中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1136-1147 DOI: 10.7536/PC181218 Previous Articles   Next Articles

Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids

Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li**(), Shouxin Liu**()   

  1. Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
  • Received: Online: Published:
  • Contact: Wei Li, Shouxin Liu
  • About author:
    ** E-mail: (Wei Li)
    (Shouxin Liu)
  • Supported by:
    National Key R&D Program of China(2017YFD0601006); National Natural Science Foundation of China(31890773); National Natural Science Foundation of China(31570567); Central University Basic Research Expenses(2572017ET02)
Richhtml ( 37 ) PDF ( 1239 ) Cited
Export

EndNote

Ris

BibTeX

Nowadays, ionic liquids have attracted much attention due to their low melting point, wide liquid range, low vapor pressure, high thermal stability, high electrical conductivity, wide electrochemical window, designable structure, and affinity for many compounds. Ionic liquids have great potential in the field of carbon material preparation and modification. Ionic liquids can be directly used as a carbon source to prepare heteroatom-doped porous carbon materials by high-temperature carbonization; further, they can be used as a reaction medium and a porogen to convert biomass into porous carbon materials. In addition, ionic liquids can also be used for the modification of the porous carbon materials to prepare the carbon composite materials due to their good compatibility with the carbon materials. The ionic liquid-based carbon materials have considerable application value in the fields of electrocatalysis, supercapacitors, adsorption separation, biomedicine, and so on. Thus, in this paper, the latest research progress in the preparation and modification of ionic liquid-based carbon materials are summarized, with a focus on their applications in energy and environmental related fields.

Fig. 1 TGA curves measured on different ionic liquids:(A) a-BMIM-Tf2N; b-BMIM-tcm; c-EMIM-tcm; d-DMIM-tcm[71];(B) a-BMIM-Tf2N; b-BCNIM-Tf2N; c-BCNIM-beti; d-BCNIM-Cl[53]
Fig. 2 Structures and abbreviation of different ionic liquids used as carbon precursors
Fig. 3 Schematic carbonization mechanism of sugars[83]
Fig. 4 Schematic of ionothermal synthesis[61]
Fig. 5 (a) SEM images of solvent carbons. (b) TEM images of solvent carbons.(AN, BN, EG represent acetonitrile, benzonitrile, ethylene glycol, respectively)[89]
Fig. 6 Influence of the amount of KCl used in the KCl-ZnCl2 eutectic molten ionic liquids on the specific surface area, total and mesopore volume of the obtained samples[87]
Fig. 7 Schematic illustration for the synthesis of adenine derived NDCs obtained with MgCl2·6H2O as reaction medium[90]
Fig. 8 Schematic diagram for preparation of ionic liquid-carbon nanotube composites[100, 102]
Fig. 9 Schematic presentation for the functionalization of GO by IL and the fabrication of PVDF/GO-IL(PGL) composites[104]. TEM & AFM images of GO(a,c) and GO-IL(b,d)
Fig. 10 (a) N2 sorption data for HTC/ITC-JG-900 carbons;(b) CV graphs for HTC/ITC-JG-900 carbons at 50 mV/s in 6 M KOH;(c) Charge-discharge curves at 1 A/g;(d) Specific capacitance versus current density for HTC/ITC-JG-900 carbons[62]
[1]
Shao L D, Zhang B S, Zhang W, Hong S Y,, Schlogl R, Su D S . Angew. Chem. Int. Ed., 2013,52(7):2114. https://www.ncbi.nlm.nih.gov/pubmed/23307489

doi: 10.1002/anie.201207362 pmid: 23307489
[2]
杨世迎(Yang S M), 张翱(Zhang A), 任腾飞(Ren T F), 张宜涛(Zhang Y T) . 化学进展( Progress in Chemistry), 2017,29(5):539.
[3]
Danghyan V, Novoa S C, Mukasyan A, Wolf E E . Appl. Catal. B: Environ., 2018,234:178.
[4]
Huang X Q, Zhao Z P, Cao L, Chen Y, Zhu E B, Lin Z Y, Li M F, Yan A M, Zettl A, Wang Y M, Duan X F, Mueller T, Huang Y . Science, 2015,348(6240):1230. https://www.ncbi.nlm.nih.gov/pubmed/26068847

doi: 10.1126/science.aaa8765 pmid: 26068847
[5]
Shen Z T, Zhang Y Y, Jin F, McMillan O, Al-Tabbaa A . Sci. Total Environ., 2017,609:1401. https://www.ncbi.nlm.nih.gov/pubmed/28797146

doi: 10.1016/j.scitotenv.2017.08.008 pmid: 28797146
[6]
Ko Y J, Choi K, Lee S, Cho J M, Choi H J, Hong S W, Choi J W, Mizuseki H, Lee W S . J. Hazard. Mater., 2016,320:368. https://www.ncbi.nlm.nih.gov/pubmed/27573870

doi: 10.1016/j.jhazmat.2016.08.041 pmid: 27573870
[7]
吴艳姣(Wu Y J), 李伟(Li W), 吴琼(Wu Q), 刘守新(Liu S X) . 化学进展( Progress in Chemistry), 2016,28(1):121.
[8]
Li G L, Yuan L F, Cheng G C, Chen S M, Liu C D, Chen W W, Yang B B, Xu X C, Hao C . Appl. Surf. Sci., 2018,450:251.
[9]
Ahn S, Jeong M, Yokoshima T, Nara H, Momma T, Osaka T . J. Power Sources, 2016,336:203.
[10]
Leyva-Garcia S, Lozano-Castello D, Morallon E, Vogl T, Schutter C, Passerini S, Balducci A, Cazorla-Amoros D . J. Power Sources, 2016,336:419.
[11]
Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang D H, . HAngew. Chem. Int. Ed., 2015,54(14):4325. https://www.ncbi.nlm.nih.gov/pubmed/25663183

doi: 10.1002/anie.201411109 pmid: 25663183
[12]
Pang Q, Tang J T, Huang H, Liang X, Hart C, Tam K C, Nazar L F . Adv. Mater., 2015,27(39):6021. https://www.ncbi.nlm.nih.gov/pubmed/26314378

doi: 10.1002/adma.201502467 pmid: 26314378
[13]
Paraknowitsch J P, Thomas A . Macromol. Chem. Phys., 2012,213(10/11):1132.
[14]
Li X P, Zhang Y Z, Meng Y, Tan G Q, Ou J K, Wang Y J, Zhao Q, Yuan H Y, Xiao D . ChemElectroChem, 2017,4(8):1856.
[15]
Xu G Y, Han J P, Ding B, Nie P, Pan J, Dou H, Li H S, Zhang X G . Green Chemistry, 2015,17(3):1668.
[16]
Qu G, Jia S F, Wang H, Cao F, Li L, Qing C, Sun D M, Wang B X, Tang Y W, Wang J B . ACS Appl. Mat. Interfaces, 2016,8(32):20822. https://www.ncbi.nlm.nih.gov/pubmed/27433808

doi: 10.1021/acsami.6b06630 pmid: 27433808
[17]
李志伟(Li Z W), 仲佳亮(Zhong J L), 陈楠楠(Chen N N), 薛兵(Xue B), 米红宇(Mi H Y) . 化学学报( Acta Chimica Sinica), 2018,76(03):209.
[18]
An M C, Du C Y, Du L, Sun Y R, Wang Y J, Chen C, Han G K, Yin G P, Gao Y Z . Chem. Phys. Lett., 2017,687:1.
[19]
Yang D S, Bhattacharjya D, Inamdar S, Park J, Yu J S . J. Am. Chem. Soc., 2012,134(39):16127. https://www.ncbi.nlm.nih.gov/pubmed/22966761

doi: 10.1021/ja306376s pmid: 22966761
[20]
Lin T, Huang F, Liang J, Wang Y. Energy Environ . Sci., 2011,4(3):862.
[21]
Jang A R, Lee Y W, Lee S S, Hong J, Beak S H, Pak S, Lee J, Shin H S, Ahn D, Hong W K, Cha S, Sohn J I, Park I K . J. Mater. Chem. A, 2018,6(17):7351.
[22]
Kopac T, Kirca Y, Toprak A . Int. J. Hydrogen Energy, 2017,42(37):23606.
[23]
Paraknowitsch J P, Thomas A, Schmidt J . Chem. Commun., 2011,47(29):8283. https://www.ncbi.nlm.nih.gov/pubmed/21674080

doi: 10.1039/c1cc12272j pmid: 21674080
[24]
Lee J S M, Parker D J, Cooper A I, Hasell T . J. Mater. Chem. A, 2017,5(35):18603.
[25]
Chabu J M, Wang L Q, Tang F Y, Zeng K, Sheng J P, Walle M D, Deng L, Liu Y N . ChemElectroChem, 2017,4(8):1885.
[26]
Tian G L, Zhao M Q, Yu D S, Kong X Y, Huang J Q, Zhang Q, Wei F . Small, 2014,10(11):2251. https://www.ncbi.nlm.nih.gov/pubmed/24574006

doi: 10.1002/smll.201303715 pmid: 24574006
[27]
Jang J W, Lee C E, Lyu S C, Lee T J, Lee C J . Appl. Phys. Lett., 2004,84(15):2877.
[28]
Feng L Y, Yan Y Y, Chen Y G, Wang L J . Energy Environ. Sci., 2011,4(5):1892.
[29]
Gupta K, Liu T, Kavian R, Chae H G, Ryu G H, Lee Z, Lee S W, Kumar S . J. Mater. Chem. A, 2016,4(47):18294.
[30]
Liu Y, Zhao X H, Chauhan G S, Ahn J H . Appl. Surf. Sci., 2016,380:151.
[31]
Yu Z L, Li G C, Fechler N, Yang N, Ma Z Y, Wang X, Antonietti M, Yu S H . Angew. Chem. Int. Ed., 2016,55(47):14623. https://www.ncbi.nlm.nih.gov/pubmed/27607518

doi: 10.1002/anie.201605510 pmid: 27607518
[32]
王恩民(Wang E M), 李文翠(Li W C), 雷成(Lei C), 陆安慧(Lu A H) . 化工学报( Journal of Chemical Industry and Engineering(China)), 2015,66(07):2565.
[33]
Song X Y, Ma X L, Yu Z Q, Ning G Q, Li Y, Sun Y Z . ChemElectroChem, 2018,5(11):1474.
[34]
Pan L, Wang Y X, Hu H, Li X X, Liu J L, Guan L, Tian W, Wang X B, Li Y P, Wu M B . Carbon, 2018,134:345.
[35]
Chen P, Wang L K, Wang G, Gao M R, Ge J, Yuan W J, Shen Y H, Xie A J, Yu S H . Energy Environ. Sci., 2014,7(12):4095. http://xlink.rsc.org/?DOI=C4EE02531H

doi: 10.1039/C4EE02531H
[36]
Yang J Q, Zhou X L, Wu D H, Zhao X D, Zhou Z . Adv. Mater., 2017,29(6):1604108 http://doi.wiley.com/10.1002/adma.201604108

doi: 10.1002/adma.201604108
[37]
Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K . Carbon, 2014,73:361. 6719a3a7-a85a-4cce-9618-9cc795bdea0ahttp://dx.doi.org/10.1016/j.carbon.2014.02.076

doi: 10.1016/j.carbon.2014.02.076
[38]
来庆学(Lai Q X), 张校刚(Zhang X G), 梁彦瑜(Liang Y Y) . 化学进展( Progress in Chemistry), 2013,10:1703. 9ac730d6-cab4-4457-8f49-7965f1a1c4b5http://www.progchem.ac.cn//CN/abstract/abstract11172.shtml

doi: 10.7536/PC130117
[39]
Welton T . Chem. Rev., 1999,99(8):2071. https://www.ncbi.nlm.nih.gov/pubmed/11849019

doi: 10.1021/cr980032t pmid: 11849019
[40]
Hallett J P, Welton T . Chem. Rev., 2011,111(5):3508. https://www.ncbi.nlm.nih.gov/pubmed/21469639

doi: 10.1021/cr1003248 pmid: 21469639
[41]
Fellinger T P, Thomas A, Yuan J, Antonietti M . Adv. Mater., 2013,25(41):5838. https://www.ncbi.nlm.nih.gov/pubmed/24425624

doi: 10.1002/adma.201301975 pmid: 24425624
[42]
王引航(Wang Y H), 李伟(Li W), 罗沙(Luo S), 刘守新(Liu S X), 马春慧(Ma C H), 李坚(Li J) . 化学学报( Acta Chimica Sinica), 2018,76(2):85.
[43]
Wasserscheid P, Keim W . Angew. Chem. Int. Ed., 2000,39(21):3772. https://www.ncbi.nlm.nih.gov/pubmed/11091453

doi: 10.1002/1521-3773(20001103)39:21【-逻*辑*与-】lt;3772::aid-anie3772【-逻*辑*与-】gt;3.0.co;2-5 pmid: 11091453
[44]
钱文静(Qian W J), 袁超(Yuan C), 郭江娜(Guo J N), 严锋(Yan F) . 化学学报( Acta Chimica Sinica), 2015,73(4):310.
[45]
Zhang S, Dokko K, Watanabe M . Materials Horizons, 2015,2(2):168.
[46]
Vekariya R L . J. Mol. Liq., 2017,227:44.
[47]
Goossens K, Lava K, Bielawski C W, Binnemans K . Chem. Rev., 2016,116(8):4643. https://www.ncbi.nlm.nih.gov/pubmed/27088310

doi: 10.1021/cr400334b pmid: 27088310
[48]
Brennecke J F, Gurkan B E . J. Phys. Chem. Lett., 2010,1(24):3459.
[49]
Yoshida Y, Saito G . Phys.Chem.Chem.Phys., 2010,12(8):1675. https://www.ncbi.nlm.nih.gov/pubmed/20145832

doi: 10.1039/b920046k pmid: 20145832
[50]
Freudenmann D, Wolf S, Wolff M, Feldmann C . Angew. Chem. Int. Ed., 2011,50(47):11050. https://www.ncbi.nlm.nih.gov/pubmed/21990270

doi: 10.1002/anie.201100904 pmid: 21990270
[51]
Duan X, Ma J, Lian J, Zheng W . CrystEngComm, 2014,16(13):2550.
[52]
Xie Z L, Su D S . Eur. J. Inorg. Chem., 2015,2015(7):1137.
[53]
Lee J S, Wang X, Luo H, Baker G A, Dai S . J. Am.Chem.Soc., 2009,131(13):4596. https://www.ncbi.nlm.nih.gov/pubmed/19296590

doi: 10.1021/ja900686d pmid: 19296590
[54]
Cui X, Yang Q, Xiong Y, Bao Z, Xing H, Dai S . Chem. Commun., 2017,53(36):4915. https://www.ncbi.nlm.nih.gov/pubmed/28401202

doi: 10.1039/c7cc01000a pmid: 28401202
[55]
Zhang S G, Miran M S, Ikoma A, Dokko K, Watanabe M . J. Am. Chem. Soc., 2014,136(5):1690. https://www.ncbi.nlm.nih.gov/pubmed/24450770

doi: 10.1021/ja411981c pmid: 24450770
[56]
Men Y J, Siebenburger M, Qiu X L, Antonietti M, Yuan J Y . J. Mater. Chem. A, 2013,1(38):11887.
[57]
Xiqing W, Sheng D . Angew. Chem. Int. Ed., 2010,49(37):6664. https://www.ncbi.nlm.nih.gov/pubmed/20677305

doi: 10.1002/anie.201003163 pmid: 20677305
[58]
Hossain M M, Aldous L . Aust. J. Chem., 2012,65(11):1465.
[59]
Wang H, Gurau G, Rogers R D . Chem. Soc. Rev., 2012,41(4):1519. https://www.ncbi.nlm.nih.gov/pubmed/22266483

doi: 10.1039/c2cs15311d pmid: 22266483
[60]
Fu D B, Mazza G, Tamaki Y . J. Agric. Food Chem., 2010,58(5):2915. https://www.ncbi.nlm.nih.gov/pubmed/20146421

doi: 10.1021/jf903616y pmid: 20146421
[61]
Zhang P F, Gong Y T, Wei Z Z, Wang J, Zhang Z Y, Li H R, Dai S, Wang Y. ACS Appl . Mat. Interfaces, 2014,6(15):12515. https://www.ncbi.nlm.nih.gov/pubmed/25001196

doi: 10.1021/am5023682 pmid: 25001196
[62]
Liu Y, Huang B, Lin X, Xie Z . J. Mater. Chem. A, 2017,5(25):13009.
[63]
Lin X X, Tan B, Peng L, Wu Z F, Xie Z L . J. Mater. Chem. A, 2016,4(12):4497.
[64]
Yuxiao D, Sheng S D . ChemSusChem, 2014,7(6):1542. https://www.ncbi.nlm.nih.gov/pubmed/24623567

doi: 10.1002/cssc.201301226 pmid: 24623567
[65]
Polo-Luque M L, Simonet B M, Valcarcel M . Trends Anal. Chem., 2013,47:99.
[66]
Peng R G, Wang Y Z, Tang W, Yang Y K, Xie X L . Polymers, 2013,5(2):847.
[67]
Morris R E . Chem. Commun., 2009,21:2990.
[68]
刘磊(Liu L), 杜娟(Du J), 张艺馨(Zhang Y X), 刘梦(Liu M), 于奕峰(Yu Y F), 陈爱兵(Chen A B) . 新型炭材料( New Carbon Materials), 2017,32(4):380.
[69]
Paraknowitsch J P, Thomas A, Antonietti M . J. Mater. Chem., 2010,20(32):6746.
[70]
Zhang S, Dokko K, Watanabe M . Chem. Mater., 2014,26(9):2915.
[71]
Seung L J, Xiqing W, Huimin L, Sheng D . Adv. Mater., 2010,22(9):1004. https://www.ncbi.nlm.nih.gov/pubmed/20217829

doi: 10.1002/adma.200903403 pmid: 20217829
[72]
Wooster T J, Johanson K M, Fraser K J, Macfarlane D R, Scott J L . Green Chemistry, 2006,8(8):691.
[73]
Ranjbar Sahraie N, Paraknowitsch J P, Göbel C, Thomas A, Strasser P . J. Am. Chem. Soc., 2014,136(41):14486. https://www.ncbi.nlm.nih.gov/pubmed/25221897

doi: 10.1021/ja506553r pmid: 25221897
[74]
Fulvio P F, Hillesheim P C, Oyola Y, Mahurin S M, Veith G M, Dai S . Chem. Commun., 2013,49(66):7289. https://www.ncbi.nlm.nih.gov/pubmed/23846510

doi: 10.1039/c3cc44175j pmid: 23846510
[75]
Ravula S, Larm N E, Liu Y, Atwood J L, Baker S N, Baker G A . New J. Chem., 2018,42(3):1979.
[76]
Gong J, Lin H J, Antonietti M, Yuan J Y . J. Mater. Chem. A, 2016,4(19):7313.
[77]
Men Y, Ambrogi M, Han B, Yuan J . Int. J. Mol. Sci., 2016,17(4):532. https://www.ncbi.nlm.nih.gov/pubmed/27070588

doi: 10.3390/ijms17040532 pmid: 27070588
[78]
Gao J, He C, Liu J, Ren P, Lu H, Feng J, Zou Z, Yin Z, Wen X, Tan X . Catal. Sci. Technol., 2018,8(4):1142.
[79]
Jin Z Y, Lu A H, Xu Y Y, Zhang J T, Li W C . Adv. Mater., 2014,26(22):3700. https://www.ncbi.nlm.nih.gov/pubmed/24648058

doi: 10.1002/adma.201306273 pmid: 24648058
[80]
Vaid T P, Kelley S P, Rogers R D . IUCrJ, 2017,4:380. https://www.ncbi.nlm.nih.gov/pubmed/28875025

doi: 10.1107/S2052252517008326 pmid: 28875025
[81]
Ma Z, Yu J, Dai S . Adv. Mater., 2010,22(2):261. https://www.ncbi.nlm.nih.gov/pubmed/20217687

doi: 10.1002/adma.200900603 pmid: 20217687
[82]
Wang Y S, Xu Y P, Tian Z J, Lin L W . Chin. J. Catal., 2012,33(1):39.
[83]
Lee J S, Mayes R T, Luo H, Dai S . Carbon, 2010,48(12):3364. https://www.ncbi.nlm.nih.gov/pubmed/26152463

doi: 10.1016/j.jbiomech.2015.06.014 pmid: 26152463
[84]
Xie Z L, Huang X, Titirici M M, Taubert A . RSC Advances, 2014,4(70):37423.
[85]
Guo F, Fang Z . BioResources, 2014,9(2):3369.
[86]
Zhu C H, Fang Z, Su T C, Li X K, Liu Q Y . Cellulose, 2018,25(4):2473.
[87]
Pampel J, Denton C, Fellinger T P . Carbon, 2016,107:288.
[88]
Fechler N, Fellinger T P, Antonietti M . Adv. Mater., 2013,25(1):75. https://www.ncbi.nlm.nih.gov/pubmed/23027658

doi: 10.1002/adma.201203422 pmid: 23027658
[89]
Chang Y, Antonietti M, Fellinger T P . Angew. Chem. Int. Ed., 2015,54(18):5507. https://www.ncbi.nlm.nih.gov/pubmed/25740456

doi: 10.1002/anie.201411685 pmid: 25740456
[90]
Pampel J, Mehmood A, Antonietti M, Fellinger T P . Materials Horizons, 2017,4(3):493.
[91]
Liu X, Antonietti M . Carbon, 2014,69(Supplement C):460.
[92]
Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T . Science, 2003,300(5628):2072. https://www.ncbi.nlm.nih.gov/pubmed/12829776

doi: 10.1126/science.1082289 pmid: 12829776
[93]
Janine C P, Jean-Marc N, Jean-François B, Joëlle R B, Corinne L . ChemElectroChem, 2016,3(4):572.
[94]
Fan X Q, Wang L P . Tribol. Int., 2015,88:179.
[95]
相欣然(Xiang X R), 万晓梅(Wan X M), 索红波(Suo H B), 胡燚(Hu Y) . 物理化学学报( Acta Physico-Chimica Sinica), 2018,34(1):99.
[96]
Tunckol M, Durand J, Serp P . Carbon, 2012,50(12):4303.
[97]
Polo-Luque M L, Simonet B M, Valcárcel M . Talanta, 2013,104:169. https://www.ncbi.nlm.nih.gov/pubmed/23597905

doi: 10.1016/j.talanta.2012.10.025 pmid: 23597905
[98]
Polo-Luque M L, Simonet B M, Valcarcel M . Anal. Bioanal. Chem., 2012,404(3):903. https://www.ncbi.nlm.nih.gov/pubmed/22706403

doi: 10.1007/s00216-012-6156-7 pmid: 22706403
[99]
Chinnappan A, Bandal H, Kim H, Ramakrishna S . Chem. Eng. J., 2017,316:928.
[100]
Yu B, Liu Z L, Ma C B, Sun J J, Liu W M, Zhou F . Tribol. Int., 2015,81:38.
[101]
Pei X, Yan Y H, Yan L, Yang P, Wang J, Xu R, Chan-Park M B . Carbon, 2010,48(9):2501.
[102]
Lee J, Aida T . Chem. Commun., 2011,47(24):6757. https://www.ncbi.nlm.nih.gov/pubmed/21512697

doi: 10.1039/c1cc00043h pmid: 21512697
[103]
Ghatee M H, Moosavi F . J. Phys. Chem. C, 2011,115(13):5626.
[104]
Maity N, Mandal A, Nandi A K . Polymer, 2015,65:154.
[105]
Severa G, Bethune K, Rocheleau R, Higgins S . Chem. Eng. J., 2015,265:249. https://linkinghub.elsevier.com/retrieve/pii/S1385894714016635

doi: 10.1016/j.cej.2014.12.051
[106]
Pal A, Shahrom M S R, Moniruzzaman M, Wilfred C D, Mitra S, Thu K, Saha B B . Chem. Eng. J., 2017,326:980.
[107]
Yan J Y, Shang J J, Fu Y, Li D Q, Liu Z Y . Chemical Engineering & Technology, 2018,41(5):907.
[108]
Liang H W, Wei W, Wu Z S, Feng X, Müllen K . J. Am. Chem. Soc., 2013,135(43):16002. https://www.ncbi.nlm.nih.gov/pubmed/24128393

doi: 10.1021/ja407552k pmid: 24128393
[109]
Yang W, Fellinger T P, Antonietti M . J. Am. Chem. Soc., 2011,133(2):206.
[110]
Huang B B, Luo Z Y, Zhang J J, Xie Z L . RSC Advances, 2017,7(29):17941.
[111]
Cui Z, Wang S, Zhang Y, Cao M . J. Power Sources, 2014,259:138. https://linkinghub.elsevier.com/retrieve/pii/S0378775314002778

doi: 10.1016/j.jpowsour.2014.02.084
[112]
Zhu Z, Qu L, Li X, Zeng Y, Sun W, Huang X . Electrochim. Acta, 2010,55(20):5959.
[113]
Ji L, Yan J, Mietek J, Zhang Q S . Angew. Chem. Int. Ed., 2012,51(46):11496. https://www.ncbi.nlm.nih.gov/pubmed/23055257

doi: 10.1002/anie.201206720 pmid: 23055257
[114]
Chen Y, Wang H, Ji S, Lv W, Wang R . Materials, 2017,10(12):1366.
[115]
Qiu B, Pan C, Qian W, Peng Y, Qiu L, Yan F . J. Mater. Chem. A, 2013,1(21):6373.
[116]
Miao L, Duan H, Liu M, Lu W, Zhu D, Chen T, Li L, Gan L . Chem. Eng. J., 2017,317:651.
[117]
Sun L, Zhou H, Li Y, Yu F, Zhang C, Liu X, Zhou Y . Mater. Lett., 2017,189:107.
[118]
Zhu X, Hillesheim P C, Mahurin S M, Wang C, Tian C, Brown S, Luo H, Veith Gabriel M, Han K S, Hagaman E W, Liu H, Dai S . ChemSusChem, 2012,5(10):1912. https://www.ncbi.nlm.nih.gov/pubmed/22907832

doi: 10.1002/cssc.201200355 pmid: 22907832
[119]
Polo-Luque M L, Simonet B M, Valcárcel M . Talanta, 2013,110:160. https://www.ncbi.nlm.nih.gov/pubmed/23618189

doi: 10.1016/j.talanta.2013.02.030 pmid: 23618189
[120]
Rauf S, Nawaz M A H, Muhammad N, Raza R, Shahid S A, Marty J L, Hayat A . J. Mol. Liq., 2017,243:333. https://linkinghub.elsevier.com/retrieve/pii/S0167732217325886

doi: 10.1016/j.molliq.2017.08.059
[121]
Anju J, Chavan S N, Mandal D, Nagaiah T C . Electroanalysis, 2016,28(10):2373.
[122]
Laura R P, Christian P, Philippe S, Montserrat G, Emmanuelle T . ChemCatChem, 2011,3(4):749.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[7] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[8] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[11] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[12] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[13] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.