中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1712-1728 DOI: 10.7536/PC190527 Previous Articles   Next Articles

Thermochromic Smart Coatings

Rui Sun1,2, Lin Yao2, Junhui He2,**(), Jie Liang1   

  1. 1. College of Chemistry and Environmental Engineering, China University of Mining and Technology(Beijing),Beijing 100083, China
    2. Technical Institute of Physics and Chemistry,Chinese Academy of Sciences, Beijing 100190, China
  • Received: Online: Published:
  • Contact: Junhui He
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFA0207102); National Natural Science Foundation of China(21571182); National Natural Science Foundation of China(21271177); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS
Richhtml ( 61 ) PDF ( 1811 ) Cited
Export

EndNote

Ris

BibTeX

The current situation of energy and environment makes it urgent to develop a new generation of intelligent building windows with energy-saving features to effectively reduce building energy consumption. Thermochromic materials can change their optical characteristics according to changes in external temperature, and intelligently adjust the solar radiation energy entering the room without consuming other energy sources, which makes it a great potential application in building energy conservation. In recent years, an increasing number of research works in regard to thermochromic materials have been carried out, including hydrogels, ionic liquids, perovskites, metamaterials, liquid crystals and VO2. Among them, VO2 is one of the ideal candidates because its transmittance decreases obviously in the near infrared region before and after the phase transition and remains unchanged in the visible light range. This review outlines the principles, construction methods, and recent progress in thermochromic smart window coating related materials. Firstly, the structural characteristics, phase transition mechanism and research progress of various thermochromic materials are introduced in detail. Then, taking VO2 as a vital example, the surface engineering design and optimization of smart window coating is clarified and the influence of different construction methods on optical performance is discussed deeply. Finally, the challenges and future development direction of thermochromic smart coatings is presented.

Fig. 1 (a) Characteristics of solar spectrum[10];(b) intelligent window mechanism[25]
Table 1 Common thermochromic materials and their discoloration principle mechanisms[16]
Fig. 2 Schematic representation of the lower critical solution temperature(LCST) reversible demixing phase transition of polymers in water[42]
Fig. 3 (a)Schematic diagram of the PNIPAm hydrogel smart window sandwich structure;(b)transmittance spectrum of 200 μm PNIPAm hydrogel thin film;(c)optical properties of integrated visible transmittance(Tlum), calculated solar energy modulation(ΔTsol), infrared modulation(ΔTIR), and integrated visible light modulation(ΔTlum) of 200 μm PNIPAm film;(d)the insets(left and right) are the 200 μm demonstration devices at 20 and 80℃, respectively[42];(a~d) reproduced with permission;(e)optical transmittance spectra of 25 μm HPCA, W-VO2, and W-VO2 with HPCA microgel samples[37]
Fig. 4 (a)Transmittance spectrum over the UV-Vis-NIR regions of pure IL-Ni-Cl film, VO2 nanoparticles, and VO2/IL-Ni-Cl hybrid film at 20 and 80 ℃;(b) demonstrations of pure IL-Ni-Cl film, VO2 nanoparticle film, and VO2/IL-Ni-Cl hybrid film at 20 and 80 ℃[47].(a、b) Reproduced with permission.(c)Schematic illustration of thermochromic optical transmittance change upon variation in temperature
Fig. 5 (a) Transmittance spectrum over the UV-Vis-NIR region of ionogel at various temperatures ranging from 15 to 60 ℃;(b) the photographs of transparent, translucent, and opaque states of the ionogel, respectively[52]
Fig. 6 (a)Schematic illustration of kiri-kirigami structure with notches on both sides. The upper part(green) has reversed patterned notches compared with the lower part(yellow).(b) Optical images of the deformed kiri-kirigami structure with identical design to(a) upon uniaxial stretching.(c) Experimental demonstrations of thermal activation and orientation switch of kiri-kirigami paper metamaterials at various temperatures[60]
Fig. 7 (a) Schematic of transmittance modulation methods based on(1) reconfigurable metamaterials,(2) active LSPR, and(3) the integration of active LSPR and reconfigurable metamaterials.(b)Photographs of the roll-up process of the yellow-brown composite film from figures on the left to right(1~6).(c)SEM-simulated strain distributions of the kirigami VO2-PDMS film and the magnified strain contour on a cut tip area as the inset[61]
Fig. 8 Schematic of the orientation-dependent optical behavior of cholesteric liquid crystalline materials:(a)Planar orientation;(b) focal conic orientation;(c) homeotropic orientation[64]
Fig. 9 (a)Schematic of the smectic A(SmA) to chiral nematic(N*) phase transition in a cell containing the LCs and ITO NCs;(b)the as-made film can reversibly change between transparent and opaque state in response to temperature;(c) the transmittance spectra of the initial film(black line) and the film after 300 cycles(red line);(d) temperature dependence of the transmittance of the smart films containing 0% ITO/SiO2 and 5.0 wt% ITO/SiO2[68]
Fig. 10 (a)The structure of rutile VO2(left) and monoclinic VO2(right)[73];(b)Standard solar spectra[92];(c) Representative XRD peaks at several temperatures.(d) Relative monoclinic portion as a function of temperature, estimated from XRD peak analysis in(c)[75]
Fig. 11 SEM images of samples prepared at different temperatures(a) 160℃ and(b) 180℃.Typical FE-SEM images of products obtained with different vanadium precursor concentrations.(c) 0.17 M,(d) 0.25 M,(e) 1.0 M[93]
Fig. 12 (a)Side and top elevations of a nanotextured surface with hexagonally arranged circular paraboloid cones;(b) Three-dimensional illustration of the VO2-coated nipple arrays used in the simulation;(c) the calculated ΔTsol map based on the FDTD parameter search[96]. Reproduced with permission from Ref[96]Copyright The Optical Society;(d) AFM images of AR samples with different periods;(e) Transmittance spectra measured at 25/90 ℃ for planner and AR samples with 140 nm thickness[112]
Fig. 13 (a) The preparation process of different periodical VO2 nanostructures; SEM images of patterned VO2 film prepared by the PS sphere with diameter of 160 nm;(b) Calculated(dashed lines) and measured(solid lines) transmittance spectra of nanoparticle arrays with diameters of 67, 125, and 287 nm, respectively;(c) the transmittance spectra at 20 and 95 ℃[114].(d) The preparation process of hollow-structured honeycomb-structured VO2 films via fully solution-based spontaneous self-template and assembly during the dual-phase transformation process[116]
Fig. 14 (a) VO2@TiO2 composite[120];(b)TEM images of TLHNs structure[121].(c) TEM images of VO2@ZnO core-shell structure[122]. Reproduced with permission from Ref[120~122]. Copyright(2013) Nature,(2018)Wiley,(2017) ACS;(d) Schematic diagram of VO2 @ZnS core-shell nanoparticles[123];(e,f) VO2 with /without good dispersion and their corresponding transmittance spectra, respectively[124];(g,h)Transmittance spectra of VO2@SiO2 nanoparticles and nanorods, respectively[125].Reproduced with Permission from Ref[123~125]. Copyright(2017)Elsevier,(2015)ACS,(2013)Nanoscale
Fig. 15 (a) Preparation of VO2 nanoparticle-based mixture from commercial V2O5;(b) photograph of large-scale VO2-PVP coatings[129]. Copyright(2018) RSC.(c) optical transmittance spectra of hybrid samples with different W-VO2 NPs content at 20 ℃ and 55 ℃, respectively;(d) optical modulation modes of composite films in response to different stimuli;(e) transmittance of samples with different W-VO2 NPs content during heating and cooling cycles. Reproduced with permission from Ref[133]. Copyright(2017) ACS
Fig. 16 (a)Solar modulation mechanism of the VO2/hydrogel hybrid[35].(b)Photographs of NIT and composite films at 20 and 80 ℃, respectively. Transmittance spectra of(c) NIT coating;(d) VO2 single layer film;(e) VO2/NIT composite film. Reproduced with permission from Ref[135]. Copyright(2018) Elsevier
Fig. 17 (a~c) Schematic illustration of the separated modulation of visible and NIR light transmittance working in passive mode(in response to environmental temperature);(d~f) Schematic illustration of the modulation of solar light transmittance from a transparent state to a blocking state working in active mode 1(in response to input voltage);(g and h) Schematic illustration of turning the device from an opaque state into a transparent state in response to the applied electric field(working in active mode 2)[136]
Table 2 Summary of research results of VO2 coating surface engineering
[1]
郑磊(Zheng L), 陈醒(Chen X) . 国际融资 (International Financing), 2018,12(6):669.
[2]
Moriarty P, Honnery D . Energ. Policy, 2016,93:3.
[3]
Xu F X, Luo H, Jin P . J. Mater. Chem., 2018,6:1903.
[4]
梁坤丽(Liang K L), 赵康杰(Zhao K J), . 石河子大学学报哲学社会科学版 (Journal of Shihezi University Philosophy and Social Sciences), 2018,1(6):6.
[5]
Glicksman L R . Phys. Today, 2008,61:35.
[6]
Xu F, Cao X, Luo H, Jin P . J. Mater. Chem., 2018,6:1903.
[7]
Chen Z, Gao Y, Kang L, Du J, Zhang Z, Luo H, Miao H, Tan G . Sol. Energ. Mater. Sol. Cells, 2011,95:2677.
[8]
陈何国(Chen H G), 张冠琦(Zhang G Q), 黄凯(Huang K), 侯甫文(Hou P W) . 门窗 (Doors & Windows), 2009,47(05):53.
[9]
Davy N C, Sezen E M, Gao J, Lin X, Liu A, Yao N, Kahn A, Loo Y L . Nat. Energy, 2017,2:17104.
[10]
Mondal N N . Sci. Res., 2014,4:8.
[11]
Ding J, Liu Z, Wei A, Chen T P, Zhang H . Mater. Sci. Semicond. Process., 2018,88:73.
[12]
Shi Y D, Zhang Y, Tang K, Cui J W, Shu X, Wang Y, Liu J Q, Jiang Y, Tan H H, Wu Y C . Chem. Eng. J., 2019,355:942.
[13]
Zum Felde U, Haase M, Weller H . J. Phys. Chem. B, 2000,104:9388.
[14]
Casini M . Renew. Energ., 2018,119:923. https://linkinghub.elsevier.com/retrieve/pii/S0960148117312533

doi: 10.1016/j.renene.2017.12.049
[15]
Hu C W, Yamada Y, Yoshimura K . Chem. Commun., 2017,53:3242. https://www.ncbi.nlm.nih.gov/pubmed/28256668

doi: 10.1039/c7cc00077d pmid: 28256668
[16]
Cheng Y, Zhang X, Fang C, Chen J, Wang Z . J. Mater. Sci. Technol., 2018,34:2225.
[17]
Gavalas S, Gagaoudakis E, Katerinopoulou D, Petromichelaki V, Wight S, Wotring G, Aperathitis E, Kiriakidis G, Binas V . Mater. Sci. Semicond. Process., 2019,89:116.
[18]
Ke Y J, Wang S C, Liu G W, Li M, White T J, Long Y . Small, 2018,14:29.
[19]
Sezen E M, Loo Y L . J. Phys. Chem. Lett., 2017,8:4530. https://www.ncbi.nlm.nih.gov/pubmed/28853890

doi: 10.1021/acs.jpclett.7b01785 pmid: 28853890
[20]
Li B, Fan H T, Zang S Q, Li H Y, Wang L Y . JCCR. Coordin. Chem. Rev., 2018,377:307.
[21]
Wall S, Yang S, Vidas L, Chollet M, Glownia J M, Kozina M, Katayama T, Henighan T, Jiang M, Miller T A J S . Science, 2018,362:572. https://www.ncbi.nlm.nih.gov/pubmed/30385575

doi: 10.1126/science.aau3873 pmid: 30385575
[22]
Huang F, Yang T, Wang S X, Lin L, Hu T, Chen D Q . J. Mater. Chem., 2018,6:12364.
[23]
Lukeš V, Breza M J J o M S T . J. Mol. Struct., 2007,820:35.
[24]
Li W, Zhu C, Wang W, Wu J J J F M . J. Funct. Mater., 1997,28:337.
[25]
Qu Z, Yao L, Zhang Y, Jin B B, He J H, Mi J . Mater. Res. Bull., 2019,109:195.
[26]
Granqvist C G . Thin Solid Films, 2016,614:90.
[27]
Zhang H, Xiao X, Xu G, Chai G, Yang T . Mater. Rev., 2014,28:56.
[28]
Manning T D, Parkin I P . J. Mater. Chem., 2004,14:2554.
[29]
Kang L, Gao Y, Luo H . ACS Appl. Mater. Interfaces, 2009,1:2211. https://www.ncbi.nlm.nih.gov/pubmed/20355855

doi: 10.1021/am900375k pmid: 20355855
[30]
Ke Y, Zhou C, Zhou Y, Wang S, Chan S H, Long Y . Adv. Funct. Mater., 2018,28:22.
[31]
Choi S, Choi Y j, Jang M S, Lee J H, Jeong J H, Kim J J. Adv. Funct. Mater., 2017,27:42.
[32]
Hamidi M, Azadi A, Rafiei P . Adv. Drug Deliver. Rev., 2008,60:1638. https://www.ncbi.nlm.nih.gov/pubmed/18840488

doi: 10.1016/j.addr.2008.08.002 pmid: 18840488
[33]
Omidinia A A, Boesveld S, Tuvshindorj U, Rose J C, Haraszti T, De L L . Small, 2017,13:36.
[34]
La T G, Li X, Kumar A, Fu Y, Yang S, Chung H J . ACS Appl. Mater. Interfaces, 2017,9:33100. https://www.ncbi.nlm.nih.gov/pubmed/28836752

doi: 10.1021/acsami.7b08907 pmid: 28836752
[35]
Zhou Y, Cai Y, Hu X, Long Y . J. Mater. Chem. A, 2015,3:1121.
[36]
Owusu N S, Gillmor J, Switalski S, Mis M R, Bennett G, Moody R, Antalek B, Gutierrez R, Slater G . Macromolecules, 2017,50:3671.
[37]
Yang Y S, Zhou Y, Chiang F B Y, Long Y . RSC Adv., 2017,7:7758.
[38]
Wang Y, Zhao F, Wang J, Khan A R, Shi Y, Chen Z, Zhang K, Li L, Gao Y, Guo X . Ind. Eng. Chem. Res., 2018,57:12801.
[39]
Pennadam S S, Firman K, Alexander C, Gorecki D C . J. Nanobioteg., 2004,2:8.
[40]
Jain K, Vedarajan R, Watanabe M, Ishikiriyama M, Matsumi N . Polym. Chem., 2015,6:6819.
[41]
De la Rosa V R, Woisel P, Hoogenboom R . Mater. Today, 2016,19:44.
[42]
Zhou Y, Cai Y, Hu X, Long Y . J. Mater. Chem. A, 2014,2:13550.
[43]
Swatloski R P, Spear S K, Holbrey J D, Rogers R D . J. Am. Chem. Soc., 2002,124:4974. https://www.ncbi.nlm.nih.gov/pubmed/11982358

doi: 10.1021/ja025790m pmid: 11982358
[44]
Van Valkenburg M E, Vaughn R L, Williams M, Wilkes J S . Thermochim. Acta, 2005,425:181.
[45]
Nam K T . Science, 2008,322:44.
[46]
余林颇(Yu L P), 陈政宁(Chen Z N) . 科技导报 (Science & Technology Review), 2015,33(24):98. 8ccd80b0-92fb-48a4-81ef-ef48ccc4ac75http://www.kjdb.org/CN/abstract/abstract13255.shtml

doi: 10.3981/j.issn.1000-7857.2015.24.016
[47]
Zhu J, Huang A, Ma H, Ma Y, Tong K, Ji S, Bao S, Cao X, Jin P . ACS Appl. Mater. Interfaces, 2016,8:29742. https://www.ncbi.nlm.nih.gov/pubmed/27739664

doi: 10.1021/acsami.6b11202 pmid: 27739664
[48]
Rocha J, Anderson M W . Eur. J. Inorg. Chem., 2000,5:801.
[49]
Wei X, Yu L, Wang D, Jin X, Chen G Z . Green Chem., 2008,10:296.
[50]
Zhu J T, Huang A B, Ma H B, Bao S H, Ji S D, Jin P . RSC Adv., 2016,6:67396.
[51]
Zhu J, Huang A, Ma H, Chen Y, Zhang S, Ji S, Bao S, Jin P . New J Chem., 2017,41:830.
[52]
Lee H Y, Cai Y F, Velioglu S, Mu C Z, Chang C J, Chen Y L, Song Y J, Chew J W, Hu X M . Chem. Mater., 2017,29:6947.
[53]
Li X, Li S, Zhang Z, Huang J, Yang L, Hirano S I , J. Mater. Chem. A, 2016,4:13822.
[54]
Connell T U, Earl S K, Ng C, Roberts A, Davis T J, White J M, Polyzos A, Gomez D E . Small, 2017,13:32.
[55]
Chen H, Chan C T . Appl. Phys. Lett., 2007,91:18.
[56]
Ma H F, Chen X, Xu H S, Yang X M, Jiang W X, Cui T J . Appl. Phys. Lett., 2009,95:9.
[57]
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M . Appl. Phys. Lett., 2010,96:25.
[58]
Liu X, Padilla W J . Adv. Mater., 2016,28:871. https://www.ncbi.nlm.nih.gov/pubmed/26619382

doi: 10.1002/adma.201504525 pmid: 26619382
[59]
Overvelde J T B, de Jong T A, Shevchenko Y, Becerra S A, Whitesides G M, Weaver J C, Hoberman C, Bertoldi K . Nat. Commun., 2016,7:96. https://www.ncbi.nlm.nih.gov/pubmed/20981024

doi: 10.1038/ncomms1094 pmid: 20981024
[60]
Tang Y, Lin G, Yang S, Yi Y K, Kamien R D, Yin J . Adv. Mater., 2017,29:10.
[61]
Ke Y, Yin Y, Zhang Q, Tan Y, Hu P, Wang S, Tang Y, Zhou Y, Wen X, Wu S, White T J, Yin J, Peng J, Xiong Q, Zhao D, Long Y . Joule, 2019,3:858.
[62]
Binnemans K . Chem. Rev., 2005,105:4148. https://www.ncbi.nlm.nih.gov/pubmed/16277373

doi: 10.1021/cr0400919 pmid: 16277373
[63]
Liu H, Tang Y, Wang C, Xu Z, Yang C, Huang T, Zhang F, Wu D, Feng X . Adv. Funct. Mater., 2017,27:12.
[64]
Yan J, Ota F, San Jose B A, Akagi K . Adv. Funct. Mater., 2017,27:2. https://www.ncbi.nlm.nih.gov/pubmed/28824357

doi: 10.1002/adfm.201603524 pmid: 28824357
[65]
Kakiuchida H, Tazawa M, Yoshimura K, Ogiwara A . Sol. Energ. Mat. Sol. C., 2010,94:1747.
[66]
Sun J, Wang H, Wang L, Cao H, Xie H, Luo X, Xiao J, Ding H, Yang Z, Yang H . Smart Mater. Struct., 2014,23:12.
[67]
Guo S M, Liang X, Zhang C H, Chen M, Shen C, Zhang L Y, Yuan X, He B F, Yang H . ACS Appl. Mater. Interfaces, 2017,9:2942. https://www.ncbi.nlm.nih.gov/pubmed/28001028

doi: 10.1021/acsami.6b13366 pmid: 28001028
[68]
Liang X, Guo S, Chen M, Li C, Wang Q, Zou C, Zhang C, Zhang L, Guo S, Yang H . Mater. Horiz., 2017,4:878.
[69]
Liang X, Guo C, Chen M, Guo S, Zhang L, Li F, Guo S, Yang H . Nanoscale Horiz., 2017,2:319. https://www.ncbi.nlm.nih.gov/pubmed/32260661

doi: 10.1039/c7nh00105c pmid: 32260661
[70]
Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O . Nature, 2014,515:7528.
[71]
Moatti A, Sachan R, Prater J, Narayan J . ACS Appl. Mater. Interfaces, 2017,9:24298. https://www.ncbi.nlm.nih.gov/pubmed/28622721

doi: 10.1021/acsami.7b05620 pmid: 28622721
[72]
Liu K, Lee S, Yang S, Delaire O, Wu J Q . Mater. Today, 2018,21:875.
[73]
Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J . Science, 2014,346:445. https://www.ncbi.nlm.nih.gov/pubmed/25342797

doi: 10.1126/science.1253779 pmid: 25342797
[74]
金海波(Jin H B), 凌晨(Ling C), 李静波(Li J B) . 深空探测学报 (Journal of Deep Space Exploration), 2018,5(02):188.
[75]
Lee D, Chung B, Shi Y, Kim G Y, Campbell N, Xue F, Song K, Choi S Y, Podkaminer J P, Kim T H, Ryan P J, Kim J W, Paudel T R, Kang J H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J, Eom C B . Science, 2018,362:1037. https://www.ncbi.nlm.nih.gov/pubmed/30498123

doi: 10.1126/science.aam9189 pmid: 30498123
[76]
Najera O, Civelli M, Dobrosavljevic V, Rozenberg M J . Phys. Rev. B, 2018,97:15.
[77]
Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Duerr H A, Samant M G, Parkin S S P . Nat. Phys., 2013,9:661.
[78]
Slusar T V, Cho J C, Lee H R, Kim J W, Yoo S J, Bigot J Y, Yee K J, Kim H T . Sci. Rep., 2017,7:8. https://www.ncbi.nlm.nih.gov/pubmed/28127058

doi: 10.1038/s41598-017-00061-7 pmid: 28127058
[79]
Biermann S, Poteryaev A, Lichtenstein A I, Georges A . Phys. Rev. Lett., 2005,94.
[80]
Li S Y, Niklasson G A, Granqvist C G . Thin Solid Films, 2012,520:3823.
[81]
Yuan Y, Cui Y K, Chang L, Zhang C, Wang N, Zhang L M, Zhou Y, Wang S C, Gao Y F, Long Y . Joule, 2018,2:39.
[82]
Powell M J, Marchand P, Denis C J, Bear J C, Darr J A, Parkin I P . Nanoscale, 2015,7:18686. https://www.ncbi.nlm.nih.gov/pubmed/26497868

doi: 10.1039/c5nr04444h pmid: 26497868
[83]
Zhou X, Gu D, Xu S, Qin H, Jiang Y . Mater. Res. Bull., 2018,105:98.
[84]
杜靖(Du J) . 中国科学院上海硅酸盐研究所博士论文 (Doctoral Dissertation of Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2012.
[85]
Zhou H, Li J, Bao S, Li J, Liu X, Jin P . Appl. Surf. Sci., 2016,363:532.
[86]
Li C, Hsieh J H, Su T Y, Wu P L . Thin Solid Films, 2018,660:373.
[87]
James K K, Krishnaprasad P S, Hasna K, Jayaraj M K . J. Phys. Chem. Solids, 2015,76:64. https://linkinghub.elsevier.com/retrieve/pii/S0022369714001930

doi: 10.1016/j.jpcs.2014.07.024
[88]
Li D, Shan Y, Huang F, Ding S . Appl. Surf. Sci., 2014,317:160. 405e766f-6370-4dff-96cd-dc13830a5f09http://dx.doi.org/10.1016/j.apsusc.2014.08.042

doi: 10.1016/j.apsusc.2014.08.042
[89]
Kang L, Gao Y, Luo H, Chen Z, Du J, Zhang Z . ACS Appl. Mater. Interfaces, 2011,3:135. https://www.ncbi.nlm.nih.gov/pubmed/21268632

doi: 10.1021/am1011172 pmid: 21268632
[90]
Lee M, Kim D . Bull. Korean Chem. Soc., 2018,39:320.
[91]
Vernardou D, Louloudakis D, Spanakis E, Katsarakis N, Koudoumas E . Sol. Energy Mater. Sol. Cells, 2014,128:36.
[92]
Chang T, Cao X, Li N, Long S, Gao X, Dedon L R, Sun G, Luo H, Jin P . ACS Appl. Mater. Interfaces, 2017,9:26029. https://www.ncbi.nlm.nih.gov/pubmed/28723095

doi: 10.1021/acsami.7b07137 pmid: 28723095
[93]
Wu S, Tian S, Liu B, Tao H, Zhao X, Palgrave R G, Sankar G, Parkin I P . Sol. Energ. Mat. Sol. C, 2018,176:427.
[94]
Kim H J, Roh D K, Jung H S, Kim D S . Ceram Int., 2019,45:4123.
[95]
Qu Z, Yao L, Ma S, Li J, He J, Mi J, Tang S Y, Feng L L . Sol. Energ. Mat. Sol. C., 2019,200:109920.
[96]
Taylor A, Parkin I, Noor N, Tummeltshammer C, Brown M S, Papakonstantinou I . Opt. Express, 2013,21:A750. https://www.ncbi.nlm.nih.gov/pubmed/24104571

doi: 10.1364/OE.21.00A750 pmid: 24104571
[97]
Xu L, He J . J. Mater. Chem., 2013,1:4655. https://www.ncbi.nlm.nih.gov/pubmed/32261209

doi: 10.1039/c3tb20923g pmid: 32261209
[98]
Mehmood U, Sulaiman F A, Yilbas B S, Salhi B, Ahmed S H A, Hossain M K . Sol. Energ. Mat. Sol. C., 2016,157:604.
[99]
Park S J, Lee S W, Lee K J, Lee J H, Kim K D, Jeong J H, Choi J H . Nanoscale Res. Lett., 2010,5:1570. https://www.ncbi.nlm.nih.gov/pubmed/21076677

doi: 10.1007/s11671-010-9678-y pmid: 21076677
[100]
Hanaei H, Assadi M K, Saidur R . Renew. Sust. Energ. Rev., 2016,59:620. https://linkinghub.elsevier.com/retrieve/pii/S1364032116000472

doi: 10.1016/j.rser.2016.01.017
[101]
Mlyuka N R, Niklasson G A, Granqvist C G . Sol. Energ. Mat. Sol. C., 2009,93:1685.
[102]
Powell M J, Quesada C R, Taylor A, Teixeira D, Papakonstantinou I, Palgrave R G, Sankar G, Parkin I P . Chem. Mater., 2016,28:1369.
[103]
Wang C, Zhao L, Liang Z, Dong B, Wan L, Wang S . Sci. Technol. Adv. Mater., 2017,18:563. https://www.ncbi.nlm.nih.gov/pubmed/28970866

doi: 10.1080/14686996.2017.1360752 pmid: 28970866
[104]
Xu L, Gao L, He J . RSC Adv., 2012,2:12764.
[105]
Van der Voort P, Vercaemst C, Schaubroeck D, Verpoort F . Phys. Chem. Chem. Phys., 2008,10:347. https://www.ncbi.nlm.nih.gov/pubmed/18174976

doi: 10.1039/b707388g pmid: 18174976
[106]
关英(Guan Y), 张拥军(Zhang Y J) . 高分子学报 (Acta Polymerica Sinica), 2017,11:1739.
[107]
乔红梅(Qiao H M) . 精细化工 (Fine Chemical), 2015,7:32.
[108]
Jin H B, Yu J H, Nam S H, Lee J W, Kim D I . Appl. Surf. Sci., 2018,3:7.
[109]
Cao Z Y, Lu Y A, Xiao X D, Zhan Y J, Cheng H L, Xu G . Mater. Lett., 2017,209:609.
[110]
Zhou M, Bao J, Tao M, Zhu R, Lin Y, Zhang X, Xie Y . Chem. Commun., 2013,49:6021. https://www.ncbi.nlm.nih.gov/pubmed/23715531

doi: 10.1039/c3cc42112k pmid: 23715531
[111]
Li Y, Zhang J, Zhu S, Dong H, Jia F, Wang Z, Sun Z, Zhang L, Li Y, Li H, Xu W, Yang B . Adv. Mater., 2009,21:4731.
[112]
Qian X, Wang N, Li Y, Zhang J, Xu Z, Long Y . Langmuir, 2014,30:10766. https://www.ncbi.nlm.nih.gov/pubmed/25164486

doi: 10.1021/la502787q pmid: 25164486
[113]
Wang N, Duchamp M, Xue C, Dunin B R E, Liu G, Long Y . Adv. Mater. Interfaces, 2016,3:15.
[114]
Ke Y, Wen X, Zhao D, Che R, Xiong Q, Long Y . ACS Nano, 2017,11:7542. https://www.ncbi.nlm.nih.gov/pubmed/28586193

doi: 10.1021/acsnano.7b02232 pmid: 28586193
[115]
Hao Q, Li W, Xu H, Wang J, Yin Y, Wang H, Ma L, Ma F, Jiang X, Schmidt O G, Chu P K . Adv. Mater., 2018,30:10.
[116]
Liu M, Su B, Kaneti Y V, Chen Z, Tang Y, Yuan Y, Gao Y, Jiang L, Jiang X, Yu A . ACS Nano, 2017,11:407. https://www.ncbi.nlm.nih.gov/pubmed/28009507

doi: 10.1021/acsnano.6b06152 pmid: 28009507
[117]
Li S Y, Niklasson G A, Granqvist C G . J. Appl. Phys., 2010,108:6.
[118]
Cui Y, Ke Y, Liu H, Chen Z, Wang N, Zhang L, Zhou Y . Joule, 2018,2:1707. https://linkinghub.elsevier.com/retrieve/pii/S2542435118302836

doi: 10.1016/j.joule.2018.06.018
[119]
Granqvist C G . Mater. Today, 2016,3:S2. https://www.ncbi.nlm.nih.gov/pubmed/26558956

doi: 10.1186/1472-6963-15-S3-S2 pmid: 26558956
[120]
Li Y, Ji S, Gao Y, Luo H, Kanehira M . Sci. Rep., 2013,3:81.
[121]
Yao L, Qu Z, Pang Z, Li J, Tang S, He J, Feng L . Small, 2018,14:34.
[122]
Chen Y, Zeng X, Zhu J, Li R, Yao H, Cao X, Ji S, Jin P . ACS Appl. Mater. Interfaces, 2017,9:27784. https://www.ncbi.nlm.nih.gov/pubmed/28758388

doi: 10.1021/acsami.7b08889 pmid: 28758388
[123]
Ji H, Liu D, Zhang C, Cheng H . Sol. Energy Mater. Sol. Cells, 2018,176:1.
[124]
Zhu J, Zhou Y, Wang B, Zheng J, Ji S, Yao H, Luo H, Jin P . ACS Appl. Mater. Interfaces, 2015,7:27796. https://www.ncbi.nlm.nih.gov/pubmed/26618391

doi: 10.1021/acsami.5b09011 pmid: 26618391
[125]
Zhou Y, Huang A, Li Y, Ji S, Gao Y, Jin P . Nanoscale, 2013,5:9208. https://www.ncbi.nlm.nih.gov/pubmed/23934483

doi: 10.1039/c3nr02221h pmid: 23934483
[126]
Fleer N A, Pelcher K E, Zou J, Nieto K, Douglas L D, Sellers D G, Baneljee S . ACS Appl. Mater. Interfaces, 2017,9:38887. https://www.ncbi.nlm.nih.gov/pubmed/29039916

doi: 10.1021/acsami.7b09779 pmid: 29039916
[127]
Qu Z, Yao L, Li J, He J, Mi J, Ma S, Tang S, Feng L . ACS Appl. Mater. Interfaces, 2019,11:15960. https://www.ncbi.nlm.nih.gov/pubmed/30990646

doi: 10.1021/acsami.8b22113 pmid: 30990646
[128]
Jung Y H, Pack S P, Chung S . Mater. Res. Bull., 2018,101:67.
[129]
Kim Y, Yu S, Park J, Yoon D, Dayaghi A M, Kim K J, Jin S A, Son J . J. Mater. Chem., 2018,6:13.
[130]
Ji H, Liu D, Cheng H, Zhang C . J. Mater. Chem., 2018,6:2424.
[131]
Liang X, Chen M, Guo S, Zhang L, Li F, Yang H . ACS Appl. Mater. Interfaces, 2017,9:40810. https://www.ncbi.nlm.nih.gov/pubmed/29094919

doi: 10.1021/acsami.7b11582 pmid: 29094919
[132]
Khandelwal H, Schenning A P H J, Debije M G . Adv. Energy Mater., 2017,7:14.
[133]
Zhou Y, Layani M, Wang S, Hu P, Ke Y, Magdassi S, Long Y . Adv. Funct. Mater., 2018,28:9.
[134]
Lee H Y, Cai Y, Velioglu S, Mu C, Chang C J, Chen Y L, Song Y, Jia W C, Hu X M . Chem. Mater., 2017,29:16. https://www.ncbi.nlm.nih.gov/pubmed/28852267

doi: 10.1021/acs.chemmater.7b01334 pmid: 28852267
[135]
Xu F, Cao X, Zhu J, Sun G, Li R, Long S, Luo H, Jin P . Mater. Lett., 2018,222:62.
[136]
Liang X, Chen M, Wang Q, Guo S, Zhang L, Yang H . J. Mater. Chem., 2018,6:7054.
[137]
Lu Q, Liu C, Wang N, Magdassi S, Mandler D, Long Y . J. Mater. Chem., 2016,4:8385.
[138]
Dou S, Wang Y, Zhang X, Tian Y, Hou X, Wang J, Li X, Zhao J, Li Y . Sol. Energy Mater. Sol. Cells, 2017,160:164.
[139]
Wang M, Tian J, Zhang H, Shi X, Chen Z, Wang Y, Ji A, Gao Y . RSC Adv., 2016,6:108286.
[140]
Zhao L L, Miao L, Liu C Y, Li C, Asaka T, Kang Y P, Iwamoto Y, Tanemura S, Gu H, Su H R . Sci. Rep., 2014,4:2045.
[1] Zhang Haixuan1,2 Meng Xun1,2 Li Ping1**. Light and Thermal-stimuli Responsive Materials [J]. Progress in Chemistry, 2008, 20(05): 657-672.
[2]

Lv Weihua|Wang Rongmin**|He Yufeng|Zhang Huifang

. Preparation and Application of Smart Coatings [J]. Progress in Chemistry, 2008, 20(0203): 351-361.
Viewed
Full text


Abstract

Thermochromic Smart Coatings