中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1159-1165 DOI: 10.7536/PC190122 Previous Articles   Next Articles

Catalytic Combustion of VOCs by Manganese-Based Catalysts

Xin Liu1, Yongqiang Wang1,2,**(), Fang Liu1,2, Chaocheng Zhao1, Huaxin Liu1, Lin Shi1   

  1. 1. College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580, China
    2. State Key Laboratory of Petroleum Pollution Control, China University of Petroleum(East China), Qingdao 266580, China
  • Received: Online: Published:
  • Contact: Yongqiang Wang
  • About author:
  • Supported by:
    Shandong Province Natural Science Foundation(ZR2019EE112); Fundamental Research Funds for the Central Universities(18CX02123A)
Richhtml ( 37 ) PDF ( 1201 ) Cited
Export

EndNote

Ris

BibTeX

Manganese-based catalysts have shown broad application prospects in the field of catalytic combustion of VOCs as a kind of non-noble metal materials with high catalytic activity, strong stability and low cost. However, there are also some shortcomings about the material, such as weak surface electron transfer ability and low specific surface area. Series of measures are applied in order to overcome these limitations, such as doping modification. In this paper, the recent advances in preparation methods, chemical compositions, morphology and structure of manganese-based catalysts are reviewed from four aspects: single manganese oxide, noble metal doping, supports and perovskite-type catalysts. The future research focus should be the monolith and industrialization of manganese-based catalysts.

Table 1 Manganese oxide catalyst by different preparation methods for catalytic combustion of toluene
Table 2 Manganese-based oxide catalysts with different pore structures
Table 3 Research results of A-substituted perovskite catalysts for VOCs combustion
[1]
王铁宇(Wang T Y), 李奇锋(Li Q F), 吕永龙(Lu Y L) . 环境科学( Environmental Science), 2013,34(12):4756.
[2]
张志华(Zhang Z H) . 安徽工程大学硕士论文( Master’s Dissertation of Anhui Polytechnic University), 2015.
[3]
韦清华(Wei Q H), 韩振刚(Han Z G), 李常青(Li C Q), 谷丽芬(Gu L F), 王语林(Wang Y L) . 广东化工( Guangdong Chemical Industry), 2017,44(9):171.
[4]
刘敏敏(Liu M M), 王永强(Wang Y Q), 赵朝成(Zhao C C), 赵东风(Zhao D F), 刘芳(Liu F) . 化工进展( Chemical Industry and Engineering Progress), 2017,( 08):2934.
[5]
Xu P, Zhang X, Zhao X, Yang J, Hou Z, Bai L, Chang H, Liu Y, Deng J, Guo G, Dai H, Au C . Applied Catalysis A: General, 2018,562:284.
[6]
Zwinkels M M, Jã Rã S S, Govindmenon P, Griffin T . Catalysis Reviews, 1993,35:319.
[7]
Bai B, Qiao Q, Li J, Hao J . Chinese Journal of Catalysis, 2016,37:102.
[8]
Liu Y, Dai H, Deng J, Du Y, Li X, Zhao Z, Wang Y, Gao B, Yang H, Guo G . Applied Catalysis B: Environmental, 2013,140.
[9]
Han Y F, Ramesh K, Chen L, Widjaja E, Srilakshmi Chilukoti A, Chen F . J.Phys.Chem.C, 2007,111:2830.
[10]
Aguero F N, Barbero B P, Almeida L C, Montes M, Cadús L E . Chemical Engineering Journal, 2011,166:218.
[11]
Garcia T, Sellick D, Varela F, Vázquez I, Dejoz A, Agouram S, Taylor S H, Solsona B . Applied Catalysis A General, 2013,450:169.
[12]
Santos V P, Pereira M F R, Órfão J J M, Figueiredo J L . Applied Catalysis B Environmental, 2010,99:353.
[13]
Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykios X . Journal of Catalysis, 1998,178:214.
[14]
Kim S C, Shim W G . Applied Catalysis B: Environmental, 2010,98:180.
[15]
Zhou G, Lan H, Wang H, Xie H, Zhang G, Zheng X . Journal of Molecular Catalysis A: Chemical, 2014,393:279.
[16]
Wang L, Zhang C, Huang H, Li X, Zhang W, Lu M, Li M . ReactionKinetics, Mechanisms and Catalysis, 2016,118:605.
[17]
Piumetti M, Fino D, Russo N . Applied Catalysis B Environmental, 2015,163:277.
[18]
Yang X, Yu X, Lin M, Ma X, Ge M . Catalysis Today, 2018.
[19]
Li L, Niu S, Qu Y, Zhang Q, Li H, Li Y, Zhao W, Shi J . Journal of Materials Chemistry, 2012,22:9263. 5158e582-dd43-4000-a7d3-fabbc004a9bdhttp://dx.doi.org/10.1039/c2jm15870a

doi: 10.1039/c2jm15870a
[20]
Liu Y, Deng J, Xie S, Wang Z, Dai H . Chinese Journal of Catalysis, 2016,37:1193.
[21]
Bai B, Qiao Q, Li J, Hao J . Chinese Journal of Catalysis, 2016,37:27.
[22]
Ming S, Bang L, Lin Y, Fei Y, Wei S, He J, Diao G, Zheng Y . Materials Letters, 2012,86:18.
[23]
Shi F, Wang F, Dai H, Dai J, Deng J, Liu Y, Bai G, Ji K, Au C T . Applied Catalysis A General, 2012,433.
[24]
廖银念(Liao Y N), 张璇(Zhang X), 牛文浩(Niu W H), 赵梦奇(Zhao M Q), 苏玉红(Su Y H) . 环境工程( Environmental Engineering), 2018,( 1):62.
[25]
Bai B, Li J, Hao J . Applied Catalysis B: Environmental, 2015,164:241.
[26]
Xu H, Jia J, Guo Y, Qu Z, Liao Y, Xie J, Shangguan W, Yan N . Journal of Hazardous Materials, 2017,342:69. https://www.ncbi.nlm.nih.gov/pubmed/28822251

doi: 10.1016/j.jhazmat.2017.08.011 pmid: 28822251
[27]
Sayle T X, Parker S C, Sayle D C . Physical Chemistry Chemical Physics, 2005,7:2936. https://www.ncbi.nlm.nih.gov/pubmed/16189614

doi: 10.1039/b506359k pmid: 16189614
[28]
Yu D, Liu Y, Wu Z . Catalysis Communications, 2010,11:788.
[29]
Wang X, Kang Q, Li D . Catalysis Communications, 2008,158:336.
[30]
Wu L, He F, Luo J, Liu S . RSC Advances, 2017,7:26952.
[31]
卢媛娇(Lu Y J) . 华东理工大学博士论文( Doctoral Dissertation of East China University of Science and Technology), 2014.
[32]
Li Z, Guo X, Tao F, Zhou R . RSC Advances, 2018,8:25283.
[33]
Li B, Huang Q, Yan X K, Xu X L, Qiu Y, Yang B, Chen Y W, Zhu S M, Shen S B . Journal of Industrial & Engineering Chemistry, 2014,20:2359.
[34]
Li J, Zhao P, Liu S . Applied Catalysis A: General, 2014,482:363.
[35]
Wu X D, Si Z C, Li G, Weng D, Maziran . Journal of Rare Earths, 2011,29:64.
[36]
Park , Hee K, Lee , Sang M, Kwon , Dong W, Hong , Chang S, Kim . Catalysis Letters, 2013,143:246.
[37]
Yan L, Luo M, Wei Z, Qin X, Ying P, Li C . Applied Catalysis B Environmental, 2001,29:61.
[38]
Wan Y, Xie X, Chen X . Progress in Reaction Kinetics & Mechanism, 2017,42:259.
[39]
张燕(Zhang Y) . 浙江工业大学硕士论文( Master’s Dissertation of Zhejiang University of Technology), 2009.
[40]
王胜(Wang S), 高典楠(Gao D N), 张纯希(Zhang C X), 袁中山(Yuan Z S), 张朋(Zhang P), 王树东(Wang S D), . 化学进展( Progress in Chemistry), 2008,20(6):789.
[41]
叶青(Ye Q), 霍飞飞(Huo F F), 王海平(Wang H P), 王娟(Wang J), 王道(Wang D) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2013,34(5):1187.
[42]
Ye Q, Zhao J, Huo F, Wang J, Cheng S, Kang T, Dai H . Catalysis Today, 2011,175:603.
[43]
Song K S, Kang S K, Kim S D . Catalysis Letters, 1997,49:65.
[44]
Tang X, Wang M, Feng W, Feng F, Yan K . International Symposium on Plasma Chemistry. 2011,20.
[45]
Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G . Journal of Catalysis, 2013,305:146.
[46]
Xia Y, Xia L, Liu Y, Yang T, Deng J, Dai H . Journal of Environmental Sciences, 2018,64:276.
[47]
Li X, Liu Y, Deng J, Zhang Y, Xie S, Zhao X, Wang Z, Guo G, Dai H . Catalysis Today, 2018,308:71.
[48]
Jiang Y, Xie S, Yang H, Deng J, Liu Y, Dai H . Catalysis Today, 2017,281:437.
[49]
Peluso , Sambeth , Colman-Lerner E, Thomas . Reaction Kinetics Mechanisms & Catalysis, 2013,108:443.
[50]
Xu P, Zhang X, Zhao X, Yang J, Hou Z, Bai L, Chang H, Liu Y, Deng J, Guo G . Applied Catalysis A General, 2018,562.
[51]
戴洪兴(Dai H X), 何洪(He H), 李佩珩(Li P H), 訾学红(Zi X H) . 中国稀土学报( Journal of The Chinese Rare Earth Society), 2003,21(s2):1.
[52]
Tarjomannejad A, Farzi A, Niaei A, Salari D . Korean Journal of Chemical Engineering, 2016,33:2628.
[53]
黄海凤(Huang H F), 唐伟(Tang W), 陈银飞(Chen Y F), 陈碧芬(Chen B F) . 中国稀土学报( Journal of The Chinese Rare Earth Society), 2004,22(s2):85.
[54]
lvarez-Galván M C, de la Peña O’Shea V A, Arzamendi G, Pawelec B, Gandía L M, Fierro J L G . Applied Catalysis B: Environmental, 2009,92:445.
[55]
Zhang C, Guo Y, Guo Y, Lu G, Boreave A, Retailleau L, Baylet A, Giroir-Fendler A . Applied Catalysis B: Environmental, 2014,148. https://www.ncbi.nlm.nih.gov/pubmed/32362724

doi: 10.1016/j.apcatb.2013.11.038 pmid: 32362724
[56]
Sui Z J, Vradman L, Reizner I, Landau M V, Herskowitz M . Catalysis Communications, 2011,12:1437.
[57]
Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z . Applied Catalysis B: Environmental, 2012,119.
[58]
Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au C T . Journal of Catalysis, 2012,287:149.
[59]
官芳(Guan F), 卢晗锋(Lu H F), 张燕(Zhang Y), 刘华彦(Liu H Y), 陈银飞(Chen Y F) . 浙江工业大学学报( Journal of Zhejiang University of Technology), 2009,37(1):22.
[60]
Zhang C, Wang C, Gil S, Boreave A, Retailleau L, Guo Y, Valverde J L, Giroir-Fendler A . Applied Catalysis B: Environmental, 2017,201:552.
[61]
Fino D, Russo N, Saracco G, Specchia V . Journal of Catalysis, 2003,217:367.
[62]
Lee Y N, Sapiña F, Martímez E, Folgado J V, Corberán V C . Studies in Surface Science & Catalysis, 1997,110:747.
[63]
方俊飞(Fang J F), 宣益民(Xuan Y M), 李强(Li Q) . 科学通报( Chinese Science Bulletin), 2011,56(17):1386.
[64]
Ji K, Dai H, Deng J, Jiang H, Lei Z, Han Z, Cao Y . Chemical Engineering Journal, 2013,214:262.
[65]
Alifanti M, Auer R, Kirchnerova J, Thyrion F, Grange P, Delmon B . Applied Catalysis B: Environmental, 2003,41:71.
[66]
Stege W P, Cadús L E, Barbero B P . Catalysis Today, 2011,172:53.
[67]
Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J . Journal of Catalysis, 2013,307:327.
[68]
Wang Y, Xue Y, Zhao C, Zhao D, Liu F, Wang K, Dionysiou D D . Chemical Engineering Journal, 2016,300:300.
[69]
Chen D L, Pan K L, Chang M B . Journal of Environmental Sciences, 2017,56:131.
[70]
Alifanti M, Kirchnerova J, Delmon B, Klvana D . Applied Catalysis A General, 2004,262:167.
[71]
Seiyama T . Catalysis Reviews, 1993,34:281.
[72]
Suárez-Vázquez S I, Gil S, García-Vargas J M, Cruz-López A, Giroir-Fendler A . Applied Catalysis B: Environmental, 2018,223:201.
[73]
Zheng J, Liu J, Zhao Z, Xu J, Duan A, Jiang G . Catalysis Today, 2012,191:146.
[74]
Hosseini S A, Salari D, Niaei A, Oskoui S A . Journal of Industrial and Engineering Chemistry, 2013,19:1903
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[9] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[12] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[13] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[14] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[15] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.