中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1166-1176 DOI: 10.7536/PC190140 Previous Articles   Next Articles

Transition-Metal Sulfides Modified Cathode of Li-S Batteries

Chaojiang Fan, Yinglin Yan**(), Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang   

  1. Chemical Power Research Institute, Xi’an University of Technology, Xi’an 710048, China
  • Received: Online: Published:
  • Contact: Yinglin Yan
  • About author:
  • Supported by:
    International Science and Technology Cooperation Program of China(2015DFR50350); National Natural Science Foundation of China(51702256)
Richhtml ( 48 ) PDF ( 1649 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur batteries(LSBs) are considered as one of the most promising energy storage systems due to the ultra-high theoretical energy density(2600 Wh/kg) and ultra-high theoretical specific capacity(1675 mAh/g), environmental friendliness and low-cost of sulfur cathode. However, the insulation of sulfur cathode, the volumetric strain and the “shuttle effect” of polysulfides lead to problems such as low utilization rate of active materials, poor cycle stability and low redox kinetics, which seriously hinder the commercial development of LSBs. Recent studies have shown that transition metal sulfides as host or additives can significantly improve the electrochemical performance of LSBs cathode materials. In this paper, the modification mechanism of transition metal sulfides in LSBs cathode materials is reviewed from four aspects: equivalent/common positive electrode effect, conductivity enhancement, LiPSs adsorption and electrochemical reaction catalysis. It is pointed out that multi-transition metal sulfides composite, nano-crystallization and quantization as important areas for increasing the specific surface area and active sites should be used as transition metal sulfides for lithium-sulfur battery cathode materials, which can greatly improving the electrochemical performance of LSBs.

Fig. 1 Schematic diagram of the effect of transition metal sulfides on the promotion of LSBs
Fig. 2 Electrochemical performance of MoSx as a sulfur equivalent material for LSBs:(a)MoS2 equivalent positive charge and discharge curve,(b)MoS2 equivalent positive charge and discharge curve after “activation”,(c,d) MoS3 equivalent positive electrode electrochemical performance curves[34]
Fig. 3 Electrochemical performance of NiS2/FeS as equivalent positive electrode of LSBs[36]
Fig. 4 Characterization and performance of NiS2/S cathode[39]
Table 1 Different transition-metal sulfide/oxide conductivity
Table 2 Binding energy of transition-metal sulfides to LiPSs
Fig. 5 Effect of elements on binding energy[61]
Fig. 6 Adsorption test of transition metal sulfides on LiPSs[33,62,63]
Fig. 7 Adsorption energy of transition metal sulfides to LiPSs:(a)Adsorption energy of Ni3S2 for adsorption energy of different LiPSs,(b)Adsorption energy of different metal sulfides for different types of LiPSs,(c)Adsorption energy of LiPSs by sulfides of different crystal plane structures[35,63]
Fig. 8 Schematic diagram of the adsorption model of TMSs on LiPSs:(a) physical model[66],(b) chemical model[67]
Fig. 9 The role of polar conductor materials in enhancing electrochemical reaction kinetics[68,69]
Fig. 10 Schematic diagram of the catalytic action of CoS2 on redox reaction[33]
Fig. 11 Lithium ion diffusion properties on the surface of various metal sulfides with mechanism analysis:(a)oxidation process versus the square root of the scan rates,(b)energy profiles for diffusion processes of Li ion on Ni3S2, SnS2, FeS, CoS2, VS2, TiS2, and graphene and(c)cycling performance and coulombic efficiency of the different composite electrodes at 0.5 C for 300 cycles[62]
Table 3 Data report of TMSs as different components in LSBs
[1]
陈兆旭(Chen Z X), 黄玉成(Huang Y C), 李哲(Li Z), 康国俊(Kang G J) . 化学进展( Progress in Chemistry), 2009,21(11):2271.
[2]
Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F . Advanced Energy Materials, 2015,1500212.
[3]
杨蓉(Yang R), 邓坤发(Deng K F), 刘晓艳(Liu X Y), 曲冶(Qu Y), 雷京(Lei J), 任冰(Ren B) . 化工进展( Chemical Industry and Engineering Progress), 2015,34(5):1340.
[4]
万文博(Wan W B), 蒲薇华(Pu W H), 艾德生(Ai D S) . 化学进展( Progress in Chemistry), 2013,25(11):1830.
[5]
李巧乐(Li Q L), 燕映霖(Yan Y L), 杨蓉(Yang R), 陈利萍(Chen L P), 任冰(Ren B), 许云华(Xu Y H) . 化工进展( Chemical Industry and Engineering Progress), 2017,36(9):3353.
[6]
Jeddi K, Ghaznavi M, Chen P . Journal of Materials Chemistry A, 2013,1(8):2769.
[7]
胡素琴(Hu S Q), 杨改(Yang G), 蔡飞鹏(Cai P F), 蒋波(Jiang B) . 化工学报( Journal of Chemical Industry & Technology), 2011,62(2):1.
[8]
Lee J H, Lee H Y, Oh S M, Lee S J, Lee K Y, Lee S M . Journal of Power Sources, 2007,166(1):250.
[9]
Ji X L, Lee K T, Nazar L F . Nature Materials, 2009,8(6):500. https://www.ncbi.nlm.nih.gov/pubmed/19448613

doi: 10.1038/nmat2460 pmid: 19448613
[10]
Xu G L, Xu Y F, Fang J C, Peng X X, Fu F, Huang L, Li J T, Sun S G . Applied Materials & Interfaces, 2013,5(21):10782. https://www.ncbi.nlm.nih.gov/pubmed/24090340

doi: 10.1021/am402970x pmid: 24090340
[11]
He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F . ACS Nano, 2013,7(12):10920. https://www.ncbi.nlm.nih.gov/pubmed/24229005

doi: 10.1021/nn404439r pmid: 24229005
[12]
Yan Y L, Wei Y Q, Li Q L, Shi M M, Zhao C, Chen L P, Fan C J, Matthew J C, Yang R, Xu Y H . Journal of Solid State Chemistry, 2019,269:24.
[13]
Gu X X, Lai C . Journal of Materials Research, 2018,33(1):1.
[14]
Li G R, Cai W L, Liu B H, Li Z P . Journal of Power Sources, 2015,294:187.
[15]
Wang L N, Zhao Y, Thomas M L, Byon H R . Advanced Functional Materials, 2014,24(15):2248.
[16]
Zhao Y, Wu W L, Li J X, Xu Z C, Guan L H . Advanced Materials, 2014,26(30):5113. https://www.ncbi.nlm.nih.gov/pubmed/24897930

doi: 10.1002/adma.201401191 pmid: 24897930
[17]
Seh Z W, Yu J H, Li W Y, Hsu P O, Wang H T, Sun Y M, Yao H B, Zhang Q F, Cui Y . Nature Communications, 2014,5; 5017. https://www.ncbi.nlm.nih.gov/pubmed/25254637

doi: 10.1038/ncomms6017 pmid: 25254637
[18]
Zhang Y, Wang L Z, Zhang A Q, Song Y H, Li X F, Feng H, Wu X B, Du P P . Solid State Ionics, 2010,181(17):835.
[19]
Zheng S Y, Chen Y, Xu Y H, Feng Y, Liu Y H, Yang J H, Wang C S . ACS Nano, 2013,7(12):10995. https://www.ncbi.nlm.nih.gov/pubmed/24251957

doi: 10.1021/nn404601h pmid: 24251957
[20]
Xu Z, You H H, Zhang L, Yang Q H . Carbon, 2017,124:722.
[21]
Wu S P, Ge R Y, Lu M J, Xu R, Zhang Z . Nano Energy, 2015,15:379
[22]
Sun K, Zhang Q, Bock D C, Tong X, Su D, Marschilok A C, Takeuchi K J, Takeuchi E S, Gan H . Journal of the Electrochemical Society, 2017,164(6):A1291.
[23]
Liu Q, Zhang J Y . CrystEngComm, 2013,15(25):5087.
[24]
Zhang Y J, Qu J, Hao S M, Chang W, Ji Q Y, Yu Z Z . ACS Applied Materials & Interfaces, 2017,9(48):41878. https://www.ncbi.nlm.nih.gov/pubmed/29125283

doi: 10.1021/acsami.7b13558 pmid: 29125283
[25]
Lu Y, Li X N, Liang J W, Hu L, Zhu Y C, Qian Y T . Nanoscale, 2016,8(40):17616. https://www.ncbi.nlm.nih.gov/pubmed/27714156

doi: 10.1039/c6nr05626a pmid: 27714156
[26]
Sun K, Zhao C, Lin C H, Stavitski E, Williams G J, Bai J, Dooryhee E, Attenkofer K, Thieme J, Gan H . Scienpngic Reports, 2017,7(1):12976. https://www.ncbi.nlm.nih.gov/pubmed/29021527

doi: 10.1038/s41598-017-12738-0 pmid: 29021527
[27]
Xu J, Zhang W X, Fan H B, Cheng F L, Su D W, Wang G X . Nano Energy, 2018,51:73.
[28]
Lei T Y, Chen W, Huang J W, Yan C Y, Sun H X, Wang C, Zhang W L, Li Y R, Xiong J . Advanced Energy Materials, 2017,7(4):1601843.
[29]
Cheng Z B, Xiao Z B, Pan H, Wang S Q, Wang R H . Advanced Energy Materials, 2017,8(10):1702337.
[30]
Sreedharan R, Vijayakumari A M, Satpati B, Roy A, Basu P K, Bhattacharjee K . Materials Research Express, 2017,4(11):115012.
[31]
He Y Y, Xu L Q, Li C C, Chen X X, Xu G, Jiao X Y . Nano Research, 2017,11(7):3555.
[32]
Hong X, Liang J, Tang X, Yang H, Li F . Chemical Engineering Science, 2019,194:148.
[33]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei W F, Zhang Q . Nano Letters, 2016,16(1):519. https://www.ncbi.nlm.nih.gov/pubmed/26713782

doi: 10.1021/acs.nanolett.5b04166 pmid: 26713782
[34]
Ye H L, Ma L, Zhou Y, Wang L, Han N, Zhao F P, Deng J, Wu T P, Li Y G, Lu J . Proceedings of the National Academy of Sciences, 2017,114(50):13091.
[35]
Sonia T S, Anjali P, Roshny S, Subramanian K R V, Nair S V, Balakrishnan A . Ceramics International, 2014,40(6):8351.
[36]
Liang K, Marcus K, Zhang S F, Zhou L, Li Y L, Oliveira S T D, Orlovskaya N, Sohn Y H, Yang Y . Advanced Energy Materials, 2017,7(22):1701309.
[37]
Pang Q, Kundu D, Nazar L F . Materials Horizons, 2016,3(2):130.
[38]
Su Y S, Manthiram A . Journal of Power Sources, 2014,270:101.
[39]
Liu L J, Chen Y, Zhang Z F, You X L, Walle M D, Li Y G, Liu Y N . Journal of Power Sources, 2016,325:301.
[40]
Wang Y H, Zhang Y Y, Li H, Peng Y Y, Li J Y, Wang J, Hwang B J, Zhao J B . Chemical Engineering Journal, 2018,332:49.
[41]
Qiu B, Zhao X Y, Xia D G . Journal of Alloys & Compounds, 2013,579(10):372.
[42]
Babu G, Masurkar N, Al Salem H, Arava L M R . Journal of the American Chemical Society, 2016,139(1):171. https://www.ncbi.nlm.nih.gov/pubmed/28001059

doi: 10.1021/jacs.6b08681 pmid: 28001059
[43]
Hong X D, Li S L, Tang X N, Sun Z H, Li F . Journal of Alloys and Compounds, 2018,749:586.
[44]
Liu Z, Zheng X, Luo S L, Xu S Q, Yuan N Y, Ding J N . Journal of Materials Chemistry A, 2016,4(35):13395.
[45]
Wang H T, Zhang Q F, Yao H B, Liang Z, Lee H K, Hsu P C, Zheng G Y, Cui Y . Nano Letters, 2014,14(12):7138. https://www.ncbi.nlm.nih.gov/pubmed/25372985

doi: 10.1021/nl503730c pmid: 25372985
[46]
Tran D T, Dong H, Walck S D, Zhang S S . RSC Advances, 2015,5(107):87847.
[47]
Ye C, Zhang L, Guo C X, Li D D, Vasileff A, Wang H H, Qiao S Z . Advanced Functional Materials, 2017,27(33):1702524.
[48]
Pang Q, Kundu D, Cuisinier M, Nazar L F . Nature Communications, 2014,5:4759. https://www.ncbi.nlm.nih.gov/pubmed/25154399

doi: 10.1038/ncomms5759 pmid: 25154399
[49]
Wei T X, Liu Y F, Dong W J, Zhang Y, Huang C Y, Sun Y, Chen X, Dai N . Applied Materials & Interfaces, 2013,5(21):10473. https://www.ncbi.nlm.nih.gov/pubmed/24138006

doi: 10.1021/am4039568 pmid: 24138006
[50]
Wang Z Y, Dong Y F, Li H J, Zhao Z B, Wu H B, Hao C, Liu S H, Qiu J S, Lou X W . Nature Communications, 2014,5(1):5002.
[51]
Jeng H T, Guo G Y . Physical Review B, 2002,240(1/3):436.
[52]
Ki W, Huang X Y, Li J . Journal of Materials Research, 2007,22(05):1390.
[53]
Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X . Journal of Applied Physics, 2011,109(5):053717.
[54]
Bither T A, Bouchard R J, Cloud W H, Donohue P C, Siemons W J . Inorganic Chemistry, 1968,7(11):220.
[55]
杨华(Yang H) . 天津大学硕士论文( Master Dissertation of Tianjin University), 2013.
[56]
Chen H W, Shen Y B, Wang C H, Hu C J, Lu W, Wu X D, Chen L W . Journal of the Electrochemical Society, 165(1):A6034.
[57]
Ma L, Wei S Y, Zhuang H L, Hendrickson K, Hennig R, Archer L A . Journal of Materials Chemistry A, 2015,3(39):19857.
[58]
陈翔(Chen X), 侯廷政(Hou T Z), 彭翃杰(Peng H J), 程新兵(Cheng X B), 黄佳琦(Huang J Q), 张强(Zhang Q) . 储能科学与技术( Energy Storage Science and Technology), 2017,6(3):500.
[59]
Rubha P, Kannan A G, Jun H A, Kim D W . ACS Applied Materials & Interfaces., 2016,8(6):4000. https://www.ncbi.nlm.nih.gov/pubmed/26808673

doi: 10.1021/acsami.5b11327 pmid: 26808673
[60]
Zhang S S, Tran D T . Electrochimica Acta, 2015,176:784.
[61]
Chen X, Peng H J, Zhang R, Hou T Z, Huang J Q, Li B, Zhang Q . ACS Energy Letters, 2017,2(4):795.
[62]
Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y . Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840.
[63]
Li Z, Zhang S G, Xu M, Tatara R, Dokko K, Watanabe M, Zhang J H . ACS Applied Materials & Interfaces, 2017,9(44):38477. https://www.ncbi.nlm.nih.gov/pubmed/29035508

doi: 10.1021/acsami.7b11065 pmid: 29035508
[64]
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H . Advanced Science, 2017,5(1):1700270. https://www.ncbi.nlm.nih.gov/pubmed/29375960

doi: 10.1002/advs.201700270 pmid: 29375960
[65]
韩东梅(Han D M), 王拴紧(Wang S J), 沈培康(Shen P K), 孟跃中(Meng Y Z), . 电池( Battery Bimonthly), 2013,43(1):6.
[66]
Kaiser M R, Liang X, Liu H K, Dou S X, Wang J Z . Carbon, 2016,103:163.
[67]
Fei L F, Li X G, Bi W T, Zhuo Z W, Wei W F, Sun L, Lu W, Wu X J, Xie K Y, Wu C Z, Chan H, Wang Y . Advanced Materials, 2015,27(39):5936. https://www.ncbi.nlm.nih.gov/pubmed/26310671

doi: 10.1002/adma.201502668 pmid: 26310671
[68]
Peng H J, Zhang G, Chen X, Zhang Z X, Xu W T, Huang J Q, Zhang Q . Angewandte Chemie, 2016,128(42):13184.
[69]
Xu J, Zhao W X, Fan H B, Cheng F L, Su D W, Wang G X . Nano Energy, 2018,51:73.
[70]
Ma Z L, Li Z, Hu K, Liu D D, Huo J, Wang S Y . Journal of Power Sources, 2016,325:71.
[71]
He J R, Chen Y F, Manthiram A . Energy & Environmental Science, 2018,11:2560.
[72]
Dirlam P T, Park J, Simmonds A G, Domanik K, Arrington C B, Schaefer J L, Pyun J . ACS Applied Materials & Interfaces, 2016,8(21):13437. https://www.ncbi.nlm.nih.gov/pubmed/27171646

doi: 10.1021/acsami.6b03200 pmid: 27171646
[73]
Ghazi Z A, He X, Khattak A M, Khan N A, Liang B, Iqbal A, Wang J X, Sin H, Li L S, Tang Z Y . Advanced Materials, 2017,29(21):1606817.
[74]
Park J, Yu B C, Park J S, Choi J W, Kim C, Sung Y E, Goodenough J B . Advanced Energy Materials, 2017,7(11):1602567. http://doi.wiley.com/10.1002/aenm.v7.11

doi: 10.1002/aenm.v7.11
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.