中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 939-953 DOI: 10.7536/PC181124 Previous Articles   Next Articles

N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction

Hong-lin Zhu1, Wen-ying Li1, Ting-ting Li1, Michael Baitinger2, Juri Grin2, Yue-qing Zheng1,**()   

  1. 1.Research Center of Applied Solid State Chemistry, Ningbo University, Ningbo 315211, China
    2.Max-Planck-Insititue für Chemische Physik Fester Stoffe, Dresden 01187, Germany
  • Received: Online: Published:
  • Contact: Yue-qing Zheng
  • Supported by:
    National Natural Science Foundation of China(21603110)
Richhtml ( 25 ) PDF ( 853 ) Cited
Export

EndNote

Ris

BibTeX

Electrocatalytic reduction of CO2 reduction reaction(CO2RR) to high energy density fuel and high value-added carbon products under mild conditions is an extremely promising way for reduction of the CO2 concentration in atmosphere and storage of the intermittent renewable energy, as well as for carbon neutralization. The design and development of low-cost high-performance catalysts with high activity, high selectivity, high stability and significant suppress of hydrogen evolution reaction(HER) is the key to the CO2RR research. On the other hand, single atomic catalysts(SACs), due to their unique electronic and geometric structures, exhibit unusual catalytic activity for many important chemical reactions, such as CO oxidation, hydrogenation, OER, ORR, HER, etc., and have attracted extensive attention. Inspired by the profound progress, very recently, N-doped porous carbon support transition metal single atomic materials(M-N-C) have been employed in CO2RR research. The results manifest that M-N-C catalytic materials have exciting prospects for CO2RR, and are expected to be a substitute for precious metal(Au, Ag) catalysts for CO2 reduction in electrolyte aqueous media. This review is focused on fabrications, electrocatalytic performance and MNx active sites of M-N-C SACs used in electrochemical CO2RR. Finally, the problems remaining to be solved are summarized, and future research aspects and new ideas are prospected.

Fig. 1 Schematic illustration of Co-N5/HNPCSs[53]
Fig. 2 Protocol for the synthesis of M-N-C electrocatalysts[57]
Table 1 Summary of electrocatalytic CO2RR performances of the M-N-C catalysts reported in literatures Properties of polyelectrolyte-based draw solution
Catalysts (a)
M cont.
(wt%/
at%)
(b)
N cont.
(wt%/
at%)
(c)
M NPs
(d)
MNx
(e)
Catholyte
NaHCO3
or KHCO3
Product On-set [Potentials
(V vs. RHE),
FECO (%),
|J| (mA/cm2)]
Maximal FECO[FECO (%),
Potentials
(V vs. RHE),
|J| (mA/cm2)]
Stability [Potentials
(V vs. RHE),
time (h),
|J| (mA/cm2),
FECO (%)]
TOF
(h-1)
Tafel slope
(mV/
dec)
ref
Potent. FECO,|J| FECO Potent. |J|tot,|J|CO Potent. time |J|tot,|J|CO FECO
Mn-N-C 5 wt 6.22 wt no Nx 0.1 M K CO,H2,
HCO2
0.34 , 1.0 80 0.50 23, 49
Mn-NG N/A N/A no MNx 0.5 M K CO, H2 18 0.51 51
Mn-N-C 0.2 at 8.2 at no MNx 0.1 M K CO, H2, CH4 -0.41 40 -0.57 52
Fe-N-C 6 wt 7.2 wt no FeNx 0.1 M K CO, H2, HCO2 0.40 , 1.0 80 0.50 23, 49
Fe-NG N/A N/A MNx 0.5 M K CO, H2 28 0.41 51
Fe-N-C 0.3 at 8.2 at yes MNx 0.1 M K CO, H2, CH4 -0.41 65 -0.55 52
FeN-GS N/A N/A 0.1 M K CO, H2 -0.45 48 -0.52 , 0.32 54
Fe-N-C
(4-1-0.25-1000)
coated NPS
0.1 at 0.4 at yes FeNx 0.5 M K CO, H2 -0.45 80 -0.57 1.15, -0.57 12 h 0.6, 78 370 56
Fe-N-C 0.08 at 3.3 at no 0.5 M K CO, H2 -0.30 85 -0.47 1.5, -0.47 12 h 1.0, 83 194 57
Co-NG N/A N/A MNx 0.5 M K -0.50 51
Co-N-C 0.4 at 10.5 at yes MNx 0.1 M K CO, H2 -0.41 18 -0.50 52
CoN-GS 0.1 M K CO, H2 -0.30 30.5 -0.53 , 0.32 54
Co-N-C 0.09 at 3.3 at no 0.5 M K CO, H2 -0.30 57
Ni-N-C 0.7 at 9.5 at yes MNx 0.1 M K CO, H2 -0.55 85 -0.78 52
Ni-NG 2.2 wt 3.93 at MNx 0.1 M K CO, H2 -0.5 >90 -0.7 -0.9 -0.65 5 h 0.35
0.1,
7684 4600
(-0.8 V)
126 50
Ni-NG-1/5 1.0 wt 1.53 at no MNx 0.1 M K CO, H2 >85 -0.7 - 0.9 4500
(-0.8 V)
50
Ni-NG 0.44 at 6.53 at no Ni-N 0.5 M K CO, H2 0.31 93
>80
0.87
-0.7 - 0.9
8.6, 6.9 0.75 20 h 12, 90 76 320
(:0.75 V)
110 51
NiN-GS
+coated Ni
particles
N/A N/A yes Ni-Nx 0.1 M K CO, H2 <-0.35 2.0, 93.2 0.81 4, 0.81 20 h 3.4, > 80 28 800 138.5 54
Ni-N-C 0.10 at 3.2 at no 0.5 M K CO, H2 -0.30 93 -0.67 3.9, -0.67 12 h 3.9, 93 119 57
Catalysts (a)
M cont.
(wt%/at%)
(b)
N cont.
(wt%/
at%)
(c)
M NPs
(d)
MNx
(e)
Catholyte
NaHCO3
or KHCO3
Product On-set [Potentials
(V vs. RHE),
FECO (%),
|J| (mA/cm2)]
Maximal FECO[FECO (%),
Potentials
(V vs. RHE),
|J| (mA/cm2)]
Stability [Potentials
(V vs. RHE),
time (h),
|J| (mA/cm2),
FECO (%)]
TOF
(h-1)
Tafel slope
(mV/
dec)
ref
Potent. FECO,|J| FECO Potent. |J|tot,|J|CO Potent. time |J|tot,|J|CO FECO
Ni SAs/N-C 1.53 wt no Ni-N3C 0.5 M K CO, H2 -0.57 71.9 -0.9 7.5, -1.0 60 h , 10.1 68 5273(-1.0 V)
(JCO:7.37
mA/cm2)
249 59
Ni-N4-C 1.41 wt N/A no NiN4 0.5 M K CO, H2 0.39 64, 1.5 99 -0.81 28.6, -0.81 30 h 15.0, 103 65
A-Ni-NG 4.6 wt
0.82 at
4.8 at cluster Ni-N4 0.5 M K CO, H2, CH4 -0.35 10.5, 97 -0.98 8000 108 55
Cu-NG N/A N/A MNx CO, H2 10 -0.61 51
Cu-N-C 0.8 at 14.6 at yes MNx 0.1 M K CO, H2 -0.45 <25 >-0.78 52
Co-N2 N/A 9.27 at no CoN2 0.5 M K CO, H2 0.22 95 0.68 0.63 60 h 18.1, 94 33 000 62
Co-N3 N/A 13.67 at no CoN3 0.5 M K CO, H2 0.45 63 0.53 62
Co-N4 N/A 18.17 at no CoN4 0.5 M K CO, H2 0.55 4.2 0.83 84 62
Fe-N-C
Fe1.0w
3.0 wt (cry.Fe 1.4 wt) FeN4
1.6 wt%
0.5 M Na CO, H2 -0.5 31 -0.5 60
Fe-N-C
Fe0.5d
1.5 (cry.Fe 0.0 wt) FeN4
1.5 wt%
0.5 M Na CO, H2, CH4 -0.3 80 -0.5 -0.6 6 h 5.6, 60
Fe-N-C
Fe0.5d-950
2.1 wt (cry.Fe 0.1 wt) FeN4
2.0 wt%
0.5 M Na CO, H2, CH4 -0.3 80 -0.5 60
Fe-N-C
Fe1.0d
3.4 wt (cry.Fe 0.3 wt) FeN4
3.1 wt%
0.5 M Na CO, H2, CH4 -0.3 55 -0.5 60
Fe-N-C
Fe4.0d
12.0 wt(cry.
Fe 12.0 wt)
FeN4
0.0 wt%
0.5 M Na CO, H2 -0.5 10 -0.6 60
A-Ni-NSG 2.8 wt
/0.47 at
N9.2 at
S 0.35 at
Ni-N3S 0.5 M K CO, H2, CH4 -0.18 9.5, 97 -0.61 -0.72 100 h , ~ 22 14 800
(: 0.61 V)
114 55
Co-N,P-C
with Co2P
0.45 at N2.68 at
P 0.98 at
CoNx 0.1 M K CO, H2, CH4 -0.30 10, 62 -0.70 3.1, -0.60 20 h 3, 1.8 58 129 58
FeMn-N-C Fe 3 wt
Mn 1 wt
7.3wt no MNx 0.1 M K CO, H2, HCO2 0.36 , 1.0 80 0.50 23, 49
Catalysts (a)
M cont.
(wt%/
at%)
(b)
N cont.
(wt%/
at%)
(c)
M NPs
(d)
MNx
(e)
Catholyte
NaHCO3
or KHCO3
Product On-set [Potentials
(V vs. RHE),
FECO (%),
|J| (mA/cm2)]
Maximal FECO[FECO (%),
Potentials
(V vs. RHE),
|J| (mA/cm2)]
Stability [Potentials
(V vs. RHE),
time (h),
|J| (mA/cm2),
FECO (%)]
TOF
(h-1)
Tafel slope
(mV/
dec)
ref
Potent. FECO,|J| FECO Potent. |J|tot,|J|CO Potent. time |J|tot,|J|CO FECO
Fe-N-C
C-AFC?ZIF-8
Fe 1.47 wt
Zn 3.45 wt
10.15 wt no FeNx 1 M K CO, H2 -0.33 89.1,2.0 93.0 -0.43 5.0, 61
Fe-N-C Fe: 0.1 at
Zn:0.1 at
2.3 at no MN4
+MN2+2
0.1 M K CO, H2, CH4 0.29 53, 1.5 93 0.58 , 2.7 0.58 20 h 2.8, >93 64
Co-N-C Co: 0.1 at
Zn:0.2 at
2.2 at no MN4 0.1 M K CO, H2, CH4 0.38 16, 1.5 45 0.59 , 0.75 65
C-Zn2Ni1 ZIF-8 Ni: 0.93 wt
Zn: 3.22 wt
6.36 wt no NiN2.6
ZnN3.5
1 M K CO, H2 0.43 63, 96 0.73 , 22 63
C-Zn1Ni1 ZIF-8 Ni: 2.07 wt
Zn: 2.91 wt
7.29 wt no NiN2.7
ZnN3.4
1 M K CO, H2 0.43 80, 98 0.73 , 32.5 63
C-Zn1Ni4 ZIF-8 Ni: 5.44 wt
Zn: 3.29 wt
10.35 wt no NiN2.4
ZnN3.5
1 M K CO, H2 0.43 83, 99 0.73 , 45 0.63 2 h 26, 98 10 087
(1.13 V)
63
Co-N5/HNPCSs 3.54 wt no CoN5 0.2 M Na CO, H2 -0.37 99.2
99.4
>90
-0.73
-0.79
-0.57
-0.88
18.8, -0.73
10 h 10.2,~4.5 480.2(-0.73 V)(JCO: ~
4.5 mA/cm2)
53
Co-N4/HNPCSs 3.82 wt no CoN4 0.2 M Na CO, H2 53
Co-N3/HNPCSs 3.18 wt no CoN3 0.2 M Na CO, H2 53
Fe-N5/HNPCSs 3.03 wt 53
Ni-N5/HNPCSs 3.32 wt 53
Cu-N5/HNPCSs 3.75 wt 53
Fig. 3 Faradaic yield for CO(a) and H2(b) formation during CO2 reduction [60]
Fig. 4 (a) LSV curves;(b) CO Faradaic efficiencies at different applied potentials[62]
Fig. 5 Electrocatalytic performance of the CO2RR over the catalysts.(a) Stability test of C-Zn1Ni4 ZIF-8 at -0.63 V vs. RHE;(b) CO current density versus the content of Ni in C-ZnxNiy ZIF-8 at -0.83 V vs. RHE[63]
Fig. 6 Structural models of nitrogen atoms in various chemical environments in the N-C catalyst [49]
Fig. 7 (a) Atomic structure of M-N4-C10 and M-N2+2-C8(M=Fe or Co) active sites.(b) Calculated free energy evolution of CO2 reduction to CO on M-N2+2-C8 sites under an applied electrode potential(U) of 0 V and -0.6 V.(c) The initial and final state for the COOH dissociation reaction on M-N4-C10 and M-N2+2-C8 sites [64]
Fig. 8 (a) Single oxidative LSV scans for different catalysts.(b) EXAFS and(c) CO specific current density for Co-N2 and NH3-treated Co-N2.(d) Calculated Gibbs free energy diagrams for CO2 electroreduction to CO on Co-N2 and Co-N4[62]
Fig. 9 Proposed reaction paths for CO2 electroreduction by Ni SAs/N-C [59]
Fig. 10 Structural evolution of the active site in electrochemical CO2 reduction [55]
Fig. 11 Schematic illustration of the topo-chemical transformation strategy[65]
[1]
Aresta M, Dibenedetto A, Angelini A . Chem. Rev., 2014,114:1709.
[2]
Qiao J, Liu Y, Hong F, Zhang J . Chem. Soc. Rev., 2014,43:631.
[3]
周锋(Zhou F), 刘士民(Liu S M), Alshammari A S, 邓友全(Deng Y Q) . 科学通报 (Chinese Science Bulletin), 2015,60:2466.
[4]
Mistry H, Varela A S, Kühl S, Strasser P, Cuenya B R . Nat. Rev. Mater., 2016,1:16009.
[5]
Qu Y, Tsuneishi C, Tateno H, Matsumura Y, Atobe M . React. Chem. Eng., 2017,2:871.
[6]
Simonet J . Electrochem. Commun., 2018,88:67.
[7]
White J L, Baruch M F, Pander III J E, Hu Y, Fortmeyer I C, Park J E, Zhang T, Liao K, Gu J, Yan Y, Shaw T W, Abelev E, Bocarsly A B . Chem. Rev., 2015,115:12888.
[8]
Jhong H M, Ma S, Kenis P J A . Curr. Opin. Chem. Eng., 2013,2:191.
[9]
Chen Z, Concepcion J, Brennaman M K, Kang P, Norris M R, Hoertz P G, Meyer T J J. Proc. Nat. Acad. Sci. U.S.A, 2012,109:15606.
[10]
Kang P, Chen Z, Nayak A, Zhang S, Meyer T J . Energy Environ. Sci., 2014,7:4007.
[11]
Tatin A, Comminges C, Kokoh B, Costentin C, Robert M, Savéant J M . Proc. Nat. Acad. Sci. U. S. A., 2016,113:5526.
[12]
Morlanes N, Takanabe K, Rodionov V . ACS Catal., 2016,6:3092.
[13]
Hori Y . Electrochemical CO2 Reduction on Metal Electrodes. NY:Springer, 2008. 89.
[14]
Schneider J, Jia H F, Muckerman J T, Fujita E . Chem. Soc. Rev., 2012,41:2036.
[15]
Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A . Science, 2016,353:467.
[16]
Zhang Y J, Sethuraman V, Michalsky R, Peterson A A . ACS Catal., 2014,4:3742.
[17]
Kim D, Resasco J, Yu Y, Asiri A M, Yang P . Nat. Commun., 2014,5:4948.
[18]
Martin A J, Larrazabal G O, Perez-Ramirez J . Green. Chem., 2015,17:5114.
[19]
Zhang L, Zhao Z J, Gong J . Angew. Chem., Int. Ed. 2017,56:11326.
[20]
Bligaard T, Nørskov J K, Dahl S, Matthiesen J, Christensen C H, Sehested J . J.Catal., 2004,224:206.
[21]
Yang H P, Lin Q, Zhang H W, Li G D, Fan L D, Chai X Y, Zhang Q L, Liu J H, He C X . Chem. Commun., 2018,54:4108.
[22]
Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J L . J.Am. Chem. Soc., 2017,139:2160. https://www.ncbi.nlm.nih.gov/pubmed/28150946

doi: 10.1021/jacs.6b12103 pmid: 28150946
[23]
Lu Q, Rosen J, Zhou Y, Hutchings G, Kimmel Y C, Chen J G, Jiao F . Nat. Commun., 2014,5:3242.
[24]
Mistry H, Reske R, Zeng Z, Zhao Z J, Greeley J, Strasser P, Cueny B R . J.Am. Chem. Soc., 2014,136:16473. https://www.ncbi.nlm.nih.gov/pubmed/25325519

doi: 10.1021/ja508879j pmid: 25325519
[25]
刘孟岩(Liu M Y), 王元双(Wang Y S), 邓雯(Deng W), 温珍海(Wen Z H) . 化学进展 (Progress in Chemistry), 2018,30:398.
[26]
Kumar B, Atla V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M . Angew. Chem. Int. Ed., 2017,56:3645.
[27]
Zhang S, Yang Y, Zheng Y, Zhu H . J.Solid State Chem., 2018,263:44.
[28]
Huang P, Ci S, Wang G, Jia J, Xu J, Wen Z . J. CO2 Util., 2017,20:27.
[29]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y, Paris A R, Kim D, Yang P, Yaghi O M, Chang C J . Science, 2015,349:1208.
[30]
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A . Nat. Commun., 2013,4:2819.
[31]
Zhu D D, Liu J L, Qiao S Z . Adv. Mater., 2016,28:3423.
[32]
Wu J, Liu M, Sharma P P, Yadav R M, Ma L, Yang Y, Zou X, Zhou X D, Vajtai R, Yakobson B I, Lou J, Ajayan P M . Nano. Lett., 2016,16:466.
[33]
Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, Luo Y, Wu C, Xie Y . Nat. Commun., 2015,6:8647.
[34]
Kaplan A, Yuan Z, Benck J D, Govind Rajan A, Chu X S, Wang Q H, Strano M S . Chem. Soc. Rev., 2017,46:4530.
[35]
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M . Nat. Mater., 2015,14:763.
[36]
Petkovich N D, Stein A . Chem. Soc. Rev., 2013,42:3721.
[37]
Zhang S, Kang P, Ubnoske S, Brennaman M K, Song N, House R L, Glass J T, Meyer T J . J.Am. Chem. Soc., 2014,136:7845. https://www.ncbi.nlm.nih.gov/pubmed/24779427

doi: 10.1021/ja5031529 pmid: 24779427
[38]
Zheng Y, Jiao Y, Zhu Y H, Cai Q, Vasileff A, Li L H, Han Y, Chen Y, Qiao S Z . J.Am. Chem. Soc., 2017,139:3336. https://www.ncbi.nlm.nih.gov/pubmed/28221033

doi: 10.1021/jacs.6b13100 pmid: 28221033
[39]
Lei F, Liu W, Sun Y, Xu J, liu K, Liang L, Yao T, Pan B, Wei S, Xie Y . Nat. Commun., 2016,7:12697.
[40]
Wang Q, Zhou Z Y, Lai Y J, You Y, Liu J G, Wu X L, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun S G . J.Am. Chem. Soc., 2014,136:10882. https://www.ncbi.nlm.nih.gov/pubmed/25033100

doi: 10.1021/ja505777v pmid: 25033100
[41]
Liu J . ACS Catal., 2017,7:34.
[42]
Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N . Science, 2016,352:797.
[43]
Dou M, He D, Shao W, Liu H, Wang F, Dai L . Chem. Eur. J., 2016,22:2896.
[44]
Zhang B, Asakura H, Zhang J, De S, Yan N . Angew. Chem. Int. Ed., 2016,55:8319.
[45]
Guan H, Lin J, Qiao B, Yang X, Li L, Miao S, Liu J, Wang A, Wang X, Zhang T . Angew. Chem., 2016,128:2870.
[46]
Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne P N, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X . Sci. Adv., 2015,1:e1500462.
[47]
Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X . Science, 2014,344:616.
[48]
Peng Y, Lu B, Chen S . Adv. Mater., 2018,1801995.
[49]
Varela A S, Sahraie N R, Steinberg J, Ju W, Oh H S, Strasser P . Angew. Chem. Int. Ed., 2015,54:10758.
[50]
Su P, Iwase K, Nakanishi S, Hashimoto K, Kamiya K . Small, 2016,12:6083.
[51]
Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H . Energy Environ. Sci., 2018,11:893.
[52]
Ju W, Bagger A, Hao G P, Varela A S, Sinev I, Bon V, Cuenya B R, Kaskel S, Rossmeisl J, Strasser P . Nature Commun., 2017,8:944.
[53]
Pan Y, Lin R, Chen Y J, Liu S J, Zhu W, Cao X, Chen W, Wu K, Cheong W C, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y . J.Am. Chem. Soc., 2018,140:4218. https://www.ncbi.nlm.nih.gov/pubmed/29517907

doi: 10.1021/jacs.8b00814 pmid: 29517907
[54]
Jiang K, Siahrostami S, Akey A J, Li Y, Lu Z, Lattimer J, Hu Y, Stokes C, Gangishetty M, Chen G, Zhou Y, Hill W, Cai W, Bell D, Chan K, Nørskov J K, Cui Y, Wang H . Chem., 2017,3:950.
[55]
Yang H B, Hung S F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H Y, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H M, Li C M, Zhang T, Liu B . Nature Energy, 2018,3:140.
[56]
Shi J J, Hu X M, Madsen M R, Lamagni P, Bjerglund E T, Pedersen S U, Skrydstrup T, Daasbjerg K . ACS Appl. Nano Mater., 2018,1:3608.
[57]
Hu X M, Hval H H, Bjerglund E T, Dalgaard K J, Madsen M R, Pohl M M, Welter E, Lamagni P, Buhl K B, Bremholm M, Beller M, Pedersen S U, Skrydstrup T, Daasbjerg K . ACS Catal., 2018,8:6255.
[58]
Pan F, Liang A, Duan Y, Liu Q, Zhang J, Li Y . J. Mater. Chem. A, 2017,5:13104.
[59]
Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y . J.Am. Chem. Soc., 2017,139:8078. https://www.ncbi.nlm.nih.gov/pubmed/28595012

doi: 10.1021/jacs.7b02736 pmid: 28595012
[60]
Huan T N, Ranjbar N, Rousse G, Sougrati M, Zitolo A, Mougel V, Jaouen F, Fontecave M . ACS Catal., 2017,7:1520.
[61]
Ye Y, Cai F, Li H, Wu H, Wang G, Li Y, Miao S, Xie S, Si R, Wang J, Bao X . Nano Energy, 2017,38:281.
[62]
Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y . Angew. Chem. Int. Ed., 2018,57:1944.
[63]
Yan C, Li H, Ye Y, Wu H, Cai F, Si R, Xiao J, Miao S, Xie S, Yang F, Li Y, Wang G, Bao X . Energy Environ. Sci., 2018,11:1204.
[64]
Pan F, Zhang H, Liu K X, Cullen D, More K, Wang M, Feng Z, Wang G, Wu G, Li Y . ACS Catal., 2018,8:3116.
[65]
Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, Xie Y . J.Am. Chem. Soc., 2017,139:14889. https://www.ncbi.nlm.nih.gov/pubmed/28992701

doi: 10.1021/jacs.7b09074 pmid: 28992701
[66]
Lefè vre M, Proietti E, Jaouen F, Dodelet J P . Science, 2009,324:71.
[67]
Ramaswamy N, Tylus U, Jia Q, Mukerjee S . J.Am. Chem. Soc., 2013,135:15443. https://www.ncbi.nlm.nih.gov/pubmed/24032690

doi: 10.1021/ja405149m pmid: 24032690
[68]
Sharma P P, Wu J, Yadavet R M, Liu M, Wrightal C J, Tiwary C S, Yakobson B I, Lou J, Ajayan P M, Zhou X D . Angew. Chem. Int. Ed., 2015,54:13701.
[69]
Wu J, Liu M, Sharma P P, Yadav R M, Ma L, Yang Y, Zou X, Zhou X D, Vajtai R, Yakobson B I, Lou J, Ajayan P M . Nano Letter., 2016,16:466.
[70]
Xu J, Kan Y, Huang R, Zhang B, Wang B, Wu K H, Lin Y, Sun X, Li Q, Centi G, Su D . Chemsuschem, 2016,9:1085.
[71]
Wu J, Ma S, Sun J, Gold J I, Tiwary C, Kim B, Zhu L, Chopra N, Odeh I N, Vajtai R, Yu A, Luo R, Lou J, Ding G, Kenis P J A, Ajayan P M . Nat. Commun., 2016,7:13869.
No related articles found!