中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1129-1135 DOI: 10.7536/PC190201 Previous Articles   Next Articles

Design and Application of Electrochemical Sensor in Cell Detection

Ye Xia1,2,4, Xi Su1,2,4, Li Chen1,3,4,5, Shunbo Li1,3,4,5,**(), Yi Xu1,2,3,4,5,**()   

  1. 1. Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400030, China
    2. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
    3. Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400030, China
    4. International R & D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China
    5. School of Optoelectronics Engineering, Chongqing University, Chongqing 400030, China
  • Received: Online: Published:
  • Contact: Shunbo Li, Yi Xu
  • About author:
    ** E-mail: (Yi Xu)
  • Supported by:
    National Natural Science Foundation of China(61971074); National Natural Science Foundation of China(61904021); Chongqing Arpngicial Intelligence Technology Innovation Major Special Project(CSTC2017RGZN-ZDYFX0019); Major Project of Technological Innovation and Application Demonstration of Chongqing(CSTC2018JSZX-CYZTZX0216); Special Funds for Basic Scienpngic Research in Central Universities(2019CDYGYB003)
Richhtml ( 14 ) PDF ( 568 ) Cited
Export

EndNote

Ris

BibTeX

The application and development of electrochemical sensors and sensing methods in the field of cell detection are introduced briefly, aiming at the core problems in cell detection, such as detection of tumor cell activity, neurotransmitters in nerve cells and oxidative damage in macrophages. The design, fabrication, detection and application of electrochemical sensors with different microelectrode structures are discussed in details. It is shown that electrochemical sensors have developed from single detection electrode to integrated multi-functional and array electrode, and from single electrode sensing detection mode to chip integrated microelectrode sensing system. However, its biocompatibility, detection limit and detection efficiency need to be further improved and expanded. The development of microelectrode based on MEMS(Micro-electro-mechanical system)technology, the research of various chemical and biological modified sensitive film on the electrode surface, the material expansion from silicon-based to polymer flexible base electrode, and the development of small volume, implantable and wearable electrochemical and biochemical sensors are the current development directions. It has also illustrated great application prospects in clinical examination, precision medicine, sports health monitoring, elderly health services and many other fields.

Fig. 1 Development of Clark sensors.(A)Calibration diagram of traditional Clark electrochemical sensor;(B)All solid state dissolved oxygen sensor[18,19]
Fig. 2 Sensor diagram of hydrogen peroxide detection array chip[27]
[1]
Wu C C, Saito T, Yasukawa T, Shiku H, Hiroyoshi H, Matsue T . Sensors and Actuators B Chemical, 2007. 125(2):680.
[2]
Yamagishi A, Tanabe K, Yokokawa M, Morimoto Y, Kinoshita M, Suzuki H . Analytica Chimica Acta, 2017,985:1. https://www.ncbi.nlm.nih.gov/pubmed/28864179

doi: 10.1016/j.aca.2017.07.049 pmid: 28864179
[3]
Li W T, Wu H, Gao C, Yang D, Yang D P, Shen J G . Frontiers in Physiology, 2018,9:864. https://www.ncbi.nlm.nih.gov/pubmed/30079025

doi: 10.3389/fphys.2018.00864 pmid: 30079025
[4]
Zhu Q, Gao F, Gao F, Huang J, Pan Y, Wang Q . Materials Science & Engineering C Materials for Biological Applications, 2017,72:692. https://www.ncbi.nlm.nih.gov/pubmed/28024640

doi: 10.1016/j.msec.2016.11.134 pmid: 28024640
[5]
Pang X, Bian H, Su M, Ren Y, Qi J, Ma H, Wu D Hu L, Du B, Wei Q . Analytical Chemistry, 2017,89(15):7950. https://www.ncbi.nlm.nih.gov/pubmed/28677958

doi: 10.1021/acs.analchem.7b01038 pmid: 28677958
[6]
Liu J, Qin J, Li J, Li D Y, Xu Z, Zhang X W, Du L Q, Liu C . Electrochemistry Communications, 2013,31(31):20.
[7]
宋轶琳(Song Y L), 林楠森(Lin N S), 姜红(Jiang H), 刘春秀(Liu C X), 邢国刚(Xing G G), 蔡新霞(Cai X X) . 东南大学学报(医学版)( Journal of Southeastern University, Medical Version), 2011,30(1):29.
[8]
Cao J, An W, Reeves A, Lippert A R . Chemical Science, 2018,9(9):2552. https://www.ncbi.nlm.nih.gov/pubmed/29732134

doi: 10.1039/c7sc05087a pmid: 29732134
[9]
Zhang K Y, Yu Q, Wei H, Liu S, Zhao Q, Huang W . Chemical Reviews, 2018,118(4):1770. https://www.ncbi.nlm.nih.gov/pubmed/29393632

doi: 10.1021/acs.chemrev.7b00425 pmid: 29393632
[10]
Li J, Yim D, Jang W D, Yoon J Y . Chemical Society Reviews, 2016,46(9):2437. https://www.ncbi.nlm.nih.gov/pubmed/27711665

doi: 10.1039/c6cs00619a pmid: 27711665
[11]
Kolanowski J L, Liu F, New E J . Chemical Society Reviews, 2018,47(1):195. https://www.ncbi.nlm.nih.gov/pubmed/29119192

doi: 10.1039/c7cs00528h pmid: 29119192
[12]
Li M, Gao H, Wang X, Qi Y F, Zhang H L, Cheng X . Microchimica Acta, 2017,184(2):603.
[13]
Kim T H, Choi J, Kim H G, Kim H R . Journal of Analytical Methods in Chemistry, 2014,2014:1.
[14]
Liu H, Weng L, Yang C . Microchimica Acta, 2017,184(5):1.
[15]
Chang B Y, Park S M . Annual Review of Analytical Chemistry, 2010,3(1):207.
[16]
Luo X L, Davis J J . Chemical Society Reviews, 2013,42:5944. https://www.ncbi.nlm.nih.gov/pubmed/23615920

doi: 10.1039/c3cs60077g pmid: 23615920
[17]
Barsan M M, Ghica M E, Brett C M A . Analytica Chimica Acta, 2015,881:1. https://www.ncbi.nlm.nih.gov/pubmed/26041516

doi: 10.1016/j.aca.2015.02.059 pmid: 26041516
[18]
Bazzu G, Puggioni G M, Dedola S, Calia G, Rocchitta G, Migheli R, Desole M S, Lowry J P, Serra P A . Analytical Chemistry, 2009,81(6):2235. https://www.ncbi.nlm.nih.gov/pubmed/19222224

doi: 10.1021/ac802390f pmid: 19222224
[19]
Wang P, Liu Y, Abruña H D, Sepctor J A, Olbricht W L . Sensors & Actuators B Chemical, 2011,153(1):145.
[20]
Eminaga Y, Brischwein M, Wiest J, Clauss J, Becker S, Wolf B . Sensors & Actuators B Chemical, 2013,177(177):785.
[21]
Lim T S, Lee J H, Papautsky I . Sensors & Actuators B Chemical, 2009,141(1):50.
[22]
杨丽丽(Yang L L), 宋轶琳(Song Y L), 徐声伟(Xu S W), 张禹(Zhang Y), 肖桂花(Xiao G H), 张松(Zhang S), 高飞(Gao F), 李子岳(Li Z Y), 蔡新霞(Cai X X) . 分析化学( Chinese Journal of Analytical Chemistry), 2017,( 07):1088.
[23]
Fan X, Song Y l, Ma Y, Zhang S, Xiao G h, Yang L L, Xu H, Zhang D, Cai X X . Sensors, 2017,17(1):61.
[24]
Rivera J F, Sridharan S V, James N, Miloro S A, Alam M A, Rickus J L, Janes D B . The Analyst, 2018,143:4954. https://www.ncbi.nlm.nih.gov/pubmed/30225487

doi: 10.1039/c8an01198b pmid: 30225487
[25]
Xu S W, Zhang Y, Zhang S, Xiao G H, Wang M X, Song Y L, Gao F, Li Z Y, Zhuang P, Chan P, Tao G X, Yue F, Cai X X . Journal of Neuroscience Methods, 2018,304:83. https://www.ncbi.nlm.nih.gov/pubmed/29698630

doi: 10.1016/j.jneumeth.2018.04.015 pmid: 29698630
[26]
Richa P, Orian T S, Silvia S, Avni A, Shancham Y . Biosensors and Bioelectronics, 2018,117:493. https://www.ncbi.nlm.nih.gov/pubmed/29982119

doi: 10.1016/j.bios.2018.06.045 pmid: 29982119
[27]
Yu Y, Chen J, Zhou J . Nanotechnology. IEEE, 2013,1067.
[28]
Li Y, Catherine S, Frederic L, Guille M, Amatore C, Thouin L . Analytical Chemistry, 2018,90(15):9386. https://www.ncbi.nlm.nih.gov/pubmed/29979582

doi: 10.1021/acs.analchem.8b02039 pmid: 29979582
[29]
Flamm H, Kieninger J, Weltin A, Urban G A . Biosensors & Bioelectronics, 2015,65(65C):354.
[30]
刘军山(Liu J S), 肖庆龙(Xiao Q L), 葛丹(Ge D), 张洋洋(Zhang Y Y), 张文珠(Zhang W Z), 徐征(Xu Z), 刘冲(Liu C), 王立鼎(Wang L D) . 分析化学( Chinese Journal of Analytical Chemistry), 2015,( 7):977.
[31]
Martinez A W, Phillips S T, Butte M J, Whitesides G M . Angew. Chem. Int. Ed., 2007,46, 1318. https://www.ncbi.nlm.nih.gov/pubmed/17211899

doi: 10.1002/anie.200603817 pmid: 17211899
[32]
蒋艳(Jiang Y), 马翠翠(Ma C C), 胡贤巧(Hu X Q), 何巧红(He Q H) . 化学进展( Progress in Chemistry), 2014,26(1):167.
[33]
Uliana C V, Peverari C R, Afonso A S, Cominetti M R, Faria R C . Biosensors & Bioelectronics, 2017,99(4):156.
[34]
Wang H, Zhou C X, Sun X L, Jian Y N, Kong Q K, Cui K, Ge S G, Yu J H . Biosensors and Bioelectronics, 2018,117:651. https://www.ncbi.nlm.nih.gov/pubmed/30005386

doi: 10.1016/j.bios.2018.07.004 pmid: 30005386
[35]
Xia Y, Si J, Li Z . Biosensors & Bioelectronics, 2016,77:774. https://www.ncbi.nlm.nih.gov/pubmed/26513284

doi: 10.1016/j.bios.2015.10.032 pmid: 26513284
[36]
Wang S, Chinnasamy T, Lifson M A, Inci F, Demirci U . Trends in Biotechnology, 2016,34(11):909. https://www.ncbi.nlm.nih.gov/pubmed/27344425

doi: 10.1016/j.tibtech.2016.05.009 pmid: 27344425
[37]
Lee S M, Hang J B, Kim B H, Lee J Y, Jeong J Y, Lee J H, Moon J H, Park C, Choi H, Lee S H, Lee K H . Biochip Journal, 2017,11(2):1.
[38]
Liao C, Mak C, Zhang M, Chan H L, Yan F . Advanced Materials, 2015,27(4):676. https://www.ncbi.nlm.nih.gov/pubmed/25469658

doi: 10.1002/adma.201404378 pmid: 25469658
[39]
Lin P, Yan F . Advanced Materials, 2012,24(1):34. https://www.ncbi.nlm.nih.gov/pubmed/22102447

doi: 10.1002/adma.201103334 pmid: 22102447
[40]
Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y . Nature Materials, 2012,11(9):795. https://www.ncbi.nlm.nih.gov/pubmed/22842511

doi: 10.1038/nmat3380 pmid: 22842511
[1] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[2] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[3] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[4] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[5] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.
[6] Haidong Li, Jiangli Fan, Xiaojun Peng. Fluorescent Probes for the Recognition of Hypochlorous Acid [J]. Progress in Chemistry, 2017, 29(1): 17-35.
[7] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[8] Chen Ping, Jiang Liang, Liu Qiong*, Yang Silin, Song Yun, Ni Jiazuan. Selenoprotein M and Its Effects on Diseases [J]. Progress in Chemistry, 2013, 25(04): 479-487.
[9] Zhou Jun, Bai Zhaoshuai, Xu Huibi, Huang Kaixun*. Selenoproteins and Diabetes——Dual Effect of Selenium [J]. Progress in Chemistry, 2013, 25(04): 488-494.
[10] Wang Zhaohui, Song Wenjing, Ma Wanhong, Zhao Jincai. Environmental Photochemistry of Iron Complexes and Their Involvement in Environmental Chemical Processes [J]. Progress in Chemistry, 2012, 24(0203): 423-432.
[11] . Metabolism, Toxicity, and Biomonitoring of Arsenic Species [J]. Progress in Chemistry, 2009, 21(0203): 474-482.
[12] Li Zhuyun,Wang Min**. Amperometry for Pesticide Residues [J]. Progress in Chemistry, 2007, 19(10): 1585-1592.