中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 811-830 DOI: 10.7536/PC181042 Previous Articles   Next Articles

Preparation and Applications of Mn-Ce Binary Oxides

Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang**(), Yougen Tang**()   

  1. Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources,College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received: Online: Published:
  • Contact: Haiyan Wang, Yougen Tang
  • About author:
    ** E-mail: (Haiyan Wang);
    (Yougen Tang)
  • Supported by:
    National Natural Science Foundation of China(21571189); National Natural Science Foundation of China(21671200); Hunan Provincial Science and Technology Plan Project, China(2017TP1001); Hunan Provincial Science and Technology Plan Project, China(2016TP1007); Innovation-Driven Project of Central South University(2016CXS009)
Richhtml ( 40 ) PDF ( 1114 ) Cited
Export

EndNote

Ris

BibTeX

Mn-Ce binary oxide has been considered as a kind of outstanding materials and widely applied to many fields by the reasons of abundance, low cost, excellent oxygen storage and release capability and high catalytic performance. In this review, the preparation and applications of Mn-Ce binary oxides have been reviewed in detail. Preparation methods including precipitation method, sol-gel method, hydrothermal method, impregnation method, and so on, are summarized. Meanwhile, their merits and demerits are compared. As for applications, air pollution removal(NOx, VOCs, CO, soot, Hg0and formaldehyde) and energy storage systems(supercapacitors and metal-air batteries) are overviewed particularly. In addition, the applications of water pollution disposal(fluoride adsorbed, As(Ⅲ) removal, methyl orange degradation) and organic catalytic synthesis are introduced briefly. Finally, the main problems of preparation methods of Mn-Ce binary oxides are discussed and the research directions are forecast.

Table 1 Crystal structure of manganese oxides
Fig. 1 Crystal structure of CeO2
Fig. 2 Schematic illustration of synthesis process and SEM image of flower like Mn-doped CeO2[16]
Fig. 3 (A) Chematic illustration of synthesis process of Mn-CeOx/CNTs;(B, C) TEM images of acid-treated CNTs and Mn-CeOx/CNTs[19]
Fig. 4 Schematic illustration of synthesis process of Mn-Ce binary oxide by sol-gel method
Fig. 5 (A) Schematic illustration of synthesis process and(B, C) SEM and high resolution TEM images of CeO2 nanowire/MnO2 nanosheet heterogeneous structure[27]
Fig. 6 (A) Schematic illustration of synthesis process and(B, C) FESEM and TEM images of Mn3O4/CeO2 nanotubes[33]
Fig. 7 (A, B) SEM images of MnxCe1-xO2[40]
Fig. 8 (A) Schematic diagram of SAS apparatus;(B,C) High resolution TEM images of hollow and solid MnOx-CeO2 nanospheres[41]
Table 2 Catalytic performance and physicochemical properties of different products[51]
Fig. 9 (A, B)SEM and TEM images of hollow MnOx-CeO2 nanotubes;(C) NOx conversion and(D) N2 selectivity of catalysts[54]
Fig. 10 (A) Schematic diagram;(B) NOx conversion and (C) tolerance of catalysts with different Ce/Ti ratios[57]
Fig. 11 (A) Benzene conversion of catalysts with different Ce/Mn ratios;(B) TEM image of Ce0.3Mn0.7O2;(C) The mechanism of benzene catalytic oxidation over CexMn1-xO2[25]
Fig. 12 (A) Chlorobenzene conversion;(B) Schematic diagram of reaction models and (C) Reaction mechanism of Mn0.8Ce0.2O2/HZSM-5[87,88]
Fig. 13 Schematic diagram of evolution of oxygen vacancies in soot catalytic oxidation[104]
Fig. 14 Reaction mechanism for NH3-SCR and Hg0 oxidation of 6%Ce-6%MnOx/Ti-PILC[152]
Table 3 Abatement of atmospheric pollutants by Mn-Ce binary oxides
Fig. 15 (A)The linear polarization curves and (B)galvanostatic discharge curves at 200 mA·cm-2 of Mn0.3Ce0.7O2 catalyst[156]
[1]
Byon H R, Suntivich J, Shao-Horn Y . Chem. Mater., 2011,23(15):3421.
[2]
Mao L Q, Sotomura T, Nakatsu K, Koshiba N, Zhang D, Ohsaka T . J. Electrochem. Soc., 2002,149(4):A504.
[3]
Liu Y S, Sun Q, Li W Z, Adair K R, Li J, Sun X L . Green Energy Environ., 2017,2(3):246.
[4]
朱瑾(Zhu J), 楼子墨(Lou Z M), 王卓行(Wang Z X), 徐新(Xu X) . 化学进展 (Prog. Chem.), 2014,26(9):1551.
[5]
张林静(Zhang L J), 张琼(Zhang Q), 郑袁明(Zheng Y M), 郑明兰(Zheng M L) . 环境科学学报 (Acta Sci. Circum.), 2013,33(6):1519.
[6]
Li L, Liu F, Wu F, Chen R J . J. Inorg. Mater., 2013,27(10):1009.
[7]
耿九光(Geng J G), 臧文杰(Zang W J), 李毅(Li Y), 陶建强(Tao J Q) . 化工进展 (Chem. Ind. Eng. Prog.), 2014,33(3):720.
[8]
郭金玲(Guo J L), 李常燕(Li C Y), 胡长峰(Hu C F), 沈岳年(Shen Y N) . 化学通报 (Chem. Bull.), 2014,77(2):146.
[9]
魏齐龙(Wei Q L), 孟玉堂(Meng Y T), 何建国(He J G), 黄文(Huang W) . 稀有金属 (Chin. J. Rare Met.), 2010,( s1):113.
[10]
Ginting E, Hu S, Thorne J E, Zhou Y H, Zhu J F, Zhou J . Appl. Surf. Sci., 2013,283:1.
[11]
Ginting E, Peterson E W, Zhou J . Appl. Catal. B, 2016,197:337.
[12]
Zhang M H, Jiang D Y, Jiang H X . Mater. Res. Bull., 2012,47(12):4006.
[13]
García P D, Juan A, Irigoyen B . J. Phys. Chem. C, 2013,117(35):18063.
[14]
Djadoun A, Benadda A, Guessis H, Barama A. Proceeding of the International Conference Nanomaterials: Applications and Properties. Sumy State University Publishing, 2013,01PCSI05.
[15]
Shen B X, Wang F M, Liu T . Powder Technol., 2014,253:152.
[16]
Liu L, Shi J J, Zhang X J, Liu J Z . J. Chem., 2015,2015:1.
[17]
Arena F, Trunfio G, Negro J, Spadaro L . Mater. Res. Bull., 2008,43(3):539.
[18]
Dinh M T N, Giraudon J M, Vandenbroucke A M, Morent R, de Geyter N, Lamonier J F . Appl. Catal. B, 2015,172/173:65.
[19]
Wang X, Zheng Y Y, Xu Z, Liu Y, Wang X L . Catal. Sci. Technol., 2014,4(6):1738.
[20]
Rao T, Shen M Q, Jia L W, Hao J J, Wang J . Catal. Commun., 2007,8(11):1743. https://www.ncbi.nlm.nih.gov/pubmed/18986244

doi: 10.1586/14737175.8.11.1743 pmid: 18986244
[21]
Zhang H, Yang W L, Li D, Wang X Y . React. Kinet. Catal. Lett., 2009,97(2):263.
[22]
Cao F, Xiang J, Su S, Wang P Y, Hu S, Sun L S . Fuel Process. Technol., 2015,135:66.
[23]
Liu P, Ren Y R, Huang X B, Dai Y X, Liu X Y, Sun D, He H N, Tang Y G, Wang H Y . Electrochim. Acta, 2018,278:42.
[24]
Zhang Q, He H N, Huang X B, Yan J, Tang Y G, Wang H Y . Chem. Eng. J., 2018,332:57.
[25]
Wang Z, Shen G L, Li J Q, Liu H D, Wang Q, Chen Y F . Appl. Catal. B, 2013,138/139:253.
[26]
You X C, Sheng Z Y, Yu D Q, Yang L, Xiao X, Wang S . Appl. Surf. Sci., 2017,423:845.
[27]
Du H W, Wang Y, Arandiyan H, Younis A, Scott J, Qu B, Wan T, Lin X, Chen J C, Chu D W . Mater. Today Commun., 2017,11:103.
[28]
Guo R T, Chen Q L, Ding H L, Wang Q S, Pan W G, Yang N Z, Lu C Z . Catal. Commun., 2015,69:165.
[29]
Schmit F, Bois L, Chiriac R, Toche F, Chassagneux F, Descorme C, Besson M, Khrouz L . J. Phys. Chem. Solids, 2017,103:22.
[30]
Zhang D S, Zhang L, Fang C, Gao R H, Qian Y L, Shi L Y, Zhang J P . RSC Adv., 2013,3(23):8811.
[31]
Sun Z H, Wang J, Zhu J X, Wang C, Wang J Q, Shen M Q . New J. Chem., 2017,41(8):3106. http://xlink.rsc.org/?DOI=C6NJ03838G

doi: 10.1039/C6NJ03838G
[32]
Yao X J, Kong T T, Chen L, Ding S M, Yang F M, Dong L . Appl. Surf. Sci., 2017,420:407. https://linkinghub.elsevier.com/retrieve/pii/S0169433217315118

doi: 10.1016/j.apsusc.2017.05.156
[33]
Guo S, Sun W Z, Yang W Y, Xu Z C, Li Q, Shang J K . ACS Appl. Mater. Inter., 2015,7(47):26291. https://www.ncbi.nlm.nih.gov/pubmed/26554576

doi: 10.1021/acsami.5b08862 pmid: 26554576
[34]
Li H L, Wu C Y, Li Y, Li L Q, Zhao Y C, Zhang J Y . J. Hazard. Mater., 2012,243:117. https://www.ncbi.nlm.nih.gov/pubmed/23131500

doi: 10.1016/j.jhazmat.2012.10.007 pmid: 23131500
[35]
Wang P Y, Su S, Xiang J, You H W, Cao F, Sun L S, Hu S, Zhang Y . Chemosphere, 2014,101:49. https://www.ncbi.nlm.nih.gov/pubmed/24332734

doi: 10.1016/j.chemosphere.2013.11.034 pmid: 24332734
[36]
Xie Y E, Li C T, Zhao L K, Zhang J, Zeng G M, Zhang X N, Zhang W, Tao S S . Appl. Surf. Sci., 2015,333:59.
[37]
He C, Shen B X, Chen J H, Cai J . Environ. Sci. Technol., 2014,48(14):7891. https://www.ncbi.nlm.nih.gov/pubmed/24956201

doi: 10.1021/es5007719 pmid: 24956201
[38]
Ma K L, Zou W X, Zhang L, Li L L, Yu S H, Tang C J, Gao F, Dong L . RSC Adv., 2017,7(10):5989.
[39]
Wei Y J, Liu J, Su W, Sun Y, Zhao Y L . Catal. Sci. Technol., 2017,7(7):1565.
[40]
Tang Q, Du J, Xie B, Yang Y, Yu W C, Tao C Y . J. Rare Earth, 2018,36:64. https://linkinghub.elsevier.com/retrieve/pii/S1002072117300662

doi: 10.1016/j.jre.2017.06.010
[41]
Jiang D Y, Zhang M H, Li G M, Jiang H X . Catal. Commun., 2012,17:59. https://www.ncbi.nlm.nih.gov/pubmed/27658860

doi: 10.2174/1871526516666161005155847 pmid: 27658860
[42]
Li L, Jing F, Yan J, Jing J, Chu W . Catal. Today, 2017,297:167. https://linkinghub.elsevier.com/retrieve/pii/S0920586117302857

doi: 10.1016/j.cattod.2017.04.053
[43]
Wang H Q, Jiang H X, Kuang L, Zhang M H . J. Supercrit. Fluid., 2014,92:84.
[44]
Jiang H X, Zhao J, Jiang D Y, Zhang M H . Catal. Lett., 2013,144(2):325.
[45]
Andreoli S, Deorsola F A, Pirone R . Catal. Today, 2015,253:199.
[46]
Zhou L L, Li C T, Zhao L K, Zeng G M, Gao L, Wang Y, Yu M E . Appl. Surf. Sci., 2016,389:532.
[47]
Qi G S, Yang R T . J. Catal., 2003,217(2):434. https://www.ncbi.nlm.nih.gov/pubmed/19289119

doi: 10.1016/j.expneurol.2009.03.003 pmid: 19289119
[48]
Eigenmann F, Maciejewski M, Baiker A . Appl. Catal. B, 2006,62(3/4):311.
[49]
Lu Y H, Chen H T . J. Phys. Chem. C, 2014,118(19):10043.
[50]
Maitarad P, Han J, Namuangruk S, Shi L Y, Chitpakdee C, Meeprasert J, Junkaew A, Kungwan N, Zhang D S . Mol. Simulat., 2017,43(13/16):1.
[51]
姚小江(Yao X J), 马凯莉(Ma K L), 邹伟欣(Zou W X), 何圣贵(He S G), 安继斌(An J B), 杨复沫(Yang F M), 董林(Dong L) . 催化学报 (Chin. J. Catal.), 2016,38(1):146.
[52]
Gao G, Shi J W, Liu C, Gao C, Fan Z Y, Niu C M . Appl. Surf. Sci., 2017,411:338. https://linkinghub.elsevier.com/retrieve/pii/S0169433217308449

doi: 10.1016/j.apsusc.2017.03.164
[53]
Li L, Sun B W, Sun J F, Yu S H, Ge C Y, Tang C J, Dong L . Catal. Commun., 2017,100:98. https://linkinghub.elsevier.com/retrieve/pii/S1566736717302509

doi: 10.1016/j.catcom.2017.06.019
[54]
Li C L, Tang X L, Yi H H, Wang L F, Cui X X, Chu C, Li J Y, Zhang R C, Yu Q J . Appl. Surf. Sci., 2018,428:924. https://linkinghub.elsevier.com/retrieve/pii/S0169433217327794

doi: 10.1016/j.apsusc.2017.09.131
[55]
Liu C, Gao G, Shi J W, He C, Li G D, Bai N, Niu C M . Catal. Commun., 2016,86:36.
[56]
Li S H, Huang B C, Yu C L . Catal. Commun., 2017,98:47.
[57]
Lee S M, Park K H, Hong S C . Chem. Eng. J., 2012,195/196:323.
[58]
Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T . Chemosphere, 2010,78(9):1160. https://www.ncbi.nlm.nih.gov/pubmed/20042220

doi: 10.1016/j.chemosphere.2009.11.049 pmid: 20042220
[59]
Yang Q W, Li P F, Ren B N, Zhu Y, Xu D Y . Adv. Mater. Res., 2013,773:645.
[60]
Carja G, Kameshima Y, Okada K, Madhusoodana C D . Appl. Catal. B, 2007,73(1/2):60.
[61]
Boningari T, Ettireddy P R, Somogyvari A, Liu Y, Vorontsov A, McDonald C A, Smirniotis P G .J. Catal., 2015,325:145.
[62]
Liu B T, Huang C J, Ke Y X, Wang W H, Kuo H L, Lin D, Lin V, Lin S H . Appl. Catal. A, 2017,538:74.
[63]
Zhang L, Zhang D S, Zhang J P, Cai S X, Fang C, Huang L, Li H R, Gao R H, Shi L Y . Nanoscale, 2013,5(20):9821. https://www.ncbi.nlm.nih.gov/pubmed/23970126

doi: 10.1039/c3nr03150k pmid: 23970126
[64]
Chen X B, Wang P L, Fang P, Ren T Y, Liu Y, Cen C P, Wang H Q, Wu Z B . Fuel Process. Technol., 2017,167:221.
[65]
Zhang Y B, Zheng Y Y, Wang X, Lu X L . RSC Adv., 2015,5:28385. http://xlink.rsc.org/?DOI=C5RA01129A

doi: 10.1039/C5RA01129A
[66]
Qu L, Li C T, Zeng G M, Zhang M Y, Fu M F, Ma J F, Zhan F M, Luo D Q . Chem. Eng. J., 2014,242:76. https://linkinghub.elsevier.com/retrieve/pii/S1385894713016574

doi: 10.1016/j.cej.2013.12.076
[67]
Liu Q L, Fu Z C, Ma L, Niu H J Y, Liu C X, Li J H, Zhang Z Y . Appl. Catal. A, 2017,547:146. https://linkinghub.elsevier.com/retrieve/pii/S0926860X17304040

doi: 10.1016/j.apcata.2017.08.024
[68]
Liu Z M, Zhu J Z, Li J H, Ma L L, Woo S L . ACS Appl. Mater. Inter., 2014,6(16):14500. https://www.ncbi.nlm.nih.gov/pubmed/25046245

doi: 10.1021/am5038164 pmid: 25046245
[69]
Xiong Y, Tang C J, Yao X J, Zhang L, Li L L, Wang X B, Deng Y, Gao F, Dong L . Appl. Catal. A, 2015,495:206.
[70]
Gao F Y, Tang X L, Yi H H, Li J Y, Zhao S Z, Wang J G, Chu C, Li C L . Chem. Eng. J., 2017,317:20.
[71]
Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T . Catal. Today, 2010,153(3/4):84.
[72]
Lin F W, He Y, Wang Z H, Ma Q, Whiddon R, Zhu Y Q, Liu J Z . RSC Adv., 2016,6(37):31422.
[73]
Jin R B, Liu Y, Wang Y, Cen W L, Wu Z B, Wang H Q, Weng X L . Appl. Catal. B, 2014,148/149:582.
[74]
Wang Y L, Li X X, Zhan L, Li C, Qiao W M, Ling L C . Ind. Eng. Chem. Res., 2015,54(8):2274.
[75]
Liu Y, Cen W L, Wu Z B, Weng X L, Wang H Q . J. Phys. Chem. C, 2012,116(43):22930.
[76]
Li W B, Wang J X, Gong H . Catal. Today, 2009,148(1/2):81.
[77]
Norsic C, Tatibouët J M, Batiot-Dupeyrat C, Fourré E . Chem. Eng. J., 2016,304:563.
[78]
Ordóñez S, Bello L, Sastre H, Rosal R, Dıez F V . Appl. Catal. B, 2002,38(2):139.
[79]
Okumura K, Kobayashi T, Tanaka H, Niwa M . Appl. Catal. B, 2003,44(4):325. https://linkinghub.elsevier.com/retrieve/pii/S0926337303001012

doi: 10.1016/S0926-3373(03)00101-2
[80]
Lu H F, Zhou Y, Huang H F, Zhang B, Chen Y F . J. Rare Earth, 2011,29(9):855.
[81]
Li W M, Liu H D, Ma X, Mo S P, Li S D, Chen Y F . J. Porous Mater., 2018,25:107.
[82]
Hu F Y, Chen J J, Zhao S, Li K Z, Si W Z, Song H, Li J H . Appl. Catal. A, 2017,540:57.
[83]
Du J P, Qu Z P, Dong C, Song L X, Qin Y, Huang N . Appl. Surf. Sci., 2018,433:1025.
[84]
Wang Z, Yang M, Shen G L, Liu H D, Chen Y F, Wang Q . J. Nanopart. Res., 2014,16(5):2367. http://link.springer.com/10.1007/s11051-014-2367-5

doi: 10.1007/s11051-014-2367-5
[85]
Liao Y N, Fu M L, Chen L M, Wu J L, Huang B C, Ye D Q . Catal. Today, 2013,216:220.
[86]
Wu Y S, Zhang Y X, Liu M, Ma Z C . Catal. Today, 2010,153(3/4):170.
[87]
Sun P F, Wang W L, Dai X X, Weng X L, Wu Z B . Appl. Catal. B, 2016,198:389.
[88]
Weng X L, Sun P F, Long Y, Meng Q J, Wu Z B . Environ. Sci. Technol., 2017,51(14):8057. https://www.ncbi.nlm.nih.gov/pubmed/28614947

doi: 10.1021/acs.est.6b06585 pmid: 28614947
[89]
He C, Yu Y K, Shi J W, Shen Q, Chen J S, Liu H X . Mater. Chem. Phys., 2015,157:87.
[90]
Wu L Y, He F, Luo J Q, Liu S T . RSC Adv., 2017,7(43):26952.
[91]
Yi W X, Qian K, Dao L . Appl. Catal. B, 2009,86(3/4):166.
[92]
Kan J E, Deng L, Li B, Huang Q, Zhu S M, Shen S B, Chen Y W . Appl. Catal. A, 2017,530:21.
[93]
Chojnacka A, Molenda M, Chmielarz L, Piwowarska Z, Gajewska M, Dudek B, Dziembaj R . Catal. Today, 2015,257:104. https://linkinghub.elsevier.com/retrieve/pii/S0920586115001212

doi: 10.1016/j.cattod.2015.02.019
[94]
Delimaris D, Ioannides T . Catalysts, 2017,7(11):339.
[95]
Ivanova R, Tsoncheva T . Bulg. Chem. Commun., 2017,49:176.
[96]
Tang W X, Wu X F, Liu G, Li S D, Li D Y, Li W H, Chen Y F . J. Rare Earth, 2015,33(1):62.
[97]
Colman-Lerner E, Peluso M A, Sambeth J, Thomas H . J. Rare Earth, 2016,34(7):675.
[98]
Zhu X B, Liu S Y, Cai Y X, Gao X, Zhou J S, Zheng C H, Tu X . Appl. Catal. B, 2016,183:124.
[99]
Wang B W, Chi C M, Xu M, Wang C, Meng D J . Chem. Eng. J., 2017,322:679.
[100]
Zhang H, Gu F N, Liu Q, Gao J J, Jia L H, Zhu T Y, Chen Y F, Zhong Z Y, Su F B . RSC Adv., 2014,4(29):14879.
[101]
Gao Y X, Wu X D, Liu S, Weng D . RSC Adv., 2016,6(62):57033.
[102]
He H, Lin X T, Li S J, Wu Z, Gao J H, Wu J L, Wen W, Ye D Q, Fu M L . Appl. Catal. B, 2018,223:134.
[103]
Liang Q, Wu X D, Weng D, Xu H B . Catal. Today, 2008,139(1/2):113. https://linkinghub.elsevier.com/retrieve/pii/S092058610800388X

doi: 10.1016/j.cattod.2008.08.013
[104]
Lin X T, Li S J, He H, Wu Z, Wu J L, Chen L M, Ye D Q, Fu M L . Appl. Catal. B, 2018,223:91.
[105]
Wu X D, Lin F, Xu H B, Weng D . Appl. Catal. B, 2010,96(1/2):101.
[106]
Haruta M, Kobayashi T, Sano H, Yamada N . Cheminform, 1987,18(42):405.
[107]
Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger J M, Lamy C . J. Electroanal. Chem., 1998,444(1):41.
[108]
Bond G C, Thompson D T . Gold Bull., 2000,33(2):41.
[109]
Wang C, Wen C, Lauterbach J, Sasmaz E . Appl. Catal. B, 2017,206:1.
[110]
Sayle T X T, Parker S C, Catlow C R A . J. Chem. Soc. Chem. Commun., 1992,14(14):977.
[111]
Liu W, Flytzanistephanopoulos M . J. Catal., 1995,153(2):304.
[112]
Kang M, Song M W, Kim K L . React. Kinet. Catal. Lett., 2003,79(1):3.
[113]
Zhao F Z, Gong M, Zhang G Y, Li J L . J. Rare Earth, 2015,33(6):604.
[114]
Du P P, Wang W W, Jia C J, Song Q S, Huang Y Y, Si R . Appl. Catal. A, 2016,518:87.
[115]
Venkataswamy P, Jampaiah D, Mukherjee D, Aniz C U, Reddy B M . Catal. Lett., 2016,146(10):2105.
[116]
Zhang X Y, Wei J J, Yang H X, Liu X F, Liu W, Zhang C, Yang Y Z . Eur. J. Inorg. Chem., 2013,2013(25):4443.
[117]
Zhan W C, Zhang X Y, Guo Y L, Wang L, Guo Y, Lu G Z . J. Rare Earth, 2014,32(2):146.
[118]
Zhang J, Cao Y D, Wang C A, Ran R . ACS Appl. Mater. Inter., 2016,8(13):8670. https://www.ncbi.nlm.nih.gov/pubmed/26998672

doi: 10.1021/acsami.6b00002 pmid: 26998672
[119]
Xing X X, Cai Y, Chen N, Li Y X, Deng D Y, Wang Y D . Ceram. Int., 2015,41(3):4675.
[120]
Zhang X M, Deng Y Q, Tian P F, Shang H H, Xu J, Han Y F . Appl. Catal. B, 2016,191:179.
[121]
Arena F, di Chio R, Fazio B, Espro C, Spiccia L, Palella A, Spadaro L . Appl. Catal. B, 2017,210:14. https://linkinghub.elsevier.com/retrieve/pii/S0926337317302618

doi: 10.1016/j.apcatb.2017.03.049
[122]
Arena F, di Chio R, Filiciotto L, Trunfio G, Espro C, Palella A, Patti A, Spadaro L . Appl. Catal. B, 2017,218:803. https://linkinghub.elsevier.com/retrieve/pii/S0926337317306586

doi: 10.1016/j.apcatb.2017.07.018
[123]
Nishimura K, Machida K I, Enyo M . J. Electroanal. Chem. Interfacial Electrochem., 1988,251(1):117. https://linkinghub.elsevier.com/retrieve/pii/0022072888803899

doi: 10.1016/0022-0728(88)80389-9
[124]
Mao C F, Vannice M A . J. Catal., 1995,154(2):230.
[125]
Idriss H, Kim K S, Barteau M A . Surf. Sci., 1992,262(1/2):113.
[126]
Huang H B, Leung D Y C . ACS Catal. 2011,1(4):348. https://pubs.acs.org/doi/10.1021/cs200023p

doi: 10.1021/cs200023p
[127]
Zhang J H, Li Y B, Wang L, Zhang C B, He H . Catal. Sci. Technol., 2015,5(4):2305. http://xlink.rsc.org/?DOI=C4CY01461H

doi: 10.1039/C4CY01461H
[128]
Shen Y N, Yang X Z, Wang Y Z, Zhang Y B, Zhu H Y, Gao L, Jia M L . Appl. Catal. B, 2008,79(2):142.
[129]
Zhang J, Jin Y, Li C Y, Shen Y N, Han L, Hu Z X, Di X W, Liu Z L . Appl. Catal. B, 2009,91(1/2):11.
[130]
Tang X F, Li Y G, Huang X M, Xu Y D, Zhu H Q, Wang J G, Shen W J . Appl. Catal., B, 2006,62(3/4):265.
[131]
Tang X F, Chen J L, Li Y G, Li Y, Xu Y D, Shen W J . Chem. Eng. J., 2006,118(1/2):119.
[132]
Tang X F, Chen J L, Huang X M, Xu Y D, Shen W J . Appl. Catal. B, 2008,81(1/2):115.
[133]
Li J W, Pan K L, Yu S J, Yan S Y, Chang M B . J. Environ. Sci.(China), 2014,26(12):2546. https://www.ncbi.nlm.nih.gov/pubmed/25499503

doi: 10.1016/j.jes.2014.05.030 pmid: 25499503
[134]
Quiroz J, Giraudon J M, Gervasini A, Dujardin C, Lancelot C, Trentesaux M, Lamonier J F . ACS Catal., 2015,5(4):2260.
[135]
Wang C, Liu H B, Chen T H, Qing C S, Zou X H, Xie J J, Zhang X R . Applied Clay Science, 2017,50.
[136]
Pavlish J H, Holmes M J, Benson S A, Crocker C R, Galbreath K C . Fuel Process. Technol., 2004,85(6):563.
[137]
Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C . Environ. Sci. Technol., 2004,38(2):555. https://www.ncbi.nlm.nih.gov/pubmed/14750733

doi: 10.1021/es034109t pmid: 14750733
[138]
Lamborg C H, Fitzgerald W F, O’Donnell J, Torgersen T . Geochim. Cosmochim. Acta, 2002,66(7):1105.
[139]
Glodek A, Pacyna J M . Atmos. Environ., 2009,43(35):5668.
[140]
Wang S X, Zhang L, Li G H, Wu Y, Hao J M, Pirrone N, Sprovieri F, Ancora M P . Atmos. Chem. Phys. Discuss., 2009,10(3):1183.
[141]
Meij R . Water Air Soil Pollut., 1991,56(1):21.
[142]
Chu P, Porcella D B . Water Air Soil Pollut., 1995,80(1/4):135.
[143]
Li H L, Wu C Y, Li Y, Li L Q, Zhao Y C, Zhang J Y . Chem. Eng. J., 2013,219:319. https://linkinghub.elsevier.com/retrieve/pii/S1385894713000429

doi: 10.1016/j.cej.2012.12.100
[144]
Zhang J, Duan Y F, Zhao W X, Zhu C, Zhou Q, She M . Plasma Chem. Plasma Process., 2015,36(2):471.
[145]
Ma Y P, Mu B L, Yuan D L, Zhang H Z, Xu H M . J. Hazard. Mater., 2017,333:186. https://www.ncbi.nlm.nih.gov/pubmed/28359035

doi: 10.1016/j.jhazmat.2017.03.032 pmid: 28359035
[146]
Li H L, Wu C Y, Li Y, Zhang J Y . Appl. Catal. B, 2012,111/112:381.
[147]
Reddy G K, He J, Thiel S W, Pinto N G, Smirniotis P G . J. Phys. Chem. C, 2015,119(16):8634.
[148]
Liu K H, Chen M Y, Tsai Y C, Lin H P, Hsi H C . Catal. Today, 2017,297:104.
[149]
Yang W, Liu Y X, Wang Q, Pan J F . Chem. Eng. J., 2017,326:169.
[150]
Zhang X, Shen B X, Shen F, Zhang X Q, Si M, Yuan P . Chem. Eng. J., 2017,326:551.
[151]
Romero A, Dodorado F, Asencio I, García P B, Valverde J L . Clays Clay Miner., 2006,54(6):737.
[152]
Wang Y Y, Shen B X, He C, Yue S J, Wang F M . Environ. Sci. Technol., 2015,49(15):9355. https://www.ncbi.nlm.nih.gov/pubmed/26154299

doi: 10.1021/acs.est.5b01435 pmid: 26154299
[153]
He C, Shen B X, Li F K . J. Hazard. Mater., 2016,304:10. https://www.ncbi.nlm.nih.gov/pubmed/26546699

doi: 10.1016/j.jhazmat.2015.10.044 pmid: 26546699
[154]
Handal H T, Thangadurai V . J. Power Sources, 2013,243:458.
[155]
Cui L H, Cui J W, Zheng H M, Wang Y, Qin Y Q, Shu X, Liu J Q, Zhang Y, Wu Y C . J. Power Sources, 2017,361:310.
[156]
Tang Y G, Qiao H, Wang H Y, Tao P P . J. Mater. Chem. A, 2013,1(40):12512.
[157]
Chen J J, Zhou N, Wang H Y, Peng Z G, Li H Y, Tang Y G, Liu K . Chem. Commun., 2015,51(50):10123. https://www.ncbi.nlm.nih.gov/pubmed/26006057

doi: 10.1039/c5cc02343b pmid: 26006057
[158]
Sun S S, Xue Y J, Wang Q, Huang H R, Miao H, Liu Z P . Electrochim. Acta, 2018,263:544.
[159]
Zhu Y Q, Liu S H, Jin C, Bie S Y, Yang R Z, Wu J . J. Mater. Chem. A, 2015,3(25):13563. http://xlink.rsc.org/?DOI=C5TA02722E

doi: 10.1039/C5TA02722E
[160]
Salehi M, Shariatinia Z . Electrochim. Acta, 2016,222:821. https://linkinghub.elsevier.com/retrieve/pii/S001346861632374X

doi: 10.1016/j.electacta.2016.11.043
[161]
Cao C, Xie J, Zhang S C, Pan B, Cao G S, Zhao X B . J. Mater. Chem. A, 2017,5(14):6747.
[162]
Zhang H H, Gu J N, Tong J, Hu Y F, Guan B, Hu B, Zhao J, Wang C Y . Chem. Eng. J., 2016,286:139.
[163]
Zhang Z Y, Hu Z A, Yang Y Y, Wang H W, Chang Y Q, Chen Y L, Lei Z Q . Acta Phys. -Chim. Sin., 2011,27(7):1673.
[164]
Ojha G P, Pant B, Park S J, Park M, Kim H Y . J. Colloid Interface Sci., 2017,494:338. https://www.ncbi.nlm.nih.gov/pubmed/28167422

doi: 10.1016/j.jcis.2017.01.100 pmid: 28167422
[165]
Deng S B, Liu H, Zhou W, Huang J, Yu G . J. Hazard. Mater., 2011,186(2/3):1360. https://www.ncbi.nlm.nih.gov/pubmed/21208743

doi: 10.1016/j.jhazmat.2010.12.024 pmid: 21208743
[166]
Zhang N, Zhang G M, Chong S, Zhao H, Huang T, Zhu J . J. Environ. Manage., 2018,205:134. https://www.ncbi.nlm.nih.gov/pubmed/28982062

doi: 10.1016/j.jenvman.2017.09.073 pmid: 28982062
[167]
Martins R C, Rodrigues V, Costa M R, Castro L M, Quinta-Ferreira R M . Ozone: Sci. Eng., 2016,38(4):261. http://www.tandfonline.com/doi/full/10.1080/01919512.2015.1134307

doi: 10.1080/01919512.2015.1134307
[168]
Gong Y M, Guo Y, Sheehan J D, Chen Z F, Wang S Z . Chem. Eng. J., 2018,331:578.
[169]
Poggio-Fraccari E, Sambeth J, Baronetti G, Mariño F . Int. J. Hydrogen Energy, 2014,39(16):8675.
[170]
Mat Rosid S J, Wan Abu Bakar W A, Ali R . Adv. Mater. Res., 2015,1107:67.
[171]
Li C B, Li Z H, Oh H Y, Hong G H, Park J S, Kim J M . Catal. Today, 2017: 237.
[172]
Chen H Y, Sayari A, Adnot A, Larachi F . Appl. Catal. B, 2001,32(3):195.
[173]
Abecassis-Wolfovich M, Jothiramalingam R, Landau M V, Herskowitz M, Viswanathan B, Varadarajan T K . Appl. Catal., B, 2005,59(1/2):91.
[174]
Abecassiswolfovich M, Landau M, Brenner A, Herskowitz M . J. Catal., 2007,247(2):201.
[175]
Arena F, Trunfio G, Negro J, Spadaro L . Appl. Catal. B, 2008,85(1/2):40.
[176]
Pérez-Omil J A, Delgado J J, Ouahbi W, Hungría A B, Browning N, Cauqui M A, Rodríguez-Izquierdo J M, Calvino J J . J. Phys. Chem. C, 2010,114(19):8981.
[177]
Ma C J, Wen Y Y, Yue Q Q, Li A Q, Fu J L, Zhang N W, Gai H J, Zheng J B, Chen B H . RSC Adv., 2017,7(43):27079.
[178]
$\acute{D}$Alessandro O, Pintos D G, Juan A, Irigoyen B, Sambeth J . Appl. Surf. Sci., 2015,359:14.
[179]
Martins R C, Quinta-Ferreira R M . Appl. Catal. B, 2009,90(1/2):268.
[180]
Li C S, Sun Y F, Zhang A M . RSC Adv., 2015,5(46):36394. https://www.ncbi.nlm.nih.gov/pubmed/26257891

doi: 10.1039/C5RA04257G pmid: 26257891
[181]
Zhang P F, Lu H F, Zhou Y, Zhang L, Wu Z L, Yang S Z, Shi H L, Zhu Q L, Chen Y F, Dai S . Nat. Commun., 2015,6:8446. https://www.ncbi.nlm.nih.gov/pubmed/26469151

doi: 10.1038/ncomms9446 pmid: 26469151
[182]
Nasreen S, Liu H, Qureshi L A, Sissou Z, Lukic I, Skala D . Fuel Process. Technol., 2016,148:76.
[183]
Mousavi S M, Meshkani F, Rezaei M . J. Environ. Chem. Eng., 2017,5(6):5493.
[184]
Putla S, Amin M H, Reddy B M, Nafady A, Al Farhan K A, Bhargava S K . ACS Appl. Mater. Inter., 2015,7(30):16525. https://www.ncbi.nlm.nih.gov/pubmed/26214855

doi: 10.1021/acsami.5b03988 pmid: 26214855
[185]
Sudarsanam P, Hillary B, Amin M H, Hamid S B A, Bhargava S K . Appl. Catal. B, 2016,185:213.
[186]
Liu G, Sun L, Liu J H, Wang F, Guild C J . Mol. Catal. 2017,440:148.
[187]
Levi R, Milman M, Landau M, Brenner A, Herskowitz M . Environ. Sci. Technol., 2008,42(14):5165. https://www.ncbi.nlm.nih.gov/pubmed/18754364

doi: 10.1021/es703070h pmid: 18754364
[188]
Arena F, Gumina B, Lombardo A F, Espro C, Patti A, Spadaro L, Spiccia L . Appl. Catal. B, 2015,162:260.
[189]
Han X W, Li C Q, Liu X H, Xia Q N, Wang Y Q . Green Chem., 2017,19(4):996.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[3] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[4] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[5] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[6] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[7] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[8] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.
[9] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[10] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[11] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.
[12] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[13] Maiyong Zhu*, Qi Chen, Wenjie Tong, Jiarui Kan, Weichen Sheng. Preparation and Application of Fe3O4 Nanomaterials [J]. Progress in Chemistry, 2017, 29(11): 1366-1394.
[14] Zhao Chenhuan, Zhang Wenqiang, Yu Bo*, Wang Jianchen, Chen Jing. Solid Oxide Electrolyzer Cells [J]. Progress in Chemistry, 2016, 28(8): 1265-1288.
[15] Huang Qitong, Lin Xiaofeng, Li Feiming, Weng Wen, Lin Liping, Hu Shirong. Synthesis and Applications of Carbon Dots [J]. Progress in Chemistry, 2015, 27(11): 1604-1614.