中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 800-810 DOI: 10.7536/PC181039 Previous Articles   Next Articles

Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures

Yaoxu Xiong1,2, Yougen Hu1,**(), Pengli Zhu1,**(), Rong Sun1, Ching-Ping Wong3   

  1. 1.Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
    2.Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
    3.Georgia Institute of Technology, Georgia 30332, USA
  • Received: Online: Published:
  • Contact: Yougen Hu, Pengli Zhu
  • About author:
    ** E-mail: (Yougen Hu);
    (Pengli Zhu)
  • Supported by:
    National Natural Science Foundation of China(61701488); National Natural Science Foundation of China(21571186); Shenzhen Basic Research Plan(JCYJ20170818162548196); National and Local Joint Engineering Laboratory(2017-934); SIAT Innovation Program for Excellent Young Researchers(2016005)
Richhtml ( 120 ) PDF ( 2172 ) Cited
Export

EndNote

Ris

BibTeX

As one of flexible electronic devices, flexible pressure sensors have many merits such as high sensitivity, excellent flexibility and facile fabrication process, and they have been widely used in many burgeoning fields including wearable devices, health care, soft robots, human-machine interaction, etc. Sensitivity, detection limit, response time and cyclic stability are the key parameters of the flexible pressure sensors, and the introduction of micro/nano- structures into flexible pressure sensors will play an important role in improving their comprehensive performance. Based on the main types of micro-nano structure, this review introduces the latest research progress of flexible pressure sensors, including the influence of various morphological micro-nano structures on the performance of flexible pressure sensors and their applications in flexible electronics. Moreover, the prospect of their future development is also outlined.

Table 1 Comparison of resistive and capacitive flexible pressure sensors
Fig. 1 Schematic diagram of the effect of micro/nano structure on piezoresistive and capacitive sensors (a) Piezoresistive flexible pressure sensor without micro/nano-structure; (b) Piezoresistive flexible pressure sensor with micro/nano-structure; (c) Capacitive flexible pressure sensor without micro/nano-structure; (d) Capacitive flexible pressure sensor without micro/nano-structure
Fig. 2 Process of the capacitive-type flexible pressure sensors with wavy microstructure by pre-stretching method:(a) Treating the pre-stretched PDMS by plasma;(b) Spin-coating silver nanowires;(c) Release of pre-stress;(d) Spin-coating PDMS(e) Separating PDMS;(f) Schematic diagram of assembled flexible pressure sensor[39]
Fig. 3 Schematic diagram and performance characterization of piezoresistive pressure sensor(a) Fabrication process;(b) Schematic diagram of microstructure changed during stretching;(c) Pressure detection;(d) Pulse detection[44]
Fig. 4 Preparation of micro-convex structure by self-assembly method[20]
Fig. 5 Schematic diagram of flexible pressure sensor and pulse signal monitoring diagram(a) Schematic diagram of sensor detecting human neck pulse;(b, c) The SEM of microstructure;(d) Schematic diagram of the monitoring human neck;(e) Pulse signal detection[48]
Fig. 6 Preparation of bionic microstructure(a) Fabrication process of imitation rosette micro-structure[64];(b) Fabrication process of imitation lotus leaf micro-structure[67];(c) Fabrication process of imitation epipremnumaureum leaf micro-structure[71]
Fig. 7 Pressure-sensing models of as-prepared RGO-PU-HT-P sponge pressure sensors and the contact area variation of fiber network with compressive deformation[76]
Fig. 8 Microstructure characterization and application of flexible pressure sensor(a) Schematic diagram of hollow sphere structure;(b) SEM and TEM morphology of hollow sphere;(c) Application of flexible pressure sensor in detecting pressure and its distribution[87]
Fig. 9 Pressure sensor with multi-size microstructure(a) Schematic diagram of pyramid microstructures of different sizes;(b) SEM;(c) Schematic diagram of deformation of different size microstructures under pressure and comparison[30]
[1]
Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X M . Adv. Mater., 2014,26:5310. https://www.ncbi.nlm.nih.gov/pubmed/24943999

doi: 10.1002/adma.201400633 pmid: 24943999
[2]
Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W . Nat. Commun., 2014,5:3132. https://www.ncbi.nlm.nih.gov/pubmed/24495897

doi: 10.1038/ncomms4132 pmid: 24495897
[3]
Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A . Nat. Mater., 2013,12:899. https://www.ncbi.nlm.nih.gov/pubmed/23872732

doi: 10.1038/nmat3711 pmid: 23872732
[4]
Schwartz G, Tee B C K, Mei J, Appleton A L, Kim D H, Wang H, Bao Z . Nat. Commun., 2013,4:1859. https://www.ncbi.nlm.nih.gov/pubmed/23673644

doi: 10.1038/ncomms2832 pmid: 23673644
[5]
Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwoediauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T . Nature, 2013,499:458. https://doi.org/10.1038/nature12314

doi: 10.1038/nature12314
[6]
Fan F R, Lin L, Zhu G, Wu W, Zhang R, Wang Z L . Nano Lett., 2012,12:3109. https://www.ncbi.nlm.nih.gov/pubmed/22577731

doi: 10.1021/nl300988z pmid: 22577731
[7]
Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z . Nat. Nanotechnol., 2011,6:788. https://www.ncbi.nlm.nih.gov/pubmed/22020121

doi: 10.1038/nnano.2011.184 pmid: 22020121
[8]
Abraham W T, Adamson P B, Bourge R C, Aaron M F, Costanzo M R, Stevenson L W, Strickland W, Neelagaru S, Raval N, Krueger S, Weiner S, Shavelle D, Jeffries B, Yadav J S, Grp C T S . Lancet, 2011,377:658. https://www.ncbi.nlm.nih.gov/pubmed/21315441

doi: 10.1016/S0140-6736(11)60101-3 pmid: 21315441
[9]
Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu P W, Fearing R S, Javey A . Nat. Mater., 2010,9:821. https://www.ncbi.nlm.nih.gov/pubmed/20835235

doi: 10.1038/nmat2835 pmid: 20835235
[10]
Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z . Nature Materials, 2010,9:859. https://www.ncbi.nlm.nih.gov/pubmed/20835231

doi: 10.1038/nmat2834 pmid: 20835231
[11]
Dahiya R S, Metta G, Valle M, Sandini G . LEEE Transactions on Robotics, 2010,26:1.
[12]
Wang X, Zhou J, Song J, Liu J, Xu N, Wang Z L . Nano Lett., 2006,6:2768. https://www.ncbi.nlm.nih.gov/pubmed/17163703

doi: 10.1021/nl061802g pmid: 17163703
[13]
Khang D Y, Jiang H Q, Huang Y, Rogers J A . Science, 2006,311:208. https://www.ncbi.nlm.nih.gov/pubmed/16357225

doi: 10.1126/science.1121401 pmid: 16357225
[14]
Qian X, Su M, Li F, Song Y . Acta Chimica Sinica, 2016,74:565.
[15]
Li Y, Li Y, Su M, Li W, Li Y, Li H, Qian X, Zhang X, Li F, Song Y . Advanced Electronic Materials, 2017,3:1700253.
[16]
Su M, Huang Z, Li F, Zhang Z, Guo Y, Cai Z, Li Y, Li W, Qian X, Li Y, Zhang X, Song Y . Advanced Materials Technologies, 2018,3.
[17]
Trung T Q, Lee N E . Adv. Mater., 2016,28:4338. https://www.ncbi.nlm.nih.gov/pubmed/26840387

doi: 10.1002/adma.201504244 pmid: 26840387
[18]
Han S, Kim M K, Wang B, Wie D S, Wang S D, Lee C H . Adv. Mater., 2016,28:10257. https://www.ncbi.nlm.nih.gov/pubmed/27714861

doi: 10.1002/adma.201603878 pmid: 27714861
[19]
Zou M, Ma Y, Yuan X, Hu Y, Liu J, Zhong J . J. Semicond., 2018,39:011010.
[20]
Zhang Y, Hu Y G, Zhu P L, Han F, Zhu Y, Sun R, Wong C P . ACS Appl. Mater. Interfaces, 2017,9:35968.
[21]
Su M, Li F, Chen S, Huang Z, Qin M, Li W, Zhang X, Song Y . Adv. Mater., 2016,28:1369. https://www.ncbi.nlm.nih.gov/pubmed/26644086

doi: 10.1002/adma.201504759 pmid: 26644086
[22]
Rogers J A, Someya T, Huang Y G . Science, 2010,327:1603. https://www.ncbi.nlm.nih.gov/pubmed/20339064

doi: 10.1126/science.1182383 pmid: 20339064
[23]
Wang Y, Li Z, Xiao J . Journal of Electronic Packaging, 2016,138. https://www.ncbi.nlm.nih.gov/pubmed/27222634

doi: 10.1115/1.4032932 pmid: 27222634
[24]
Si C, Wang Y, Zhang J, Gao H, Lv L, Han L, Zhang Z . Nano Energy, 2016,23:105.
[25]
Lou Z, Chen S, Wang L, Jiang K, Shen G . Nano Energy, 2016,23:7.
[26]
Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I . ACS Nano, 2014,8:5154. https://www.ncbi.nlm.nih.gov/pubmed/24749972

doi: 10.1021/nn501204t pmid: 24749972
[27]
Oh J Y, Rondeau-Gagne S, Chiu Y C, Chortos A, Lissel F, Wang G N, Schroeder B C, Kurosawa T, Lopez J, Katsumata T, Xu J, Zhu C, Gu X, Bae W G, Kim Y, Jin L, Chung J W, Tok J B, Bao Z . Nature, 2016,539:411. https://www.ncbi.nlm.nih.gov/pubmed/27853213

doi: 10.1038/nature20102 pmid: 27853213
[28]
Onorato J, Pakhnyuk V, Luscombe C K . Polymer Journal, 2017,49:41.
[29]
Xu S, Yan Z, Jang K I, Huang W, Fu H, Kim J, Wei Z, Flavin M, McCracken J, Wang R, Badea A, Liu Y, Xiao D, Zhou G, Lee J, Chung H U, Cheng H, Ren W, Banks A, Li X, Paik U, Nuzzo R G, Huang Y, Zhang Y, Rogers J A . Science, 2015,347:154. https://www.ncbi.nlm.nih.gov/pubmed/25574018

doi: 10.1126/science.1260960 pmid: 25574018
[30]
Shu Y, Tian H, Yang Y, Li C, Cui Y, Mi W, Li Y, Wang Z, Deng N, Peng B, Ren T L . Nanoscale, 2015,7:8636. https://www.ncbi.nlm.nih.gov/pubmed/25901569

doi: 10.1039/c5nr01259g pmid: 25901569
[31]
Spain E, McCooey A, Dolan C, Bagshaw H, Leddy N, Keyes T E, Forster R J . Analyst, 2014,139:5504. https://www.ncbi.nlm.nih.gov/pubmed/25184761

doi: 10.1039/c4an01222d pmid: 25184761
[32]
Song J, Li J, Xu J, Zeng H . Nano Lett., 2014,14:6298. https://www.ncbi.nlm.nih.gov/pubmed/25302453

doi: 10.1021/nl502647k pmid: 25302453
[33]
Rathmell A R, Minh N, Chi M, Wiley B J . Nano Lett., 2012,12:3193. https://www.ncbi.nlm.nih.gov/pubmed/22642652

doi: 10.1021/nl301168r pmid: 22642652
[34]
Rathmell A R, Bergin S M, Hua Y L, Li Z Y, Wiley B J . Adv. Mater., 2010,22:3558. https://www.ncbi.nlm.nih.gov/pubmed/20512817

doi: 10.1002/adma.201000775 pmid: 20512817
[35]
Jiang H Q, Sun Y G, Rogers J A, Huang Y G . Appl. Phys. Lett., 2007,90:3.
[36]
Yang C F, Li L L, Zhao J X, Wang J J, Xie J X, Cao Y P, Xue M Q, Lu C H . ACS Appl. Mater. Interfaces, 2018,10:25811.
[37]
Kou H, Zhang L, Tan Q, Liu G, Lv W, Lu F, Dong H, Xiong J . Sensors and Actuators a -Physical, 2018,277:150.
[38]
Kim H, Lee S W, Joh H, Seong M, Lee W S, Kang M S, Pyo J B, Oh S J . ACS Appl. Mater. Interfaces, 2018,10:1389.
[39]
Shuai X T, Zhu P L, Zeng W J, Hu Y G, Liang X W, Zhang Y, Sun R, Wong C P . ACS Appl. Mater. Interfaces, 2017,9:26314.
[40]
Cui J, Zhang B, Duan J, Guo H, Tang J . Sensors, 2016,16.
[41]
Mu J, Hou C, Wang G, Wang X, Zhang Q, Li Y, Wang H, Zhu M . Adv. Mater., 2016,28:9491. https://www.ncbi.nlm.nih.gov/pubmed/27629525

doi: 10.1002/adma.201603395 pmid: 27629525
[42]
Schwartz G, Tee B C K, Mei J G, Appleton A L, Kim D H, Wang H L, Bao Z N . Nat. Commun., 2013,4:8.
[43]
Zhu B W, Niu Z Q, Wang H, Leow W R, Wang H, Li Y G, Zheng L Y, Wei J, Huo F W, Chen X D . Small, 2014,10:3625. https://www.ncbi.nlm.nih.gov/pubmed/24895228

doi: 10.1002/smll.201401207 pmid: 24895228
[44]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I . Adv. Mater., 2014,26:3451. https://www.ncbi.nlm.nih.gov/pubmed/24536023

doi: 10.1002/adma.201305182 pmid: 24536023
[45]
Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H . ACS Nano, 2014,8:4689. https://www.ncbi.nlm.nih.gov/pubmed/24592988

doi: 10.1021/nn500441k pmid: 24592988
[46]
Wang Z, Zhang L, Liu J, Jiang H, Li C . Nanoscale, 2018,10:10691. https://www.ncbi.nlm.nih.gov/pubmed/29845159

doi: 10.1039/c8nr01495g pmid: 29845159
[47]
Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y . Nat. Mater., 2012,11:795. https://www.ncbi.nlm.nih.gov/pubmed/22842511

doi: 10.1038/nmat3380 pmid: 22842511
[48]
Pang C, Koo J H, Nguyen A, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H, Bao Z A . Adv. Mater., 2015,27:634. https://www.ncbi.nlm.nih.gov/pubmed/25358966

doi: 10.1002/adma.201403807 pmid: 25358966
[49]
Shao Q, Niu Z Q, Hirtz M, Jiang L, Liu Y J, Wang Z H, Chen X D . Small, 2014,10:1466. https://www.ncbi.nlm.nih.gov/pubmed/24851243

doi: 10.1002/smll.201303601 pmid: 24851243
[50]
Liu H, Li Y, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z . J. Mater. Chem. C, 2016,4:157.
[51]
Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L . Adv. Mater., 2014,26:2659. https://www.ncbi.nlm.nih.gov/pubmed/24677245

doi: 10.1002/adma.201305064 pmid: 24677245
[52]
Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z . Adv. Funct. Mater., 2014,24:5427.
[53]
Xiao F, Li Y, Gao H, Ge S, Duan H . Biosensors & Bioelectronics, 2013,41:417. https://www.ncbi.nlm.nih.gov/pubmed/23036772

doi: 10.1016/j.bios.2012.08.062 pmid: 23036772
[54]
Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z . Adv. Mater., 2013,25:5997. https://www.ncbi.nlm.nih.gov/pubmed/24151185

doi: 10.1002/adma.201302240 pmid: 24151185
[55]
Tee B C K, Wang C, Allen R, Bao Z . Nat. Nanotechnol., 2012,7:825. https://www.ncbi.nlm.nih.gov/pubmed/23142944

doi: 10.1038/nnano.2012.192 pmid: 23142944
[56]
Jung I, Xiao J, Malyarchuk V, Lu C, Li M, Liu Z, Yoon J, Huang Y, Rogers J A . Proc. Natl. Acad. Sci. U. S. A., 2011,108:1788. https://www.ncbi.nlm.nih.gov/pubmed/21245356

doi: 10.1073/pnas.1015440108 pmid: 21245356
[57]
Akle B J, Bennett M D, Leo D J, Wiles K B, McGrath J E . Journal of Materials Science, 2007,42:7031.
[58]
Biddiss E, Chau T . Medical Engineering & Physics, 2006,28:568. https://www.ncbi.nlm.nih.gov/pubmed/16260170

doi: 10.1016/j.medengphy.2005.09.009 pmid: 16260170
[59]
Cornell B A, BraachMaksvytis V L B, King L G, Osman P D J, Raguse B, Wieczorek L, Pace R J . Nature, 1997,387:580. https://www.ncbi.nlm.nih.gov/pubmed/9177344

doi: 10.1038/42432 pmid: 9177344
[60]
Liu L, Huang Y, Li F, Ma Y, Li W, Su M, Qian X, Ren W, Tang K, Song Y . Chemical Communications, 2018,54:4810. https://www.ncbi.nlm.nih.gov/pubmed/29693084

doi: 10.1039/c8cc02339e pmid: 29693084
[61]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K . Adv. Mater., 2016,28:5300. https://www.ncbi.nlm.nih.gov/pubmed/27159832

doi: 10.1002/adma.201600408 pmid: 27159832
[62]
Su B, Gong S, Ma Z, Yap L W, Cheng W . Small, 2015,11:1886. https://www.ncbi.nlm.nih.gov/pubmed/25504745

doi: 10.1002/smll.201403036 pmid: 25504745
[63]
Wang X, Gu Y, Xiong Z, Cui Z, Zhang T . Adv. Mater., 2014,26:1336. https://www.ncbi.nlm.nih.gov/pubmed/24347340

doi: 10.1002/adma.201304248 pmid: 24347340
[64]
Wei Y, Chen S, Lin Y, Yang Z M, Liu L . J. Mater. Chem. C, 2015,3:9594.
[65]
Wan Y, Qiu Z, Huang J, Yang J, Wang Q, Lu P, Yang J, Zhang J, Huang S, Wu Z, Guo C F . Small, 2018,14:1801657.
[66]
Li T, Luo H, Qin L, Wang X, Xiong Z, Ding H, Gu Y, Liu Z, Zhang T . Small, 2016,12:5042. https://www.ncbi.nlm.nih.gov/pubmed/27323288

doi: 10.1002/smll.201600760 pmid: 27323288
[67]
Wan Y, Qiu Z, Hong Y, Wang Y, Zhang J, Liu Q, Wu Z, Guo C F . Advanced Electronic Materials, 2018,4:1700586. http://doi.wiley.com/10.1002/aelm.v4.4

doi: 10.1002/aelm.v4.4
[68]
Shi J D, Wang L, Dai Z H, Zhao L Y, Du M D, Li H B, Fang Y . Small, 2018,14:7.
[69]
Park J, Kim M, Lee Y, Lee H S, Ko H . Sci. Adv., 2015,1:13.
[70]
Cao Y, Li T, Gu Y, Luo H, Wang S, Zhang T . Small, 2018,14.
[71]
Xia K L, Wang C Y, Jian M Q, Wang Q, Zhang Y Y . Nano Res., 2018,11:1124.
[72]
Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z . J. Mater. Chem. C, 2017,5:73.
[73]
Wei Y, Chen S, Yuan X, Wang P, Liu L . Adv. Funct. Mater., 2016,26:5078.
[74]
Wei Y, Chen S, Li F, Lin Y, Zhang Y, Liu L . ACS Appl. Mater. Interfaces, 2015,7:14182.
[75]
Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K . Nanoscale, 2015,7:2926. https://www.ncbi.nlm.nih.gov/pubmed/25588044

doi: 10.1039/c4nr06494a pmid: 25588044
[76]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H . Adv. Mater., 2013,25:6692. https://www.ncbi.nlm.nih.gov/pubmed/24027108

doi: 10.1002/adma.201303041 pmid: 24027108
[77]
Vandeparre H, Watson D, Lacour S P . Appl. Phys. Lett., 2013,103:204103. http://aip.scitation.org/doi/10.1063/1.4832416

doi: 10.1063/1.4832416
[78]
Yu B Z, Long N, Moussy Y, Moussy F . Biosensors & Bioelectronics, 2006,21:2275. https://www.ncbi.nlm.nih.gov/pubmed/16330201

doi: 10.1016/j.bios.2005.11.002 pmid: 16330201
[79]
Cao M, Wang M, Li L, Qiu H, Padhiar M A, Yang Z . Nano Energy, 2018,50:528.
[80]
Zhao S, Guo L, Li J, Li N, Zhang G, Gao Y, Li J, Cao D, Wang W, Jin Y, Sun R, Wong C P . ACS Appl. Mater. Interfaces, 2017,9:12147.
[81]
Zhao S, Guo L, Li J, Li N, Zhang G, Gao Y, Li J, Cao D, Wang W, Jin Y, Sun R, Wong C P . Small, 2017,13:1700944. http://doi.wiley.com/10.1002/smll.v13.28

doi: 10.1002/smll.v13.28
[82]
Zhang H, Liu N, Shi Y, Liu W, Yue Y, Wang S, Ma Y, Wen L, Li L, Long F, Zou Z, Gao Y . ACS Appl. Mater. Interfaces, 2016,8:22374.
[83]
Zhao S, Gao Y, Zhang G, Deng L, Li J, Sun R, Wong C P . Carbon, 2015,86:225.
[84]
He W, Li G, Zhang S, Wei Y, Wang J, Li Q, Zhang X . ACS Nano, 2015,9:4244. https://www.ncbi.nlm.nih.gov/pubmed/25811954

doi: 10.1021/acsnano.5b00626 pmid: 25811954
[85]
Huang Y, He X, Gao L, Wang Y, Liu C, Liu P . Journal of Materials Science-Materials in Electronics, 2017,28:9495.
[86]
Dong X, Wei Y, Chen S, Lin Y, Liu L, Li J . Composites Science and Technology, 2018,155:108.
[87]
Pan L J, Chortos A, Yu G H, Wang Y Q, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z N . Nat. Commun., 2014,5:8.
[88]
Lou Z, Chen S, Wang L L, Shi R L, Li L, Jiang K, Chen D, Shen G Z . Nano Energy, 2017,38:28.
[89]
Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z . Nat. Commun., 2014,5:3002. https://www.ncbi.nlm.nih.gov/pubmed/24389734

doi: 10.1038/ncomms4002 pmid: 24389734
[90]
Cheng W, Wang J, Ma Z, Yan K, Wang Y M, Wang H T, Li S, Li Y, Pan L J, Shi Y . IEEE Electron Device Lett., 2018,39:288.
[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[3] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[4] Sun Yiran, Yang Mingxuan, Yu Fei, Chen Junhong, Ma Jie. Synthesis of Graphene Aerogel Adsorbents and Their Applications in Water Treatment [J]. Progress in Chemistry, 2015, 27(8): 1133-1146.
[5] Chen Xin, Zhang Naiqing, Sun Kening. 3d Transition-Metal Oxides as Anode Micro/Nano-Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(10): 2045-2054.