中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1749-1758 DOI: 10.7536/PC190529 Previous Articles   

Molecularly Imprinting Polymers for Detection and Removal of Environmental Endocrine Disruptors

Xiaowen Xie, Xiaoguo Ma**(), Lihui Guo   

  1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received: Online: Published:
  • Contact: Xiaoguo Ma
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(41272262); Science and Technology Planning Project of Guangzhou, China(201803030040); Major Projects (Natural Science) of Education Department of Guangdong Province, China(261555101)
Richhtml ( 5 ) PDF ( 971 ) Cited
Export

EndNote

Ris

BibTeX

Environmental endocrine disruptors(EEDs) have very serious harms to human health and ecological environment, thus it is of great significance to develop efficient technologies to detect and remove EEDs in real environmental samples. Due to their traits of high adsorption selectivity, large adsorption ability and good regeneration ability, molecularly imprinted polymers(MIPs) have become more and more important in the applications of detection and removal of EEDs. In this paper, the features of EEDs and their application in our daily life, in industries and other aspects are introduced. And also the characteristics, preparation methods and performance characteristics of MIPs are described. In addition, the applications of MIPs based on solid phase extraction(SPE) method and sensor technology in the sensitive and specific detection of the low background concentration EEDs, and also the applications of MIPs based on adsorption technology and other hyphenated techniques in the selective, fast and efficient removal of EEDs, are reviewed. Furthermore, the study work of our laboratory in this respect are presented in this review. Last but not least, the problems in the synthesis and use of MIPs are also analyzed in detail, and the applications of MIPs in the future are prospected.

Fig. 1 Schemes of covalent and noncovalent molecular imprinting[15]
Fig. 2 System configuration for on-line sample purification using MIP based SPE prior to detection by HPLC[55]
Fig. 3 (A) Schematic synthetic illustration of GO, MGO, MGO@SiO2 and MIPs;(B) detailed process of SPE to separate and enrich trace six PAEs in solution or water samples[65]
Fig. 4 Schematic representation for the formation mechanism of the MIS[69]
Fig. 5 Synthesis schematic diagram of the multi-templates imprinted polymer[85]
Table 1 Comparison of parameters of molecularly imprinted polymers in different literatures
Fig. 6 The route for preparation of double-domain film and its application in the removal of the target contaminant[86]
[1]
Wolff M S, Ann N. Y . Acad. Sci., 2006,1076:228. https://www.ncbi.nlm.nih.gov/pubmed/17119205

doi: 10.1196/annals.1371.009 pmid: 17119205
[2]
Russart K, Nelson R J . Physiol. Behavior., 2017,190:82. https://www.ncbi.nlm.nih.gov/pubmed/28870443

doi: 10.1016/j.physbeh.2017.08.029 pmid: 28870443
[3]
Wang R, Ma X, Zhang X J, Li X, Li D P, Dang Y F . Ecotoxicol. Environ. Saf., 2019,170:789. https://www.ncbi.nlm.nih.gov/pubmed/30593992

doi: 10.1016/j.ecoenv.2018.12.051 pmid: 30593992
[4]
Wulff G, Sarhan A, Zabrocki K . Cheminform, 1974,14:4329.
[5]
BelBruno, Joseph J . Chem. Rev., 2019,119:94. https://www.ncbi.nlm.nih.gov/pubmed/30246529

doi: 10.1021/acs.chemrev.8b00171 pmid: 30246529
[6]
Vlatakis G, Andersson L I, Müller R, Mosbach K . Nature, 1993,361:645. https://www.ncbi.nlm.nih.gov/pubmed/8437624

doi: 10.1038/361645a0 pmid: 8437624
[7]
王荣艳(Wang R Y), 王培龙(Wang P L), 王静(Wang J), 王锡昌(Wang X C), 钟耀广(Zhong Y G) . 现代科学仪器 (Modern Scientific Instruments), 2008,1:11.
[8]
肖华花(Xiao H H), 刘国光(Liu G G) . 化学通报 (Chemistry), 2009,72:701.
[9]
Ye L, Mosbach K . Chem Mater, 2008,20:859.
[10]
Turiel E, Martín-Esteban A . Anal. Chim. Acta, 2010,668:87. https://www.ncbi.nlm.nih.gov/pubmed/20493285

doi: 10.1016/j.aca.2010.04.019 pmid: 20493285
[11]
Alexander C, Håkan S Andersson, Andersson L I, Ansell R J, Whitcombe M J . J. Mol. Recognit., 2006,19:106. https://www.ncbi.nlm.nih.gov/pubmed/16395662

doi: 10.1002/jmr.760 pmid: 16395662
[12]
史瑞雪(Shi R X), 郭成海(Guo C H), 邹小红(Zhou X H), 朱春野(Zhu Chun Ye), 左言军(Zuo Y J), 邓云度(Deng Y D) . 化学进展 (Progress in Chemistry), 2002,14:182.
[13]
Cheong W J, Yang S H, Ali F . J. Sep. Sci., 2013,36:609. https://www.ncbi.nlm.nih.gov/pubmed/23281278

doi: 10.1002/jssc.201200784 pmid: 23281278
[14]
Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N . J. Am. Chem. Soc., 1995,117:7105.
[15]
Yoshikawa M, Tharpa K, Ştefan Ovidiu D . Chem. Rev, 2016,116:11500. https://www.ncbi.nlm.nih.gov/pubmed/27610706

doi: 10.1021/acs.chemrev.6b00098 pmid: 27610706
[16]
Bossi A, Bonini F, Turner A P F, Piletsky S A . Biosens. Bioelectron., 2007,22, 1131. https://www.ncbi.nlm.nih.gov/pubmed/16891110

doi: 10.1016/j.bios.2006.06.023 pmid: 16891110
[17]
郭秀春(Guo X C), 周文辉(Zhou W H), . 化学研究 (Chemical Research), 2012,23:103.
[18]
Vasapollo G, Sole R D, Mergola L, Lazzoi M R, Scardino A . Int. J. Mol. Sci., 2011,12, 5908. https://www.ncbi.nlm.nih.gov/pubmed/22016636

doi: 10.3390/ijms12095908 pmid: 22016636
[19]
Sun Z, W Schüssler, Sengl M, Niessner R, Knopp D . Anal. Chim. Acta, 2008,620:73. https://www.ncbi.nlm.nih.gov/pubmed/18558126

doi: 10.1016/j.aca.2008.05.020 pmid: 18558126
[20]
Yan L S, Wang Y M, Wang Z H, Luo G A . Chem. Res. Chinese Univer., 2001,22:2008.
[21]
Yao J, Li X, Qin W . Anal. Chim. Acta, 2008,610:282. https://www.ncbi.nlm.nih.gov/pubmed/18291141

doi: 10.1016/j.aca.2008.01.042 pmid: 18291141
[22]
Li C, Ma X, Zhang X, Wang R, Li X, Liu Q J . J. Sep. Sci., 2017,40:1621. https://www.ncbi.nlm.nih.gov/pubmed/28168865

doi: 10.1002/jssc.201601190 pmid: 28168865
[23]
司汴京(Si B J), 陈长宝(Chen C B), 周杰(Zhou J) . 化学进展 (Progress in Chemistry), 2009,21:1813.
[24]
Dai H, Xiao D, He H, Li H, Yuan D, Zhang C . Microchim. Acta, 2015,182:893.
[25]
Huang R, Ma X, Li X, Guo L, Xie X, Zhang M, Li J . J. Colloid. Interf. Sci., 2018,514:544.
[26]
Alizadeh T, Mirzaee S, Rafiei F . Int. J. Environ. Anal. Chem., 2017,97:1.
[27]
阚显文(Kan X W), 尹宇新(Yin Y X), 耿志荣(Geng Z R), 王志林(Wang Z L) . 化学进展 (Progress in Chemistry), 2010,22:107.
[28]
Andersson L I . J. Chromatogr. B., 2000,739:163. https://www.ncbi.nlm.nih.gov/pubmed/10744324

pmid: 10744324
[29]
Words K . Chromatographia, 2001,53:599.
[30]
Liang W, Yu X P, University J N . Metallurgical Analysis, 2013,33:33.
[31]
Omidi F, Behbahani M, Abandansari H S, Sedighi A, Shahtaheri S . J. Environ. Health. Sci. Eng., 2014,12:137. https://www.ncbi.nlm.nih.gov/pubmed/25426299

doi: 10.1186/s40201-014-0137-z pmid: 25426299
[32]
Wan Ibrahim W A, Abd Ali L I, Sulaiman A, Sanagi M M, Aboul-Enein H Y . Crit. Rev. Anal. Chem., 2014,44:233. https://www.ncbi.nlm.nih.gov/pubmed/25391563

doi: 10.1080/10408347.2013.855607 pmid: 25391563
[33]
Chen Y, Ma X, Huang M, Peng J, Li C . Anal. Methods., 2016,8:824.
[34]
Zhi K K, Dong A J, Yang X, Zhao Q Y, Zhao H T, Zhao H, Wang J, Xu P F . Acta Chim. Sinica, 2016,74:199.
[35]
Vlatakis G, Andersson L I, Müller R, Mosbach K . Nature, 1993,361:645. https://www.ncbi.nlm.nih.gov/pubmed/8437624

doi: 10.1038/361645a0 pmid: 8437624
[36]
Liu Y, Ai K, Lu L . Chem. Rev., 2014,114:5057. https://www.ncbi.nlm.nih.gov/pubmed/24517847

doi: 10.1021/cr400407a pmid: 24517847
[37]
Petrovic M, Barceló D . Chromatographia, 2002,56:535.
[38]
Fernándezsanjuan M, Rigol A, Sahuquillo A, Sonia Rodríguez-Cruz, Lacorte S . Anal. Bioanal. Chem., 2009,394:1525. https://www.ncbi.nlm.nih.gov/pubmed/19305980

doi: 10.1007/s00216-009-2747-3 pmid: 19305980
[39]
Lafleur A D, Schug K A . Anal. Chim. Acta, 2011,696:6. https://www.ncbi.nlm.nih.gov/pubmed/21621029

doi: 10.1016/j.aca.2011.03.054 pmid: 21621029
[40]
Adamusova H, Bosakova Z, Coufal P, Pacakova V . J. Sep. Sci., 2014,37:885. https://www.ncbi.nlm.nih.gov/pubmed/24488827

doi: 10.1002/jssc.201301234 pmid: 24488827
[41]
Hennion M C . Chromatogr. A, 1999,856:3. https://www.ncbi.nlm.nih.gov/pubmed/10526783

doi: 10.1016/s0021-9673(99)00832-8 pmid: 10526783
[42]
Martasanchez A V, Caldas S S, Schneider A, Cardoso Sónia Maria Vaz Sanches, Primel E G . Environ. Sci. Pollut. Res., 2018,25:1.
[43]
Li D P, Ma X G, Wang R, Yu Y . Anal. Bioanal. Chem., 2016,409:1. https://www.ncbi.nlm.nih.gov/pubmed/27837266

doi: 10.1007/s00216-016-9971-4 pmid: 27837266
[44]
Kataoka H, Lord H L, Pawliszyn J . Royal. Soc. Chem., 2000: 36.
[45]
Martínez C, Ramírez N, Gómez V, Pocurull E, Borrull F . Talanta, 2013,116:937. https://www.ncbi.nlm.nih.gov/pubmed/24148498

doi: 10.1016/j.talanta.2013.07.055 pmid: 24148498
[46]
雷志刚(Lei Z G), 温翠萍(Wen C P), 李群生(Li Q S), 朱吉钦(Zhu J Q), 吴晓华(Wu X H), 赵宇静(Zhao Y H) . 现代化工 (Modern Chemical Industry), 2011,31:53.
[47]
张圣虎(Zhang S H), 张易曦(Zhang Y X), 吉贵祥(Ji G X), 徐怀洲(Xu H Z), 刘济宁(Liu J N), 石利利(Shi L L) . 分析化学 (Chinese. J. Anal. Chem.), 2016,44:19.
[48]
Rezaee M, Yamini Y, Faraji M J . Chromatogr. A, 2010,1217:2342. https://www.ncbi.nlm.nih.gov/pubmed/20005521

doi: 10.1016/j.chroma.2009.11.088 pmid: 20005521
[49]
D’Orazio G, Asensio-Ramos M, Hernández-Borges J, Fanali S, Rodríguez-Delgado M . J. Chromatogr A, 2014,1344:109. https://www.ncbi.nlm.nih.gov/pubmed/24780255

doi: 10.1016/j.chroma.2014.04.005 pmid: 24780255
[50]
Cunha S C, Fernandes J O . Food Control., 2013,33:549.
[51]
谷勋刚(Gu X G) . 中国科学技术大学 (Journal of University of Science and Technology of China), 2007,1.
[52]
Daneshvand B, Raofie F . J. Iran. Chem. Soc., 2015,12:1.
[53]
Chen L, Wang H, Zeng Q, Xu Y, Sun L, Xu H . J. Chromatogr. Sci., 2009,47:614. https://www.ncbi.nlm.nih.gov/pubmed/19772737

doi: 10.1093/chromsci/47.8.614 pmid: 19772737
[54]
Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E . J. Chromatogr. A, 2005,1092:206. https://www.ncbi.nlm.nih.gov/pubmed/16199227

doi: 10.1016/j.chroma.2005.07.012 pmid: 16199227
[55]
He C, Long Y, Pan J, Li K, Liu F . J. Biochem. Bioph. Meth., 2008,70:133. https://www.ncbi.nlm.nih.gov/pubmed/17107715

doi: 10.1016/j.jbbm.2006.07.005 pmid: 17107715
[56]
杨眉(Yang M), 侯长军(Hou C J), 霍丹群(Huo D Q), 李贤良(Li X L) . 材料导报 (Material Reviews), 2012: 69.
[57]
刘祺文(Liu Q W), 熊远福(Xiong Y F), 王锦(Wang J), 文祝友(Wen Z Y), 熊海蓉(Xiong H R), 胡红远(Hu H Y) . 环境科技 (Environmental Science and Technology), 2015,28:63.
[58]
Mehdinia A, Ahmadifar M, Aziz-Zanjani M O, Jabbari A, Hashtroudi M S . Analyst, 2012,137:4368. https://www.ncbi.nlm.nih.gov/pubmed/22866325

doi: 10.1039/c2an16244j pmid: 22866325
[59]
Li C, Ma X, Zhang X, Wang R, Chen Y, Li Z . Anal. Bioanal. Chem., 2016,408:7857. https://www.ncbi.nlm.nih.gov/pubmed/27580604

doi: 10.1007/s00216-016-9889-x pmid: 27580604
[60]
Wang L, Yan H, Yang C, Li Z, Qiao F . J. Chromatogr. A, 2016,1456:58 https://www.ncbi.nlm.nih.gov/pubmed/27328886

doi: 10.1016/j.chroma.2016.06.010 pmid: 27328886
[61]
Nascimento B V D, De A S M R, Augusto L M, Lucio D S C, Campos D L E . J. Appl. Sci., 2017,12:380.
[62]
Wang J, Wang Q M, Tian L L, Yang C, Yu S H, Yang C . Chinese J. Anal. Chem., 2015,43:1777.
[63]
Badia-Laino R, Diaz-Garcia M E, Gonzalez A F, Francos M A E, Lopez D F . Curr. Top. Med. Chem., 2015,15:262. https://www.ncbi.nlm.nih.gov/pubmed/25547967

doi: 10.2174/1568026614666141229113630 pmid: 25547967
[64]
Watabe Y, Kubo T, Nishikawa T, Fujita T, Kaya K, Hosoya K . Chromatogr A, 2006,1120:252. https://www.ncbi.nlm.nih.gov/pubmed/16460748

doi: 10.1016/j.chroma.2006.01.057 pmid: 16460748
[65]
Guo L H, Ma X G, Xie X W, Huang R F, Zhang M Y, Li J, Zeng G L, Fan Y M . Chem. Eng. J., 2019,361:245.
[66]
Li J, Ma X, Zhang M, Li D P, Yuan Y, Fan Y M, Xie X W, Guo L H, Zeng G L . J. Electrochem. Soc., 2019,166:B84.
[67]
杨钰昆(Yang Y K), 王小敏(Wang X M), 方国臻(Fang G Z), 云雅(Yun Y), 郭婷(Guo T), 王硕(Wang S), . 化学进展 (Progress in Chemistry), 2016,28:1351.
[68]
Atar N, Eren T, Mehmet Lütfi Yola, Wang S B . Sensor. Actuat. B. Chem., 2015,216:638.
[69]
Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T . Biosens. Bioelectron., 2011,29:29. https://www.ncbi.nlm.nih.gov/pubmed/21875784

doi: 10.1016/j.bios.2011.07.058 pmid: 21875784
[70]
Zhang M Y, Ma X G, Li J, Huang R F, Guo L H, Zhang X F, Fan Y M, Xie X W, Zeng G L . Chemosphere, 2019,234:196. https://www.ncbi.nlm.nih.gov/pubmed/31220653

doi: 10.1016/j.chemosphere.2019.06.057 pmid: 31220653
[71]
Li X J, Wang X J, Li L L, Duan H M, Luo C N . Talanta, 2015,131:354. https://www.ncbi.nlm.nih.gov/pubmed/25281114

doi: 10.1016/j.talanta.2014.07.028 pmid: 25281114
[72]
Dadkhah S, Ziaei E, Mehdinia A, Baradaran Kayyal T, Jabbari A . Microchim. Acta, 2016,183:1933.
[73]
Huang B, Li X, Sun W, Ren D, Li X, Li X . Environ. Sci. Pollut. Res. Int., 2014,21:12898. https://www.ncbi.nlm.nih.gov/pubmed/24974791

doi: 10.1007/s11356-014-3236-6 pmid: 24974791
[74]
Sarkar S, Ali S, Rehmann L, Nakhla G, Ray M B . J. Hazard. Mater., 2014,278:16. https://www.ncbi.nlm.nih.gov/pubmed/24937659

doi: 10.1016/j.jhazmat.2014.05.078 pmid: 24937659
[75]
Chang H S, Choo K H, Lee B, Choi S J . J. Hazard. Mater., 2009,172:1. https://www.ncbi.nlm.nih.gov/pubmed/19632774

doi: 10.1016/j.jhazmat.2009.06.135 pmid: 19632774
[76]
Delgado L F, Charles P, Glucina K, Morlay C . Sci. Total. Environ., 2012,435:509. https://www.ncbi.nlm.nih.gov/pubmed/22885596

doi: 10.1016/j.scitotenv.2012.07.046 pmid: 22885596
[77]
Hua S J, Zhao L, Cao L Y, Wang X Q, Gao J S, Xu C M . Chem. Eng. J., 2018,345:414.
[78]
Liu B Z, Yang J L, Wang M, Wu X Y . Int. J. Electrochem. Sci., 2018,13:11953.
[79]
Zhang Z, Li L, Wang H M, Guo L P, Zhai Y Y, Zhang J, Yang Y W, Wang H L, Yin Z Z, Lu Y X . Appli. Surf. Sci., 2018,448:380.
[80]
Plieva F M, Mattiasson B, Le Parquier M . J. Sep. Sci., 2015,32:1471. https://www.ncbi.nlm.nih.gov/pubmed/19399860

doi: 10.1002/jssc.200800670 pmid: 19399860
[81]
Murray A, Örmeci Banu, Lai E P C . Water. Sci. Technol. J. Int. Associ. Water Pollut. Res., 2016,73:176.
[82]
Dai C M, Zhang J, Zhang Y L, Zhou X F, Duan Y P, Liu S G . Chem. Eng. J., 2012,211:302.
[83]
Duan Y P, Dai C M, Zhang Y L, Chen L . Anal. Chim. Acta, 2013,758:93. https://www.ncbi.nlm.nih.gov/pubmed/23245900

doi: 10.1016/j.aca.2012.11.010 pmid: 23245900
[84]
Xia X, Lai E P C, Örmeci B . Environ. Sci. Pollut. Res. Int., 2013,20:3331. https://www.ncbi.nlm.nih.gov/pubmed/23097074

doi: 10.1007/s11356-012-1262-9 pmid: 23097074
[85]
Xie X W, Ma X G, Guo L H, Fan Y M, Zeng G L, Zhang M Y, Li J . Chem. Eng. J., 2019,357:56.
[86]
Tang H, Zhu L, Yu C, Shen X . Sep. Purif. Technol., 2012,95:165.
[87]
Fernández-Alvarez P, Le N M, Guieysse B . J. Hazard. Mater., 2009,163:1107. https://www.ncbi.nlm.nih.gov/pubmed/18768258

doi: 10.1016/j.jhazmat.2008.07.085 pmid: 18768258
[88]
Liu F, Liu Q, Zhang Y H, Liu Y J, Wan Y C, Gao K C, Huang Y, Wei X, Wang H Y, Shi Y, Huang Z, Lu B . Chem. Eng. J., 2015,262:989.
[89]
Xie Y T, Li H B, Wang L, Liu Q, Shi Y, Zheng H Y . Water. Res., 2011,45:1189. https://www.ncbi.nlm.nih.gov/pubmed/21131017

doi: 10.1016/j.watres.2010.11.014 pmid: 21131017
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[5] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[6] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[7] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[8] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[9] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[10] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[11] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[12] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[13] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[14] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[15] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.