中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 30-37 DOI: 10.7536/PC181209 Previous Articles   Next Articles

• Review •

Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies

Jinbo Fei1,**(), Qi Li1,2, Jie Zhao1, Junbai Li1,2,**()   

  1. 1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Jinbo Fei, Junbai Li
  • About author:
    ** Corresponding author e-mail: (Jinbo Fei);
    e-mail: (Junbai Li)
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21433010); The work was supported by the National Natural Science Foundation of China(21320102004); The work was supported by the National Natural Science Foundation of China(21573248); The work was supported by the National Natural Science Foundation of China(21872150)
Richhtml ( 25 ) PDF ( 1247 ) Cited
Export

EndNote

Ris

BibTeX

Diphenylalanine dipeptide is a key recognition sequence of the β-amyloid protein that causes Alzheimer's disease. Due to its simple structure and excellent assembly performance, diphenylalanine dipeptide has been becoming a “star” building block in the field of molecular assembly to construct many functional materials. At present, a large number of researchers have been carried out on the controllable assembly of diphenylalanine dipeptide and its derivatives, including molecular design, structural regulation and functional applications. In recent years, through molecular assembly, our group has achieved the controlled preparation of diphenylalanine dipeptide-based assemblies by modulating various kinds of molecular interactions including Schiff-base covalent bonding, electrostatic attraction, hydrogen bonding and pi-pi stacking. In particular, we have explored optical properties and potential applications of such assembled diphenylalanine dipeptide-based materials. This review will mainly introduce the research progress mentioned above. Firstly, the preparation methods of diphenylalanine-based photofunctional materials through covalent, non-covalent or combined assembly are analyzed, compared and discussed. Then, the applications of these assembled materials in actively optical waveguiding, optical imaging for tracing drug delivery, photodynamic therapy for cancer treatment, patterned photofabrication and biomimetic photocatalysis are introduced in detail, respectively. Finally, we give a summary and propose the possible development trend of diphenylalanine dipeptide-based assemblies.

Fig.1 CLSM images of CDPNSs excited at 405 nm and collected at (a) blue(430~480 nm), (b) green(500~550 nm) and (c) red(590~640 nm) channels. Scale bar is 1 μm. (d) Fluorescent spectrum of CDPNSs powder dispersed in water excited at 405 nm[29]
Fig.2 (a) UV/vis spectra of CDP, genipin, and DPGNSs. (b) Fluorescence emission spectrum of DPGNSs(λex=559 nm). The inset is CLSM image of DPGNCs excited at 559 nm and collected at red(590~640 nm) channels[31]
Fig.3 Light-responsive assembly and disassembly of cationic diphenylanaline and EPABS[34]
Fig.4 Optical waveguiding of dipeptide crystals. (a) PL image of platelets excited at 330~380 nm. (b) PL image of a single platelet showing brighter PL emission at the ends than in the body; the inset shows the PL of one end magnified. (cf) Direct observation of waveguiding with local excitation at one end of an individual platelet (c, d) and of a platelet incorporating NR dye (e, f). Note: (c) and (e) are bright-field images; (d) and (f) are PL images. The red circle marks the excitation area, and the green arrow denotes the out-coupling of PL emission at the other end[38]
Fig.5 Controlled assembly of dipeptide nano- and microstructures under the assistance of sonication[39]
Fig.6 Photographs taken under white light and UV irradiation at λ=365 nm of the composite organogels that contained different guest dye molecules after water induction. The organogels have been removed from their vessels[33]
Fig.7 A schematic illustration of cationic dipeptide and POM coassembly to hybrid supramolecular structures: the peptide-encapsulated POM clusters are first formed through electrostatic interactions and then such clusters further aggregate to form the hybrid spheres[47]
[1]
Buddingh B C, van Hest J C M . Acc. Chem. Res., 2017,50:769.
[2]
Komiyama M, Yoshimoto K, Sisido M, Ariga K . Bull. Chem. Soc.Jpn., 2017,90:967.
[3]
Ariga K, Li J B, Fei J B, Ji Q M, Hill J P . Adv. Mater., 2016,28:1251.
[4]
Ariga K, Ji Q M, Mori T, Naito M, Yamauchi Y, Abe H, Hill J P . Chem. Soc. Rev., 2013,42:6322.
[5]
Xu Y Q, Fei J B, Li G L, Yuan T T, Wang C L, Li J B . Angew. Chem. Int. Ed., 2018,57:6532.
[6]
Li G L, Fei J B, Xu Y Q, Li Y, Li J B . Adv. Funct. Mater., 2018,28:1706557.
[7]
Xu Y Q, Fei J B, Li G L, Yuan T T, Li J B . ACS Nano, 2017,11:10175.
[8]
Xu Y Q, Fei J B, Li G L, Yuan T T, Wang C L, Li X B, Li J B . Angew. Chem. Int. Ed., 2007,56:12903.
[9]
Zhang S . Nat. Biotechnol, 2003,21:1171.
[10]
Gelain F, Unsworth L D, Zhang S . J. Control.Release, 2010,145:23.
[11]
Zhang S . Acc. Chem. Res., 2012,45:2142.
[12]
Boekhoven J, Stupp S I . Adv. Mater., 2014,26:1642.
[13]
Newcomb C J, Sur S, Ortony J H, Lee O S, Matson J B, Boekhoven J, Yu J M, Schatz G C Stupp S I, . Nat. Commun., 2014,5:3321.
[14]
Lee S S, Huang B J, Kaltz S R, Sur S, Newcomb C J, Stock S R, Shah R N, Stupp S I . Biomaterials, 2013,34:452.
[15]
Hendricks M P, Sato K, Palmer L C Stupp S I, . Acc. Chem. Res., 2017,50:2440.
[16]
Tao K, Makam P, Aizen R, Gazit E , Science 2017, 358: eaam9756.
[17]
Liu K, Xing R R, Chen C J, Shen G Z, Yan L Y, Zou Q L, Ma G H, Möhwald H, Yan X H . Angew. Chem. Int. Ed., 2015,54:500.
[18]
Zou Q L, Liu K, Abbas M, Yan X H . Adv. Mater. 2016,28:1031.
[19]
Liu K, Xing R R, Li Y X, Zou Q L, Möhwald H, Yan X H . Angew. Chem. Int.Ed., 2016,55:12503.
[20]
Liu K, Yuan C Q, Zou Q L, Xie Z C, Yan X H . Angew. Chem. Int.Ed., 2017,56:7876.
[21]
Schnaider L, Brahmachari S, Schmidt N W, Mensa B, Bychenko S S D, Adler-Abramovich L, Shimon L J W, Kolusheva S, DeGrado W F, Gazit E . Nat. Commun., 2017,8:1365.
[22]
Tao K, Levin A, Adler-Abramovich L, Gazit E . Chem. Soc. Rev., 2016,45:3935.
[23]
Arnon Z A, Vitalis A, Levin A, Michaels T C T, Caflisch A, Knowles T P J, Adler-Abramovich L, Gazit E . Nat. Commun., 2016,7:13190.
[24]
Kim J H, Lee M, Lee J S, Park C B . Angew. Chem. Int. Ed., 2012,51:517.
[25]
Wang J, Liu K, Xing R R, Yan X H . Chem. Soc. Rev., 2016,45:5589.
[26]
Liu X C, Fei J B, Wang A H, Cui W, Zhu P L, Li J B . Angew. Chem. Int. Ed., 2017,56:2660.
[27]
Yuan T T, Fei J B, Xu Y Q, Yang X K, Li J B . Macromol. Rapid Commun., 2017,38:1700408.
[28]
Tao K, Xue B, Frere S, Slutsky I, Cao Y, Wang W, Gazit E. . Chem.Mater, 2017,29:4454.
[29]
Zhang H, Fei J B, Yan X H, Wang A H, Li J B . Adv. Funct. Mater., 2015,25:1193.
[30]
Fei J B, Zhang H, Wang A H, Qin C C, Xue H M, Li J B . Adv. Healthcare Mater., 2017,6:1601198.
[31]
Yang X K, Fei J B, Li Q, Li J B . Chem. Eur. J., 2016,22:6477.
[32]
Liu X C, Fei J B, Zhu P L, Li J B . Chem. Asian J., 2016,11:2700.
[33]
Liu X C, Zhu P L, Fei J B, Zhao J, Yan X H, Li J B . Chem. Eur. J., 2015,21:9461.
[34]
Ma H C, Fei J B, Li Q, Li J B . Small, 2015,11:1787.
[35]
Li X B, Fei J B, Xu Y Q, Li D X, Yuan T T, Li G L, Wang C L, Li J B . Angew. Chem. Int. Ed., 2018,57:1903.
[36]
Yan X H, Cui Y, He Q, Wang K W, Li J B . Chem. Mater., 2008,20:1522.
[37]
Yan X H, Li J B, Möwald H . Adv.Mater, 2011,23:2796.
[38]
Yan X H, Su Y, Li J B, Früh J, Möwald H . Angew. Chem. Int. Ed., 2011,50:11186.
[39]
Li Q, Jia Y, Dai L R, Yang Y, Li J B . ACS Nano, 2015,9:2689.
[40]
Li Q, Ma H C, Wang A H, Jia Y, Dai L R, Li J B . Adv Optical Mater., 2015,3:194.
[41]
Sun B B, Riegler H, Dai L R, Erikelmann S, Li Y, Li G L, Yang Y, Fu M F, Fei J B, Li J B . ACS Nano, 2018,12:1934.
[42]
Sun B B, Li Q, Riegler H, Eickelmann S, Dai L R, Yang Y, Perez-Grarcia R, Jia Y, Chen G X, Fei J B, Holmberg K, Li J B . ACS Nano, 2017,11:10489.
[43]
Tao K, Fan Z, Su L M, Makam P, Tian Z, Ruegsegger M, Shaham-Niv S, Hansford D, Ailzen R, Pan Z, Galster S, Ma J J, Yuan F, Si M S, Qu S N, Zhang M J, Gazit E, Li J B . Nat. Commun., 2018,9:3217.
[44]
Gazit E . Nat.Nanotechnol, 2016,11:309.
[45]
Amdursky N, Gazit E, Rosenman G . Adv.Mater, 2010,22:2311.
[46]
Sun B B, Wang L, Li Q, He P P, Liu H L, Wang H, Yang Y, Li J B . Biomacromolecules, 2017,18:3506.
[47]
Yan X H, Zhu P L, Fei J B, Li J B . Adv. Mater., 2010,22:1283.
[48]
Zou Q L, Zhang L, Yan X H, Wang A H, Ma G H, Li J B, Möwald H, Mann S . Angew. Chem. Int. Ed., 2014,53:2366.
[49]
Draper E R, Adams D Adams D . Chem. Commun., 2016,52:8196.
[50]
Sun H L, Chen Y, Han X, Liu Y . Angew. Chem. Int. Ed., 2017,56:7062.
[51]
Li M, Tang H X . Nat. Mater., 2019,18:9.
[52]
Chung K, Yu S, Heo C J, Shim J W, Yang S M, Han M G, Lee H S, Jin Y W, Lee S Y, Park N, Shin J H . Adv. Mater., 2012,24:2375.
[53]
Berger O, Yoskovitz E, Adler-Abramovich L, Gazit E . Adv. Mater., 2016,28:2195.
[54]
Niu G D, Zhang L, Ruditskiy A, Wang L D, Xia Y N . Nano Lett., 2018,18:3879.
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[4] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[5] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[9] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[10] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[11] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[12] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[13] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[14] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[15] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.