]. Progress in Chemistry, 2007, 19(9): 1436-1442.
[11] Li Xiaoran,Yuan Xiaoyan**. Poly(Ethylene Glycol)-Poly(Lactic Acid) Copolymers for Drug Carriers [J]. Progress in Chemistry, 2007, 19(06): 973-981.