中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 894-905 DOI: 10.7536/PC181008 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies

Miao Gong1, Xiaoying Wang1,**(), Xiaoning Wang2   

  1. 1.Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
    2.Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
  • Received: Online: Published:
  • Contact: Xiaoying Wang
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(81302472); National Natural Science Foundation of China(81600179); the “Blue Project” Funded by Universities in Jiangsu, and the Postgraduate Practice Innovation Program of Jiangsu Province(SJCX18-0079)
Richhtml ( 14 ) PDF ( 383 ) Cited
Export

EndNote

Ris

BibTeX

Hematological malignancies(HM) is a kind of malignant disease of hematology system which seriously threatens human health, mainly involving bone marrow, blood and lymphatic tissue. The quantification of biomarkers in hematological malignancies is the key for fine stratification analysis, personalized targeted therapy and prognostic improvement. In this paper, the specific types and the commonly used detection methods at home and abroad of the hematological malignancies related biomarkers are summarized and compared. Specifically, the latest application of new electrochemical biosensor for the hematological malignancies related biomarkers is mainly described. Furthermore, the summary of its future directions and the potential applications is given, which provides reference for the further research and application of the biomarkers in hematological malignancies.

Table 1 Common biomarkers in hematological malignancies
Table 2 Commonly used detection methods of the biomarkers in hematological malignancies
Fig. 1 Labeled electrochemical and ECL sensor for BCR/ABL fusion gene[28](A) and P16 gene[33](B)
Table 3 Electrochemical sensor for DNA biomarkers in hematological malignancies
Fig. 2 Labeled electrochemical sensor for miRNA-155[41] (A) and C-myc protein[46] (B)
Table 4 Electrochemical sensor for RNA biomarkers in hematological malignancies
Fig. 3 Labeled electrochemical sensor based on antigen[48](A) and aptamer[50](B)
Table 5 Labeled electrochemical sensor for hematological malignancies cells
Fig. 4 Label-free electrochemical and ECL sensor for K562/ADM cell[61] (A) and BCR/ABL gene[69] (B)
Table 6 Label-free electrochemical sensor for biomarkers in hematological malignancies
Fig. 5 The detection of tDNA and cancer cells based on ECL and ASV[67](A)and simultaneous electrochemical detection of Bcl-2 and Bax proteins[79](B)
Fig. 6 Paper-based electrodes for simultaneous electrochemical detection of multiple cancer cells[82]
[1]
Lawrie C H . Blood. Rev., 2013,27(3):143. https://www.ncbi.nlm.nih.gov/pubmed/23623930

doi: 10.1016/j.blre.2013.04.002 pmid: 23623930
[2]
Dhodapkar M V, Dhodapkar K M . Semin. Oncol., 2015,42(4):617.
[3]
Topkaya S N, Azimzadeh M, Ozsoz M . Electroanal., 2016,28(7):1402.
[4]
Deininger M W N, Goldman J M, Melo J V . Blood, 2000,96(10):3343. https://www.ncbi.nlm.nih.gov/pubmed/11071626

pmid: 11071626
[5]
Ofran Y, Izraeli S . Blood Rev., 2017,31(2):11. https://www.ncbi.nlm.nih.gov/pubmed/27665024

doi: 10.1016/j.blre.2016.09.001 pmid: 27665024
[6]
Rosenthal A, Younes A . Blood Rev., 2017,31(2):37. https://www.ncbi.nlm.nih.gov/pubmed/27717585

doi: 10.1016/j.blre.2016.09.004 pmid: 27717585
[7]
Petrich A M, Nabhan C, Smith S M . Cancer, 2014,120(24):3884.
[8]
Stine Z E, Walton Z E, Altman B J, Hsieh A L, Dang C V . Cancer Discov., 2015,5(10):1024.
[9]
Tavallaie R, De Almeida S R, Gooding J J . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015,7(4):580. https://www.ncbi.nlm.nih.gov/pubmed/25529633

doi: 10.1002/wnan.1324 pmid: 25529633
[10]
Hanahan D, Weinberg R A . Cell, 2011,144(5):646. https://www.ncbi.nlm.nih.gov/pubmed/21376230

doi: 10.1016/j.cell.2011.02.013 pmid: 21376230
[11]
Ouyang W, Yu Z, Zhao X, Lu S, Wang Z . Crit. Rev. Oncol. Hematol., 2016,106:108. https://www.ncbi.nlm.nih.gov/pubmed/27637356

doi: 10.1016/j.critrevonc.2016.08.003 pmid: 27637356
[12]
Marques S C, Laursen M B, Bodker J S, Kjeldsen M K, Falgreen S, Schmitz A, Bogsted M, Johnsen H E, Dybkaer K . Oncotarget, 2015,6(1):7. https://www.ncbi.nlm.nih.gov/pubmed/25622103

doi: 10.18632/oncotarget.3057 pmid: 25622103
[13]
Taylor J, Xiao W, Abdel-Wahab O . Blood, 2017,130(4):410.
[14]
Xie L, Jing R, Qi J, Lin Z, Ju S . Blood Rev., 2015,29(1):33. https://www.ncbi.nlm.nih.gov/pubmed/25263425

doi: 10.1016/j.blre.2014.09.005 pmid: 25263425
[15]
Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, Zetterberg A, Cheng T, Miao W . Biomarker Research, 2014,2(1):3. https://www.ncbi.nlm.nih.gov/pubmed/24499728

doi: 10.1186/2050-7771-2-3 pmid: 24499728
[16]
Santos Gda C, Saieg M A, Ko HM, Geddie W R, Boerner S L, Craddock K J, Crump M, Bailey D . Cancer Cytopathol., 2015,123(7):413. https://www.ncbi.nlm.nih.gov/pubmed/25807917

doi: 10.1002/cncy.21535 pmid: 25807917
[17]
Adamopoulos P G, Kontos C K, Tsiakanikas P, Scorilas A . Cancer Lett., 2016,373(1):119. https://www.ncbi.nlm.nih.gov/pubmed/26797417

doi: 10.1016/j.canlet.2016.01.019 pmid: 26797417
[18]
Tong Y Q, Zhao Z J, Liu B, Bao A Y, Zheng H Y, Gu J, Xia Y, McGrath M, Dovat S, Song C H, Li Y . Leuk. Res., 2018,69:47. https://www.ncbi.nlm.nih.gov/pubmed/29655153

doi: 10.1016/j.leukres.2018.04.001 pmid: 29655153
[19]
Sharma M C, Gupta R K, Kaushal S, Suri V, Sarkar C, Singh M, Kale S S, Sahoo R K, Kumar L, Raina V . Indian J. Med. Res., 2016,143(5):605. https://www.ncbi.nlm.nih.gov/pubmed/27488004

doi: 10.4103/0971-5916.187109 pmid: 27488004
[20]
Kumar M A, Barathidasan R, Palanivelu M, Singh S D, Wani M Y, Malik Y S, Singh R, Dhama K . J. Virol. Methods, 2016,236:271.
[21]
Cordoba R, Alvarez B, Masso P, Gonzalez FA, Conejo L, Velasco D, Alonso J M, Villarrubia J, Cava F, Llamas P . Cytometry B Clin. Cytom., 2016,90(6):543. https://www.ncbi.nlm.nih.gov/pubmed/25612555

doi: 10.1002/cyto.b.21227 pmid: 25612555
[22]
Li L, Chen Y, Zhu J J . Anal. Chem., 2017,89(1):358. https://www.ncbi.nlm.nih.gov/pubmed/27959507

doi: 10.1021/acs.analchem.6b04675 pmid: 27959507
[23]
Jayanthi V, Das AB, Saxena U . Biosens. Bioelectron., 2017,91:15. https://www.ncbi.nlm.nih.gov/pubmed/27984706

doi: 10.1016/j.bios.2016.12.014 pmid: 27984706
[24]
Liu Z, Qi W, Xu G . Chem. Soc. Rev., 2015,44(10):3117. https://www.ncbi.nlm.nih.gov/pubmed/25803228

doi: 10.1039/c5cs00086f pmid: 25803228
[25]
Pakchin P S, Nakhjavani SA, Saber R, Ghanbari H, Omidi Y . TrAC Trend. Anal. Chem., 2017,92:32.
[26]
Akter R, Rahman M A, Rhee C K . Anal. Chem., 2012,84(15):6407. https://www.ncbi.nlm.nih.gov/pubmed/22793977

doi: 10.1021/ac300110n pmid: 22793977
[27]
Wang C, Zhou H, Zhu W, Li H, Jiang J, Shen G, Yu R . Biosens. Bioelectron., 2013,47:324. https://www.ncbi.nlm.nih.gov/pubmed/23603128

doi: 10.1016/j.bios.2013.03.020 pmid: 23603128
[28]
Wang L, Hua E, Liang M, Ma C, Liu Z, Sheng S, Liu M, Xie G, Feng W . Biosens. Bioelectron., 2014,51:201. https://www.ncbi.nlm.nih.gov/pubmed/23962707

doi: 10.1016/j.bios.2013.07.049 pmid: 23962707
[29]
Chen X, Wang L, Sheng S, Wang T, Yang J, Xie G, Feng W . Anal. Chim. Acta., 2015,889:90. https://www.ncbi.nlm.nih.gov/pubmed/26343430

doi: 10.1016/j.aca.2015.06.050 pmid: 26343430
[30]
Hu L, Tan T, Chen G, Zhang K, Zhu J J . Electrochem. Commun., 2013,35:104.
[31]
Wang Y, Jiang M, Shan Y, Jin X, Gong M, Wang X . J. Lumin., 2018,201:135.
[32]
Wang X, Wang Y, Shan Y, Jiang M, Jin X, Gong M, Xu J . J. Electroanal. Chem., 2018,823:368.
[33]
Wang X, Wang Y, Shan Y, Jiang M, Gong M, Jin X, Wang X, Cheng J . Talanta, 2018,187:179. https://www.ncbi.nlm.nih.gov/pubmed/29853032

doi: 10.1016/j.talanta.2018.05.033 pmid: 29853032
[34]
Zhong G X, Ye J X, Bai F Q, Fu F H, Chen W, Liu A L, Lin X H, Chen Y Z . Sensor. Actuat. B -Chem., 2014,204:326.
[35]
Mazloum-Ardakani M, Barazesh B, Khoshroo A, Moshtaghiun M, Sheikhha MH . Bioelectrochemistry, 2018,121:38. https://www.ncbi.nlm.nih.gov/pubmed/29367018

doi: 10.1016/j.bioelechem.2017.12.010 pmid: 29367018
[36]
Lei Y, Feng M J, Wang K, Lin L Q, Chen Y Z, Lin X H . Anal. Bioanal. Chem., 2013,405(1):423. https://www.ncbi.nlm.nih.gov/pubmed/23064710

doi: 10.1007/s00216-012-6477-6 pmid: 23064710
[37]
Lee A C, Du D, Chen B, Heng C K, Lim T M, Lin Y . Analyst., 2014,139(17):4223. https://www.ncbi.nlm.nih.gov/pubmed/24961450

doi: 10.1039/c3an01156a pmid: 24961450
[38]
Sharma A, Sumana G, Sapra S, Malhotra BD . Langmuir, 2013,29(27):8753. https://www.ncbi.nlm.nih.gov/pubmed/23721517

doi: 10.1021/la401431q pmid: 23721517
[39]
Sun Y, Ren Q, Liu B, Qin Y, Zhao S . Biosens. Bioelectron., 2016,78:7. https://www.ncbi.nlm.nih.gov/pubmed/26584077

doi: 10.1016/j.bios.2015.11.014 pmid: 26584077
[40]
Cheng F F, He T T, Miao H T, Shi J J, Jiang L P, Zhu J J . ACS Appl. Mater Interfaces, 2015,7(4):2979.
[41]
Wu X, Chai Y, Zhang P, Yuan R . ACS Appl. Mater. Interfaces., 2015,7(1):713. https://www.ncbi.nlm.nih.gov/pubmed/25495913

doi: 10.1021/am507059n pmid: 25495913
[42]
Wang D, Hu L, Zhou H, Abdel-Halim E S, Zhu J J . Electrochem. Commun., 2013,33:80.
[43]
Labib M, Ghobadloo S M, Khan N, Kolpashchikov D M, Berezovski M V . Anal. Chem., 2013,85(20):9422. https://www.ncbi.nlm.nih.gov/pubmed/24047131

doi: 10.1021/ac402416z pmid: 24047131
[44]
Jou A F J, Chen Y J, Li Y, Chang Y F, Lee J J, Liao A T, Ho J A . Electrochimica. Acta, 2017,236:190.
[45]
Farzin L, Shamsipur M . J. Pharm. Biomed. Anal., 2018,147:185. https://www.ncbi.nlm.nih.gov/pubmed/28869052

doi: 10.1016/j.jpba.2017.07.042 pmid: 28869052
[46]
He J L, Tian Y F, Cao Z, Zou W, Sun X . Sensor. Actuat. B -Chem., 2013,181:835.
[47]
Wang X, Wang Y, Jiang M, Shan Y, Jin X, Gong M, Wang X . Anal. Biochem., 2018,548:15. https://www.ncbi.nlm.nih.gov/pubmed/29432752

doi: 10.1016/j.ab.2018.02.006 pmid: 29432752
[48]
Xu L, Zhu L, Jia N, Huang B, Tan L, Yang S, Tang H, Xie Q, Yao S . Actuat. B-Chem., 2013,186:506.
[49]
Zhao N, Pei S N, Qi J, Zeng Z, Iyer S P, Lin P, Tung C H, Zu Y . Biomaterials, 2015,67:42. https://www.ncbi.nlm.nih.gov/pubmed/26204224

doi: 10.1016/j.biomaterials.2015.07.025 pmid: 26204224
[50]
Yu T, Zhang H, Huang Z, Luo Z, Huang N, Ding S, Feng W . Electroanal., 2017,29(3):828.
[51]
Zhang M, Liu H, Chen L, Yan M, Ge L, Ge S, Yu J . Biosens. Bioelectron., 2013,49:79. https://www.ncbi.nlm.nih.gov/pubmed/23722045

doi: 10.1016/j.bios.2013.05.003 pmid: 23722045
[52]
Zheng T, Fu J, Jiang L, Zhu J J . J. Electroanal. Chem., 2016,781:418.
[53]
Khoshfetrat S M, Mehrgardi M A . Bioelectrochemistry, 2017,114:24. https://www.ncbi.nlm.nih.gov/pubmed/27992855

doi: 10.1016/j.bioelechem.2016.12.001 pmid: 27992855
[54]
Zhang K, Tan T, Fu J J, Zheng T, Zhu J J . Analyst., 2013,138(21):6323. https://www.ncbi.nlm.nih.gov/pubmed/23978949

doi: 10.1039/c3an01255g pmid: 23978949
[55]
Liu J, Cui M, Niu L, Zhou H, Zhang S . Chemistry, 2016,22(50):18001. https://www.ncbi.nlm.nih.gov/pubmed/27781354

doi: 10.1002/chem.201604354 pmid: 27781354
[56]
Su M, Ge L, Ge S, Li N, Yu J, Yan M, Huang J . Anal. Chim. Acta, 2014,847:1.
[57]
Yi Z, Li X Y, Gao Q, Tang L J, Chu X . Analyst., 2013,138(7):2032. https://www.ncbi.nlm.nih.gov/pubmed/23420020

doi: 10.1039/c3an36474g pmid: 23420020
[58]
Yang H, Yang Q, Li Z, Du Y, Zhang C . Sensor. Actuat. B -Chem., 2016,236:712.
[59]
Chen M, Bi S, Jia X, He P . Anal. Chim. Acta, 2014,837:44
[60]
Huang T, Jie G . Anal. Biochem., 2013,442(1):34. https://www.ncbi.nlm.nih.gov/pubmed/23872009

doi: 10.1016/j.ab.2013.07.011 pmid: 23872009
[61]
Zhang S, Zhang L, Zhang X, Yang P, Cai J . Analyst., 2014,139(14):3629. https://www.ncbi.nlm.nih.gov/pubmed/24889704

doi: 10.1039/c4an00420e pmid: 24889704
[62]
Zhang W .J. Solid State Electr., 2015,20(2):499.
[63]
Yang T, Meng L, Wang X, Wang L, Jiao K . ACS Appl. Mater. Interfaces., 2013,5(21):10889. https://www.ncbi.nlm.nih.gov/pubmed/24088603

doi: 10.1021/am403090y pmid: 24088603
[64]
Avelino K, Frias IAM, Lucena-Silva N, Gomes R G, de Melo C P, Oliveira M D L, Andrade C A S . Colloid. Surface. B, 2016,148:576.
[65]
Chen L, Luo Y, Liu T, Yuan Y, Gu H, Yang Y, Li L, Tan L . Talanta, 2015,132:479.
[66]
Hu R, Wang G, Yuan R, Xu Y, Yu T, Zhong L, Zhou Q, Ding S . J. Electroanal. Chem., 2017,789:160.
[67]
Jie G, Zhang J, Jie G, Wang L . Biosens. Bioelectron., 2014,52:69. https://www.ncbi.nlm.nih.gov/pubmed/24021658

doi: 10.1016/j.bios.2013.08.006 pmid: 24021658
[68]
Hong L R, Chai Y Q, Zhao M, Liao N, Yuan R, Zhuo Y . Biosens. Bioelectron., 2015,63:392. https://www.ncbi.nlm.nih.gov/pubmed/25128620

doi: 10.1016/j.bios.2014.07.065 pmid: 25128620
[69]
Xu Y, Xu Y, Zuo Z, Zhou X, Guo B, Sang Y, Ding S . J. Electroanal Chem., 2017,801:192.
[70]
Zhang W . J. Appl. Electrochem., 2016,46(5):559.
[71]
Yang J, Zhang W . J. Solid State Electr., 2014,18(10):2863.
[72]
Ensafi A A, Amini M, Rezaei B, Talebi M . Biosens. Bioelectron., 2016,77:409. https://www.ncbi.nlm.nih.gov/pubmed/26436328

doi: 10.1016/j.bios.2015.09.063 pmid: 26436328
[73]
Pandey C M, Dewan S, Chawla S, Yadav B K, Sumana G, Malhotra B D . Anal. Chim. Acta., 2016,937:29. https://www.ncbi.nlm.nih.gov/pubmed/27590542

doi: 10.1016/j.aca.2016.07.024 pmid: 27590542
[74]
Kerr-Phillips T E, Aydemir N, Chan E W C, Barker D, Malmstrom J, Plesse C, Travas-Sejdic J . Biosens. Bioelectron., 2018,100:549. https://www.ncbi.nlm.nih.gov/pubmed/29017070

doi: 10.1016/j.bios.2017.09.042 pmid: 29017070
[75]
Zhang D, Zhang Y, Zheng L, Zhan Y, He L . Biosens. Bioelectron., 2013,42:112. https://www.ncbi.nlm.nih.gov/pubmed/23202339

doi: 10.1016/j.bios.2012.10.057 pmid: 23202339
[76]
Ma Z, Liu N . Expert Rev. Mol. Diagn., 2015,15(8):1075. https://www.ncbi.nlm.nih.gov/pubmed/26027743

doi: 10.1586/14737159.2015.1052798 pmid: 26027743
[77]
Zheng T, Fu J J, Hu L, Qiu F, Hu M, Zhu J J, Hua Z C, Wang H . Anal. Chem., 2013,85(11):5609. https://www.ncbi.nlm.nih.gov/pubmed/23621478

doi: 10.1021/ac400994p pmid: 23621478
[78]
Zheng T, Tan T, Zhang Q, Fu J J, Wu J J, Zhang K, Zhu J J, Wang H . Nanoscale, 2013,5(21):10360.
[79]
Zhou S, Wang Y, Zhu J J . ACS Appl. Mater. Interfaces., 2016,8(12):7674. https://www.ncbi.nlm.nih.gov/pubmed/26946947

doi: 10.1021/acsami.6b01010 pmid: 26946947
[80]
Akhavan O, Ghaderi E, Rahighi R, Abdolahad M . Carbon, 2014,79:654.
[81]
Cui Z, Wu D, Zhang Y, Ma H, Li H, Du B, Wei Q, Ju H . Anal. Chim. Acta., 2014,807:44. https://www.ncbi.nlm.nih.gov/pubmed/24356219

doi: 10.1016/j.aca.2013.11.025 pmid: 24356219
[82]
Wang N, Feng Y, Wang Y, Ju H, Yan F . Anal. Chem., 2018,90(12):7708. https://www.ncbi.nlm.nih.gov/pubmed/29847924

doi: 10.1021/acs.analchem.8b01610 pmid: 29847924
[83]
Du D, Wang J, Lu D, Dohnalkova A, Lin Y . Anal. Chem., 2011,83(17):6580. https://www.ncbi.nlm.nih.gov/pubmed/21797208

doi: 10.1021/ac2009977 pmid: 21797208
[84]
Wu L, Ma C, Ge L, Kong Q, Yan M, Ge S, Yu J . Biosens. Bioelectron., 2015,63:450. https://www.ncbi.nlm.nih.gov/pubmed/25128625

doi: 10.1016/j.bios.2014.07.077 pmid: 25128625
[1] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[2] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[3] Chao Zhao, Zongwei Cai. Mass Spectrometry Imaging and Omics for Environmental Toxicology Research [J]. Progress in Chemistry, 2021, 33(4): 503-511.
[4] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.
[5] Li Wenwen, Duan Yixiang. Human Exhaled Breath Analysis: Trends in Techniques and Its Potential Applications in Non-Invasive Clinical Diagnosis [J]. Progress in Chemistry, 2015, 27(4): 321-335.
[6] Jiang Yan, Ma Cuicui, Hu Xianqiao, He Qiaohong. Fabrication Techniques of Microfluidic Paper-Based Chips and Their Applications [J]. Progress in Chemistry, 2014, 26(01): 167-177.
[7] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[8] Gao Chengyao, Chang Ming, Li Xiaowei, Li Cuiping. Electroanalytical Applications of Boron Doped Diamond Electrode [J]. Progress in Chemistry, 2011, 23(5): 951-962.
[9] Zhang Chen Zhao Meiping. Methods for Detection of Volatile Organic Compounds in Human Exhaled Breath [J]. Progress in Chemistry, 2010, 22(01): 140-147.
[10] . Aptamer-Based Electrochemical Biosensors [J]. Progress in Chemistry, 2009, 21(04): 724-731.
[11] . Metabolism, Toxicity, and Biomonitoring of Arsenic Species [J]. Progress in Chemistry, 2009, 21(0203): 474-482.
[12] Hongyun Niu, Yaqi Cai, Fusheng Wei, Shifen Mou, Guibin Jiang. Hydroxyl Polycyclic Aromatic Hydrocarbons in Human Urine as Biomarkers of Exposure to PAHs [J]. Progress in Chemistry, 2006, 18(10): 1381-1390.
[13] Qi Honglan,Zhang Chengxiao**. Applications of Nanoparticles in Electrochemical DNA Biosensors [J]. Progress in Chemistry, 2005, 17(05): 911-915.
[14] Zhou Qingxiang,Jiang Guibin**. Separation and deter mination of vitelllogenin and lts Application as a biomarker for the screening of environmental endocrine disrupting chemicals [J]. Progress in Chemistry, 2003, 15(01): 67-.
[15] Qin Tao,Zhao Lixin,Xu Xiaobai,Jin Zuliang. Progress in Biomarkers Research and Risk Assessment for Environmental Carcinogens [J]. Progress in Chemistry, 1997, 9(01): 22-.