中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 1-9 DOI: 10.7536/PC181037   Next Articles

• Review •

Acylation Using Carboxylic Acids as Acylating Agents: Applications in Organic Synthesis

He Huang1, Chuanjun Song1, Junbiao Chang1,2,**()   

  1. 1. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
    2. Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Xinxiang 453007, China
  • Received: Revised: Online: Published:
  • Contact: Junbiao Chang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(81330075)
Richhtml ( 86 ) PDF ( 3255 ) Cited
Export

EndNote

Ris

BibTeX

The classic Friedel-Crafts acylation uses acid chloride or anhydride as acylating agents, and Lewis acid as catalysts. The large amount of Lewis acid applied and HCl generated in the acylation reaction must be treated. Acid chlorides are sensitive to moisture, and danger might occur during storage and usage. Acylation using carboxylic acids in the presence of trifluoroacetic anhydride as acylating agents does not require conversion of the acylating agents into acid chloride, anhydride or amide. Furthermore, the trifluoroacetic anhydride and trifluoroacetic acid generated can be easily recovered by distillation. Therefore, it can effectively solve the problems associated with the classic Friedel-Crafts acylation. This review summarizes the developments of the acylation process using carboxylic acids in the presence of trifluoroacetic anhydride as acylating agents, and their applications in the syntheses of organic functional molecules, drug molecules and natural products during the last two decades.

Scheme 1 TFAA / H3PO4 mediated acylations[17]
Scheme 2 TFAA/H3PO4-mediated acylation using phos-phonoacetic acid as acylating agent[18]
Scheme 3 TFAA / TfOH mediated intramolecular acylations[19]
Scheme 4 Acylation of 1,3-dimethoxy-5-pentylbenzene with crotonic acid[21]
Scheme 5 Intramolecular acylations of thiophene and benzothiophene derivatives[22]
Fig.1 Acylation product 17[25]
Scheme 6 Acylation of tert-thiophene 18[26]
Scheme 7 Acylation of N-phenylsulfonylpyrrole[28]
Scheme 8 Acylation of pyrrole-2-caboxylic acid derivative 24 induced by TFAA[30]
Scheme 9 Acylation of pyrrole derivative 29 using pyrrole-2-carboxylic acid derivative 28 as acylating agent[31]
Scheme 10 Acylations of carbazole 31 and its N-substituted derivative 34[32]
Scheme 11 Acylation-alkylation cascade for the synthesis of 2-tetralone derivative 38[33]
Scheme 12 Synthetic route toward compounds 46 and 48[34]
Fig.2 Complexation of compound 46 with different metals[35]
Scheme 13 Synthetic route toward 2-phenyl-6-(1H-pyrrol-2-yl)pyridine 54[36]
Scheme 14 Synthesis of tripyrrole derivative 59[37]
Scheme 15 Synthesis of 9H-pyrrolo[1,2-a]indol-9-ones 63 and indeno[2,1-b]pyrrol-8-ones 64[38]
Scheme 16 Mechanism for the formation of dihydro-pyrrolizino[3,2-b]indol-10-one 67[39]
Scheme 17 Synthesis of compound 69 using TFAA / H3PO4 mediated acylation[40]
Scheme 18 Carbazole alkaloids synthesized from intramolecular acylation product 71
Scheme 19 Total synthesis of cannabinol[21]
Scheme 20 Acylation-Nazarov cyclization cascade toward 3-methyl / phenyl-1-hydrindone 78[42]
Scheme 21 Acylation-Nazarov cyclization cascade toward 4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ones[43]
Scheme 22 Acylation-Nazarov cyclization cascade toward 4,5-dihydrocyclopenta[b]pyrrol-6(1H)-one derivative 80 and 3,4-dihydrocyclopenta[b]indol-1(2H)-one derivative 82[44]
Scheme 23 Synthesis of natural product bruceolline E[47]
Scheme 24 Synthesis of natural product roseophilin[48]
Scheme 25 Synthetic route toward 5-epi-taiwaniaquinone G and taiwaniaquinol B[51,52,53]
[1]
Sartori G, Maggi R. ., Chem.Rev 2006,106:1077.
[2]
Vilsmeier A, Haack A . Ber. Dtsch. Chem.Ges., 1927,60:119.
[3]
Gattermann L, Koch J A . Ber. Dtsch. Chem. Ges., 1897,30:1622.
[4]
Reimer K, Tiemann F . Ber. Dtsch. Chem. Ges., 1876,9:1268.
[5]
Fries K, Finck G . Ber. Dtsch. Chem. Ges., 1908,41:4271.
[6]
Kollarits M, Merz V . Ber. Dtsch. Chem. Ges., 1872,5:447.
[7]
Tedder J M, . Chem. Rev., 1955,55:787.
[8]
(a) Meth-Cohn O, Gronowitz S, Acta Chem . Scand., 1966,20:1577
(b) Prandi C, Occhiato E G, Tabasso S, Bonfante P, Novero M, Scarpi D, Bova M E, Miletto I . Eur. J. Org. Chem. 2011, 2011:3781;
(c) Ewen J A, Elder M J, Jones R L, Rheingold A L, Liable-Sands L M, Sommer R D. . J. Am. Chem. Soc., 2001, 123:4763;, 2017,139:10486.
[9]
Fieser L F, Hershberg E B . J.Am. Chem. Soc., 1939,61:1272.
[10]
(a) Surya Prakash G K, Yan P, Török B, Olah G A . Catal. Lett., 2003, 87:109;
(b) Rendy R, Zhang Y, McElrea A, Gomez A, Klumpp D A . J. Org. Chem., 2004,69:2340
(c) Surya Prakash G K, Paknia F, Vaghoo H, Rasul G, Mathew T, Olah G A . J. Org. Chem., 2010,75:2219,;
(d) Zhao Y, Chen Y, Newhouse T R. . Angew. Chem. Int. Ed., 2017,56:13122.
[11]
(a) van Baar J F, Horton A D, de Kloe K P, Kragtwijk E, Mkoyan S G, Nifant’ev I E, Schut P A, Taidakov I V . Organometallics, 2003,22:2711
(b) Nifant’ev I E, Ivchenko P V, Bagrov V V, Churakov A V, Mercandelli P . Organometallics, 2012,31:4962.
[12]
Kangani C O Day B W. , Org. Lett., 2008,10:2645.
[13]
(a) da Camara e Silva E S, Figueroa-Villar J D, Palermo de Aguiar A . Synth. Commun., 2002,32:3193
(b) Xia Z Y, Zhang Z Y, Su J H, Zhang Q, Fung K M, Lam M K, Li K F, Wong W Y, Cheah K W, Tian H, Chen C H . J. Mater. Chem., 2010,20:3768,;
(c) da Silva Barbosa J, da Silva G V J, Constantino M G . Tetrahedron Lett., 2015,56:4649.
[14]
(a) De Castro C, Primo J, Corma A, J. Mol . Catal. A: Chem., 1998,134:215,;
(b) Chassaing S, Kumarraja M, Pale P, Sommer J . Org. Lett., 2007,9:3889.
[15]
(a) Huang Y C, Majumdar K K, Cheng C H . J.Org. Chem., 2002,67:1682
(b) Takemiya A, Hartwig J F . J. Am. Chem. Soc., ,;
(c) Suchand B, Satyanarayana G . J. Org. Chem., 2016,81:6409, ;, 2017,56:15441.
[16]
Smyth T P, Corby B W . J.Org. Chem., 1998,63:8946.
[17]
Veeramaneni V R, Pal M, Yeleswarapu K R . Tetrahedron, 2003,59:3283.
[18]
Luke G P, Seekamp C K, Wang Z Q, Chenard B L . J. Org. Chem., 2008,73:6397.
[19]
Kim J, Shokova E, Tafeenko V, Kovalev V . Beilstein J. Org. Chem., 2014,10:2270.
[20]
(a) Firouzabadi H, Iranpoor N, Nowrouzi F . Tetrahedron Lett., 2003,44:5343
(b) Firouzabadi H, Iranpoor N, Nowrouzi F . Tetrahedron, 2004,60:10843.
[21]
Fan F, Dong J, Wang J, Song L, Song C, Chang J . Adv. Synth. Catal., 2014,356:1337.
[22]
Galli C, Illuminati G, Mandolini L . J. Org. Chem., 1980,45:311.
[23]
Prado-Prado F, García-Mera X, Abeijón P, Alonso N, Caamaño O, Yáñez M, Gárate T, Mezo M, González-Warleta M, Muiño L, Ubeira F M, González-Díaz H . Eur. J. Med.Chem., 2011,46:1074.
[24]
Bindu P, Naini S R, Rao K S, Dubey P K, Pal S . J.Heterocyclic Chem., 2014,51:586.
[25]
Pal S, Khan M A, Bindu P Dubey P K. , Beilstein J. Org. Chem., 2007,3:35. DOI: 10.1186/1860-5397-3-35.
[26]
Andicsová-Eckstein A, Kozma E, Puterová-Tokárová Z, Végh D . J.Fluorine Chem., 2015,180:272.
[27]
Andicsová-Eckstein A, Kozma E, Végh D . J.Heterocyclic Chem., 2016,53:1945.
[28]
Kakushima M, Hamel P, Frenette R, Rokach J . J.Org. Chem., 1983,48:3214.
[29]
Song C, Knight D Wc Whatton M A. , Tetrahedron Lett., 2004,45:9573.
[30]
Kim S H, Lim J W, Yu J, Kim J N . Bull. Korean Chem.Soc., 2013,34:2604.
[31]
Beshara C S, Thompson A . J.Org. Chem., 2005,70:10607.
[32]
Kolli S K, Prasad B, Babu P V, Ashfaq M A, Ehtesham N Z, Raju R R, Pal M . Org. Biomol. Chem., 2014,12:6080.
[33]
Gray A D, Smyth T P . J.Org. Chem., 2001,66:7113.
[34]
Song C, Zhao P, Liu Y, Liu H, Li W, Shi S, Chang J . Tetrahedron, 2010,66:5378.
[35]
Yang W, Fu L, Wu J, Song C . Synth.Commun, 2016,46:1118.
[36]
Song C, Liu Y, Zhao P, Sun X, Li W, Liu H, Chang J . Synthesis, 2011,45.
[37]
Gałęzowski M, Jazwiński J, Lewtak J P, Gryko D T . J.Org. Chem., 2009,74:5610.
[38]
(a) Wang S, Yang Q, Dong J, Li C, Sun L, Song C, Chang J . Eur.J.Org. Chem., 2013,2013:7631
(b) Chang J, Sun L, Dong J, Shen Z, Zhang Y, Wu J, Wang R, Wang J, Song C . Synlett, 2012,23:2704.
[39]
Zhang Q, Song C, Huang H, Zhang K, Chang J . Org. Chem. Front., 2018,5:80.
[40]
Smyth T P, Corby B W . Org. Process Res.Dev., 1997,1:264.
[41]
(a) Liu Y, Guo Y, Ji F, Gao D, Song C, Chang J . J. Org. Chem., 2016,81:4310
(b) Guo Y, Huang H, Zhang T, Qi S, Liu Y, Li M, Wang P, Song C, Chang J, Asian J . Org. Chem., 2016,5:1269 ;
(c) Ji F, Huang H, Li M, Song C, Chang J . Synjournal, 2018,50:3921.
[42]
Koelsch C F, Hochmann H, Claire C D L . J. Am. Chem. Soc., 1943,65:59.
[43]
Song C, Knight D W, Whatton M A . Org. Lett., 2006,8:163.
[44]
Li E, Li C, Wang J, Wang J, Dong L, Guo X, Song C, Chang J . Tetrahedron, 2014,70:874.
[45]
Głodek M, Makal A, Kłys A, Zakrzewski J Plazuk D , Eur.J. Org. Chem., 2016,4215.
[46]
(a) Huang C, Ding R, Song C, Lu J, Liu L, Han X, Wu J, Hou H, Fan Y . Chem. Eur. J., 2014,20:16156,;
(b) Huang C, Han X, Shao Z, Gao K, Liu M, Wang Y, Wu J, Hou H, Mi L . Inorg. Chem., 2017,56:4874;
(c) Liu M, Gao K, Fan Y, Guo X, Wu J, Meng X, Hou H . Chem. Eur. J,. 2018,24:1416;
(d) Huang C, Zhang Y, Yang H, Wang D, Mi L, Shao Z, Liu M, Hou H . Cryst. Growth Des., 2018,18:56742018, 2018,57:10224.
[47]
Jordan J A, Gribble G W, Badenock J C . Tetrahedron Lett., 2011,52:6772.
[48]
Hong M, Liu H, Sun L, Jia F, Liu Y, Jiang Q, Song C, Chang J . Synlett, 2011,2995.
[49]
Song C, Liu H, Hong M, Liu Y, Jia F, Sun L, Pan Z, Chang J . J. Org. Chem., 2012,77:704.
[50]
(a) Fürstner A, Weintritt H . J. Am. Chem. Soc., 1998,120:2817
(b) Fürstner A, Gastner T, Weintritt H . J.Org. Chem., 1999,64:2361.
[51]
(a) Wang J, Wang J, Li C, Meng Y, Wu J, Song C, Chang J . J.Org. Chem., 2014,79:6354
(b) Meng Y, Liu Y, Lv Z, Wang J, Wang Y, Song C, Chang J . Nat. Prod. Commun.; 2015,10:2031.
[52]
Chang J, Wang S, Shen Z, Huang G, Zhang Y, Zhao J, Li C, Fan F, Song C. ., Tetrahedron Lett 2012,53:6755.
[53]
Fillion E, Fishlock D . J. Am. Chem. Soc., 2005 127:13144.
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[3] Xixi Wang, Lu Dai, Suyun Jie, Bogeng Li. Synthesis and Application in the Polycondensation of Long-Chain Aliphatic Dicarboxylic Acids [J]. Progress in Chemistry, 2019, 31(1): 70-82.
[4] Guoqiang Wang, Min Jiang*, Qiang Zhang, Rui Wang, Xiaoling Qu, Guangyuan Zhou*. Polyesters Containing Furan Rings Based on Renewable Resources [J]. Progress in Chemistry, 2018, 30(6): 719-736.
[5] Weijun Huang, Ning Zhu*, Zheng Fang, Kai Guo*. Synthesis of Biobased Furan-Containing Polyamides [J]. Progress in Chemistry, 2018, 30(12): 1836-1843.
[6] Gong Jinsong, Li Heng, Lu Zhenming, Shi Jinsong, Xu Zhenghong. Recent Progress in the Application of Nitrilase in the Biocatalytic Synthesis of Pharmaceutical Intermediates [J]. Progress in Chemistry, 2015, 27(4): 448-458.
[7] Feng Chao Liu Saiwen Peng Shengming Yi Bing Deng Guojun. Decarboxylative C-C Bond Formations [J]. Progress in Chemistry, 2010, 22(07): 1403-1413.
[8] Yuan Bing,Qiao Weihong,Li Zongshi*,Wang Guiru,Cheng Lvbai. Application of Zeolite Molecular Sieves in Friedel-Crafts Acylation Reactions [J]. Progress in Chemistry, 2005, 17(04): 686-691.
[9] Ma Jianfang,Ni Jiazuan. The Structures of Rare Earth Carboxylates [J]. Progress in Chemistry, 1996, 8(04): 259-.